
Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation

via Deep Layer Cascade

Xiaoxiao Li1 Ziwei Liu1 Ping Luo2,1 Chen Change Loy1,2 Xiaoou Tang1,2

1
Department of Information Engineering, The Chinese University of Hong Kong

2
Shenzhen Key Lab of Comp. Vis. & Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China

{lx015,lz013,pluo,ccloy,xtang}@ie.cuhk.edu.hk

Abstract

We propose a novel deep layer cascade (LC) method

to improve the accuracy and speed of semantic segmen-

tation. Unlike the conventional model cascade (MC) that

is composed of multiple independent models, LC treats a

single deep model as a cascade of several sub-models.

Earlier sub-models are trained to handle easy and confident

regions, and they progressively feed-forward harder regions

to the next sub-model for processing. Convolutions are only

calculated on these regions to reduce computations. The

proposed method possesses several advantages. First, LC

classifies most of the easy regions in the shallow stage and

makes deeper stage focuses on a few hard regions. Such an

adaptive and ‘difficulty-aware’ learning improves segmen-

tation performance. Second, LC accelerates both training

and testing of deep network thanks to early decisions in the

shallow stage. Third, in comparison to MC, LC is an end-

to-end trainable framework, allowing joint learning of all

sub-models. We evaluate our method on PASCAL VOC and

Cityscapes datasets, achieving state-of-the-art performance

and fast speed.

1. Introduction

Semantic image segmentation enjoys wide applications,

such as video surveillance [9, 36] and autonomous driving

[10, 5]. Recent advanced deep architectures, such as

the residual network (ResNet) [13] and Inception [32],

significantly improve the accuracy of image segmentation

by increasing the depth and number of parameters in deep

models. For example, ResNet-101 is six times deeper than

VGG-16 [29] network, with the former outperforms the

latter by 4 percent on the challenging PASCAL VOC 2012

image segmentation benchmark [8].

Although promising results can be achieved through

the increase of model capacity, they come with a price

of runtime complexity, which impedes the deployments of

72.5%

0.9%
1.1%

1.0%
0.8%

0.9%

1.8%1.7%

2.6%

1.0%
1.3%

0.6%

2.2%

1.1%1.2%

4.8%

0.7%
0.8%

1.2%1.4%

0.6%
6.7%

19.0%

68.0%
b

k
g

a
r
eo

b
ik

e

b
ir

d

b
o
a
t

b
o
tt

le

b
u

s

c
a
r

c
a
t

c
h

a
ir

c
o
w

ta
b

le

d
o
g

h
o
r
se

m
b

ik
e

p
e
r
so

n

p
la

n
t

sh
ee

p

so
fa

tr
a
in tv

E
a
sy

M
o
d

e
…

H
a
rdP
e
rc

e
n

ta
g
e
 o

f 
p

ix
e
ls

 o
n

 V
O

C

Easy Moderate Hard

P
ix

e
ls o

n
 B

o
u

n
d

a
r
y

(%
)

background cow Easy Moderate Hard

(a) 

(b) 

Figure 1: (a) shows an image of ‘cow’ and ‘background’ (left)

and its ground truth label map (middle) from the Pascal VOC

2012 dataset. The difficulty level (e.g. recognizability) of pixels

are visualized in the right image, where pixels are partitioned into

three sets, including ‘easy’ (ES), ‘moderate’ (MS), and ‘extremely

hard’ (HS) sets. (b) depicts two histograms. The left one plots the

percentages of pixels in VOC validation set with respect to each

object category. It can be observed that ES occupies at least 30%

pixels of most objects. The right one reveals that 70% pixels in

HS are located at object boundaries, which have large ambiguity.

Best viewed in color with 300% zoom.

existing deep models in many applications that demand

real-time performance. For instance, the segmentation

speeds of VGG, ResNet-101, and Inception-ResNet on a

300×500 image are 5.7, 7.1 and 9.0 frame per second

(FPS), which are far away from real time. To address this

issue, this work presents Deep Layer Cascade (LC), which

not only substantially reduces the runtime of deep models,

but also improves their segmentation accuracies. Many

deep architectures, including VGG, ResNet, and Inception,

can benefit from the above appealing properties by adapting

their structures into LC.

Layer Cascade inherits the advantage of the conventional

model cascade (MC) [18, 35], which has multiple stages

and usually trains one classifier in each stage. MC is

capable of increasing both speed and accuracy for object

3193



detection, because the earlier stages (classifiers) reject most

of the easy samples (detection windows) and the later stages

can pay attention on a small number of difficult samples,

thus reducing false alarms. Different from MC, LC is

carefully devised for deep models in the task of image seg-

mentation. It considers different layers in a deep network

as different stages. In particular, most of the pixels in an

image are recognizable by the lower stages and the higher

stages, which typically possess far more parameters than

the bottom layers, are learned to recognize a small set of

challenging pixels. In this case, the runtime of deep models

can be significantly reduced by LC. Moreover, unlike MC

that learns the current stage by keeping all previous stages

fixed, LC trains all stages jointly to boost performance.

Another important difference between LC and MC is

the cascade strategy. In MC, the current stage propagates

a sample to the next stage, if its classification score or

probability (i.e. the response after softmax) is higher than

a large threshold, such as 0.95, indicating that this sample

is classified as positive by the current stage with 95%

confidence. In other words, later stages refine the labels of

samples that are considered highly positive in the previous

stages, so as to reduce false alarms.

In contrast, LC ‘rejects’ samples with high scores in

earlier stages, but those samples with low and moderate

confidences are propagated forward. Figure 1 takes the

segmentation results of LC as an example to illustrate

this cascade strategy. In (a), an image of ‘cow’ and

‘background’ and its ground truth label map from the VOC

validation set (VOC val) are shown on the left and middle

respectively. We partition all pixels in the validation set

into three different sets, namely “easy”, “moderate”, and

“extremely hard” sets. The easy set (ES) contains pixels that

are correctly classified with larger than 95% confidence,

while the extremely hard set (HS) comprises pixels that

are misclassified with larger than 95% confidence. The

moderate set (MS) covers pixels that have classification

scores smaller than 0.95.

In a certain stage of LC, ES and HS are discarded and

MS is propagated to the next stage, because of the following

two reasons. First, as shown in the right histogram of

Fig. 1(b), we observe that almost 70 percent1 pixels in HS

are located on the boundaries between objects, demonstrat-

ing that these pixels are extremely hard to be recognized

because of large ambiguity. An example is given by the

right image of Fig. 1(a). Fitting HS during training may lead

to over-fitting in the test stage. Second, the left histogram of

Fig. 1(b) plots the percentages of pixels with respect to each

object category in VOC val. For most of the categories, we

1We found that the other 30 percent pixels in HS have wrong annota-

tions. Since our purpose is to improve speed and accuracy of deep models,

we do not correct those wrong annotations to enable a fair comparison with

previous works.

found that at least 30 percent pixels belong to ES. As the

background pixels are dominated (72.5%), rejecting ES and

HS reduces more than 40 present pixels in earlier stages and

thus significantly reduces computations of deep networks,

while improves accuracy, by enabling deeper layers to focus

on foreground objects.

This study makes three main contributions. (1) This is

the first attempt to identify the segmentation difficulty of

pixels for deep models. With this observation, a novel Deep

Layer Cascade (LC) approach is proposed to significantly

reduce computations of deep networks while improving

their segmentation accuracies. (2) LC’s properties can be

easily applied to many recent advanced network structures.

After applying LC on Inception-ResNet-v2 (IRNet) [32],

its speed and accuracy are improved by 42.8% and 1.7%,

respectively. (3) Connections between LC and previous

models such as model cascade, deeply supervised network

[17], and dropout [30] are clearly presented. Extensive

studies are conducted to demonstrate the superiority of LC.

2. Related Work

Semantic Image Segmentation. While early efforts fo-

cused on structural models with handcrafted features [15,

16, 34, 38], recent studies employ deep convolutional

neural network (CNN) to learning strong representation,

which improves segmentation accuracy significantly [3, 22,

23, 25, 40]. For instance, Long et al. [25] transformed

fully-connected layers of CNN into convolutional layers,

making accurate per-pixel classification possible using the

contemporary CNN architectures that were pre-trained on

ImageNet [7]. Chen et al. [3], Zheng et al. [40], and Liu et

al. [22, 23] further showed that back-propagation and infer-

ence of Markov Random Field (MRF) can be incorporated

into CNN. Though attaining high accuracy, these models

generally have high computational costs, preventing them

from deploying in real-time.

Another line of research [1, 21, 27] alleviates this prob-

lem by using lightweight network architectures. For exam-

ple, SegNet [1] adopted a convolutional encoder-decoder

and removed unnecessary layers to reduce the number

of parameters. ENet [27] utilized a bottleneck module

to reduce computation of convolutions. Although these

networks are speeded up, they sacrificed high performances

as presented in previous deep models. This work proposes

Deep Layer Cascade (LC), which improves both speed and

accuracy of existing deep networks. It achieves state-of-

the-art performances on both Pascal VOC and Cityscape

datasets, and runs in real time.

Deep Learning Cascade. Network cascades [2, 18, 26, 33,

24] have been studied to improve the performance in classi-

fication [26], detection [18], and pose estimation [33]. For

example, Deep Decision Network [26] improved the image

classification performance by dividing easy data from the

3194



IRNet-A: previous layer (384)

previous layer 

(384)

conv 1*1(32)
conv 1*1(32) conv 1*1(32)

conv 3*3(48)
conv 3*3(32) conv 3*3(64)

concat (128)

conv 1*1 (384)

add (384)

IRNet-B: previous layer (1154)

previous 

(1154)

conv 

1*1(192)

conv 1*1(128)

conv 1*7(160)

conv 7*1(192)

concat (384)

conv 1*1(1154)

add (1154)

IRNet-C: previous layer (2048)

previous 

(2048)

conv 

1*1(192)

conv 1*1(192)

conv 1*3(224)

conv 3*1(256)

concat (448)

conv 1*1(2048)

add (2048)

Stem: Input (3)

conv 3*3 (32)

stride=2

conv 3*3 (32)

conv 3*3 (64)

maxpool 3*3(64)

stride=2

conv 3*3(96)

stride=2

concat (160)

conv 1*1(64)
conv 1*1(64)

conv 7*1(64)

conv 3*3(96)
conv 1*7(64)

conv 3*3(96)

concat (192)

conv 3*3(192)

stride=2

maxpool 3*3(192)

stride=2

concat (384)

(a) IRNet

Image Stem Reduction-A5×IRNet-A 10×IRNet-B Reduction-B 5×IRNet-C

pooling

Fully-Connected

horse

Softmax

background

horse

person

car

unknown

sta
g

e-1

sta
g

e-2

sta
g

e-3

Image Stem Reduction-A5×IRNet-A 10×IRNet-B Reduction-B 5×IRNet-C Conv

ConvConv

(b) IRNet after LC 

I

L1 L2

L3

Figure 2: (a) depicts the Inception-ResNet-v2 (IRNet) for classification task. (b) is the architecture of Layer Cascade IRNet (IRNet-LC).

The tables at the right show the structure of IRNet.

hard ones. The hard cases with high confusion will be

propagated and handled by the subsequent expert networks.

Li et al. [18] used CNN cascade for face detection, which

rejects false detections quickly in early stages and carefully

refines detections in later stages. DeepPose [33] employed a

divide-and-conquer strategy and designed a cascaded deep

regression framework for human pose estimation. Different

from previous network cascades that train each network

separately, LC is jointly optimized to boost the segmenta-

tion accuracy.

3. Deep Layer Cascade (LC)

Sec. 3.1 takes Inception-ResNet-v2 [32] as an example

to illustrate how one could turn a deep model into LC.

The approach can be easily generalized to the other deep

networks. Sec. 3.3 introduces the training algorithm of LC.

3.1. Turning a Deep Model into LC

Network Overview. To illustrate the effectiveness of LC,

we choose Inception-ResNet-v2 pre-trained on ImageNet

dataset as a strong baseline, denoted as IRNet, which

outperforms ResNet-101 by 1.2% on the Pascal VOC2012

validation set. Experiments demonstrate that LC is able to

achieve 1.7% improvement on this competitive baseline.

Figure 2 (a) visualizes the architecture of IRNet, which

has six different components, including ‘Stem’, ‘IRNet-

A/B/C’, and ‘Reduction-A/B’. Different components have

different configurations of layers, such as convolution,

pooling, and concatenation layer. The right column of

Fig. 2 shows the structures of ‘Stem’ and ‘IRNet-A/B/C’

respectively, including layer types, kernel sizes, and the

number of channels (in bracket). The stride typical equals

one unless otherwise stated. For example, ‘Stem’ employs

an RGB image as an input and produces features of 384

channels. More specifically, the input image is forwarded

to three convolutional layers with 3×3 kernels, and then the

learned features are split into two streams, which have 3 and

5 convolutional layers respectively.

Similar network structure as IRNet has achieved great

success in image recognition [32]. However, two important

modifications are necessary to adapt it to image segmen-

tation. Firstly, to increase the resolution of prediction, we

remove the pooling layer at the end of IRNet and enlarge

the size of feature maps by decreasing the convolutional

strides in ‘Reduction-A/B’ (from 2 to 1). In this case,

we expand the size of network outputs (label maps) by

4×. We also replace convolutions in ‘IRNet-B/C’ by the

dilated convolutions similar to [3]. Secondly, as feature

maps with high resolution consume a large amount of GPU

memory in the learning process, they limit the size of mini-

batch (e.g. 8), making the batch normalization (BN) layers

[14] unstable (as which need to estimate sample mean and

variance from the data in a mini-batch). We cope with this

issue by simply fixing the values of all parameters in BNs.

This strategy works well in practice.

From IRNet to LC (IRNet-LC). IRNet is turned into LC

by dividing its different components as different stages. The

number of stages is three, which is a common setting in

previous cascade methods [18, 31, 33]. As shown in Fig. 2

(b), components before ‘Reduction-A’ are considered as the

first stage, components between ‘Reduction-A’ and ‘-B’ are

the second stage, and the remaining layers become the third

stage. In Fig. 2 (b), these three stages are distinguished in

yellow, green, and blue respectively. For instance, stage-1

contains one ‘Stem’, five ‘IRNet-A’, and one ‘Reduction-

A’. In addition, we append two convolutional layers and

a softmax loss at the end of each stage. In this case, the

original IRNet with one loss function develops into multiple

3195



stages, where each stage has its own loss function.

Now we introduce the information flows for three stages

in IRNet-LC. In the first stage as shown in Fig. 2 (b),

given a 3×512×512 image I , stage-1 predicts a 21×64×64

segmentation label map L1, where each 21×1 column

vector, denoted as L1

i ∈ R
21×1, indicates the probabilities

(confidence scores) of the i-th pixel belonging to 21 object

categories in VOC respectively. We have
∑

21

j=1
L1

ij = 1,

which can be satisfied by using the softmax function. If

the maximum score of the i-th pixel, ℓ1i = max(L1

i ) and

ℓ1i ∈ {L1

ij |j = 1...21}, is larger than a threshold ρ (ℓ1i ≥ ρ),

we accept its prediction and do not propagate it forward

to stage-2. The value of ρ is usually larger than 0.95. As

introduced in Sec. 1, those pixels in stage-1 that fulfil ℓ1 ≥
0.95 occupy nearly 40% region of an image, containing a lot

of easy pixels and a small number of extremely hard pixels

that have high confidence to be misclassified. Removing

them from the network significantly reduces computations

and improves accuracy, by enabling deeper layers to focus

on foreground objects.

Stage-2 strictly follows the same procedure as above to

determine which pixel is forwarded to stage-3. In other

words, LC only introduces one hyper-parameter ρ to IRNet.

In our implementation, the value of ρ is the same for both

stage-1 and -2. Specifically, ρ represents how many easy

and extremely hard pixels are rejected (discarded) in each

stage. A larger value of ρ rejects a smaller number of pixels,

whilst smaller ρ discards more pixels. To the extreme, when

ρ = 1.0, no pixels are rejected. IRNet-LC becomes the

original IRNet. When ρ = 0.9, 52% and 35% pixels are

discarded in stage-1 and -2 respectively.

However, if ρ becomes smaller, i.e. ρ < 0.9, more

‘moderate’ pixels that locate on the important parts of

objects are discarded, hindering the performance of the

deep model. Experiments show that IRNet-LC is robust

when ρ ∈ [0.9, 1.0]. For example, when ρ = 0.95, IRNet-

LC obtains nearly realtime of 18 FPS compared to 9 FPS of

IRNet, while outperforms it by 0.8% accuracy on VOC val.

When ρ = 0.985, IRNet-LC improves IRNet by 1.7% with

a speed of 15 FPS.

After propagating an image through all three stages, we

directly combine the predicted label maps of these stages

as the final prediction, because different stages predict

different regions. For example, as shown in Fig. 2 (b), stage-

1 trusts the predictions in most of the ‘background’ (pixels

with ℓ1i ≥ ρ) and propagates the other region forward.

Pixels in this region are marked as ‘unknown’ because

ℓ1i < ρ. In stage-2, ‘IRNet-B’ and ‘Reduction-B’ only

compute convolutions with respect to the forwarded region.

It is learned to predict ‘harder’ region, such as ‘person’ and

‘horse’. This process is repeated in stage-3.

(b) Region Convolution 

(a) Convolution 

(c) Region Convolution in Residual

+

M

Figure 3: (a) shows the conventional convolution that operates

on an entire image. (b) is region convolution (RC) where filters

only convolve irregular region of interest denoted as M . Values

of the other region are set as zeros. (c) illustrates RC in a residual

module. Best viewed in color.

3.2. Region Convolution

As presented above, stage-2 and -3 only calculate convo-

lutions on those pixels that have been propagated forward.

Fig. 3(b) illustrates this region convolution (RC) compared

to the traditional convolution in (a), which is applied on an

entire feature map. The filters in RC only convolves a region

of interest, denoted as M , and ignores the other region,

reducing computations a lot. The values of the other region

are directly set as zeros. M can be implemented as a binary

mask, where the pixels inside M equal one, otherwise zero.

Specifically, (c) shows how to apply RC on a residual

module, which can be represented as h(I) = I + conv(I),
where feature h is attained by an identity mapping [13] of

I and a convolution over I . We replace the conventional

convolution with a RC as introduced above, and the feature

h′(I) is the elementwise sum between I and the output of

RC. This is equivalent to learn a masked residual represen-

tation, where values inside M are the outputs of RC and

those outside M are copied from I . It works well because

different stages in LC cope with different non-overlapping

regions, and each stage only needs to learn features of

regions it concerns.

3.3. Training IRNet­LC

The parameters of IRNet are initialized by pre-training

in ImageNet. Since IRNet-LC has additional convolutional

layers stacked before each loss function, their parameters

are initialized by sampling from a normal distribution.

Given a set of images and their per-pixel label maps, IRNet-

LC is learned in two steps, where the first one aims at initial

training and the second one employs cascade training.

Initial Training. This step is similar to deeply supervised

network (DSN) [17], which has multiple identical loss

functions in different layers of the network. Its objective

3196



is to adapt IRNet pre-trained by classifying one thousand

image categories in ImageNet to the task of image seg-

mentation. It learns discriminative and robust features.

In IRNet-LC, every stage is trained to minimize a pixel-

wise softmax loss function, measuring the discrepancies

between the predicted label map and the ground truth label

map of the entire image. These loss functions are jointly

optimized by using back-propagation (BP) and stochastic

gradient descent (SGD).

Cascade Training. Once we finish the initial training, we

fine-tune each stage of IRNet-LC by leveraging the cascade

strategy of ρ as introduced in Sec. 3.1. Similar to the previ-

ous step, all stages are trained jointly, but different stages

minimize their pixel-wise softmax losses with respect to

different regions. More specific, the gradients in BP are

only propagated to the region of interest in each stage,

which is able to learn discriminative features corresponding

to regions (pixels) in a specific difficulty-level. Intuitively,

the current stage is fine-tuned on pixels that have low

confidences in the previous stage, enabling ‘harder’ pixels

to be captured by deeper layers to improve segmentation

accuracy and reduce computation.

3.4. Relations with Previous Models

The relationships and differences between LC and MC

have been discussed in Sec. 1. LC also relates to deeply

supervised nets (DSN) [17] and dropout [30].

DSN. Similar to DSN, LC adds supervision to each stage.

However, to enable adaptive processing of hard/easy re-

gions, LC employs different supervisions for different

stages. In contrast, the supervision used in each stage

of DSN are kept the same. Specifically, the stage-wise

supervision in LC is determined by the estimated difficulty

of each pixel. In this way, each stage in LC is able to focus

on regions with a similar difficulty level.

Dropout. LC connects to dropout in the sense that both

methods discard some regions in the feature maps, but they

are essentially different. LC drops those pixels with high

confidences and only propagates difficult pixels forward

to succeeding stages. The easy and ambiguous regions

are perpetually dropped in upper layers so as to reduce

computations and the deeper layers focus more on ‘hard’

regions such as foreground objects. Dropout randomly

zeros out pixels in each layer independently. It prevents

over-fitting but slightly increases computations. In the

experiment, LC is compared with dropout to identify that

the performance gain mainly comes from the proposed

cascade strategy.

4. Experiments

Settings. We evaluate our method on the PASCAL VOC

2012 (VOC12) [8] and Cityscapes [5] datasets. VOC12

dataset is a generic object segmentation benchmark with

(a) input image (e) ground truth(b) stage-1 (c) stage-2 (d) stage-3

background aeroplane person carbottle cat busunknown

Figure 4: Visualization of different stages’ outputs in VOC12

dataset. Best viewed in color.

21 classes. Following previous works, we also use the

extra annotations provided by [12], which contains 10, 582
images for training, 1, 449 images for validation, and 1, 456
images for testing. Cityscapes dataset, on the other hand,

focuses on street scenes segmentation and contains 19

categories. In our experiments, we only employ images

with fine pixel-level annotations. There are 2975 training,

500 validation and 1525 testing images. This is consistent

with existing studies [19, 4]. We adopt mean intersection

over union (mIoU) to evaluate the performance of different

methods.

4.1. Ablation Study

In this section, we investigate the effects of adjusting

probability threshold in LC and demonstrate the merits of

LC by comparing it to other counterparts. All performance

are reported on the validation set of VOC12.

Probability Thresholds. In each stage of LC, we employ

a pixel-wise probability from softmax layer to represent the

confidence of prediction. By choosing appropriate proba-

bility threshold ρ, LC can separate easy regions, moderate

regions and extremely hard regions for adaptive processing.

As discussed in Sec. 3.1, ρ controls how many easy and

extremely hard pixels are discarded in each stage.

Table 1 lists the processed pixel percentage in stage-1

& -2 and the overall performance as ρ varies. If ρ = 1,

LC will degenerate to DSN, which is slightly better than

fully convolutional IRNet. When ρ decreases, more easy

regions are classified in early stages while hard regions are

progressively handled by later stages. It can be understood

as hard negative mining [11, 28] which improves the per-

formance. On the other hand, if the value of ρ is too small,

the algorithm might become too optimistic, i.e. many hard

regions are processed in early stages and early decisions

are made. The performance will be harmed by overly

early decisions when hard regions do not receive sufficient

inference using deeper layers. As shown in Table 1, when

3197



Table 1: Ablation study on probability thresholds ρ.

ρ 1 0.995 0.985 0.970 0.950 0.930 0.900 0.800

stage-1 (%) 0 15 23 30 35 35 44 56

stage-2 (%) 0 14 29 31 30 41 31 29

mIoU (%) 72.70 73.56 73.91 73.63 73.03 72.53 71.20 66.95

Table 2: Comparisons with related methods.

mIoU(%)

IRNet [32] 72.22

DSN [17] 72.70

DSN [17] + Dropout [30] 72.63

Model Cascade (MC) 44.20

Layer Cascade (LC) 73.91

ρ = 0.985, i.e., LC processes around 52% regions in early

stages and achieves the best performance. This value is used

in all the following experiments. In practice, the value of ρ

can be chosen empirically using a validation set.

Effectiveness of Layer Cascade. To show the merits

of LC, we compare it to some important counterparts as

discussed in Sec. 3.4, including:

• IRNet [32]: We use the model describe in Sec. 3.1 as

baseline. To conduct a fair comparison, all the following

methods are based on this backbone network.

• DSN [17]: By setting ρ = 1, we make LC degenerate to

a DSN, where each stage process all regions and has full

supervision as the final target.

• DSN [17] + Dropout [30]: To distinguish our method from

dropout, LC is compared against DSN equipped with random

label dropout in each stage. We keep the dropout ratio

identical as that in LC.

• Model Cascade: MC has a similar network architecture to

LC, but with different training strategy as discussed in Sec. 1.

Specifically, MC divides the IRNet into three stages, and

each stage is trained separately. When we train a certain

stage, we fix the parameters of all previous stages. The same

threshold as in LC is employed here, i.e., ρ = 0.985.

The results are summarized in Table 2. We have three

observations here. Firstly, the improvement from deep

supervision (DSN) is relatively limited, which only leads to

0.48 mIoU gain in comparison to the baseline IRNet. Since

pre-training on ImageNet has been a common practice

in semantic segmentation [25], which effectively prevents

gradients exploding or vanishing, it renders the advantages

of deeply supervision marginal. Secondly, random label

dropout does not bring significant effect to the result. The

result is expected because the dropout technique is designed

to alleviate the hazard of overfitting given small training

data size. However, semantic segmentation is a per-pixel

1

1.2

1.4

1.6

1.8

2

a
re

o

b
ik

e

b
ir

d

b
o
a

t

b
o
tt

le

b
u

s

ca
r

ca
t

ch
a
ir

co
w

ta
b

le

d
o
g

h
o
rs

e

m
b

ik
e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
a
in tv

L
a
b

e
l 

P
e
rc

e
n

ta
g
e
 r

a
ti

o stage-3

1

1.2

1.4

1.6

1.8

2

a
re

o

b
ik

e

b
ir

d

b
o
a

t

b
o
tt

le

b
u

s

ca
r

ca
t

ch
a
ir

co
w

ta
b

le

d
o
g

h
o
rs

e

m
b

ik
e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
a
in tv

L
a
b

e
l 

P
e
rc

e
n

ta
g
e
 r

a
ti

o stage-2

10.3%

45.9%
43.7%

car

8.2%

39.2%52.6%

cat

6.6%

16.6%

76.8%

chair

4.9%

14.3%

80.8%

table

stage-1 stage-2 stage-3

Percentage of pixels

(a) (b) 

Figure 5: (a) is the change of label distribution in stage-2 and -3.

(b) shows the percentage of pixels that are classified in different

stages.

labeling task and we have abundant training data to support

the learning task. Thirdly, Model Cascade (MC) performs

even worse than the baseline IRNet. It is because MC

divides the IRNet into several independent sub-models.

But each sub-model is shallow and therefore weaken the

overall modeling capacity. On the contrary, LC has the

appealing properties of cascading and also keeping the

intrinsic depth for the whole model. The capability of

maintaining the model depth adaptively for hard regions

makes our approach outstanding in the comparison.

4.2. Stage­wise Analysis

In this section, we demonstrate how LC enables adaptive

processing for different classes and visualize the regions

handled by different regions.

Stage-wise Label Distribution. First, we provide a label

distribution analysis across different stages. Here we take

the 20 classes (excluding “background”) in VOC12 as an

example. Fig. 5 (a) shows how the number of pixels changes

with respect to each class in stage-2 and -3. For example,

the upper histogram shows a ratio for each class, obtained

by dividing its number of pixels in stage-2 by those in

stage-1. Ratios larger than one indicates stage-2 focus more

on the corresponding classes than stage-1 does. We find

that all ratios have increased and belong to the range of

1 to 1.4. It is because stage-1 already handles the easy

regions (i.e. “background”) and leaves the hard regions (i.e.

“foreground”) to stage-2. Ratios of stage-3 can be obtained

similarly in the bottom histogram. When comparing stage-3

to -2, we can see that stage-3 further focus on harder classes

(e.g. “bicycle”, “chair” and “dining table”). LC learns to

process samples in a “difficulty-aware” manner. We also

conduct a per-class analysis as illustrated in Fig. 5 (b).

Harder classes like “chair” and “table” have more pixels

handled by deeper layers (stage-3).

Stage-wise Visualization. Here we visualize the out-

put label maps of different stages for both VOC12 and

3198



(a) input image (e) ground truth(b) stage-1 (c) stage-2 (d) stage-3

traffic lightcarroad traffic signpoletree buildingunknown sky

Figure 6: Visualization of different stages’ outputs in Cityscapes dataset. Best viewed in color.

Cityscapes, as shown in Fig. 4 and 6. The uncertain regions

in different stages are also marked out. In VOC12, the

easy regions like “background” and “human faces” are first

labeled by stage-1 in LC. The remaining foreground and

boundary regions are then progressively labeled by stage-2

and stage-3 in LC. Similarly, in Cityscapes, the easy regions

like “road” and “building” are first labeled by stage-1. Other

small objects and fine details like “pole” and “pedestrian”

are handled by stage-2 and -3.

4.3. Performance and Speed Analysis

Comparisons with DeepLab and SegNet. To highlight

the trade-off between performance and speed, we compare

the proposed LC model with two representative state-of-

the-art methods, DeepLab-v2 [4] and SegNet [1]. The

performance are reported on VOC12 and summarized in

Table 3. The runtime speed is measured on a single Titan X

GPU. To ensure a fair comparison, we evaluate DeepLab-

v2 and SegNet without any pre- and post-processing, e.g.,

training with extra data, multi-scale fusion, or smoothing

with conditional random fields (CRF).

DeepLab-v2 achieves an acceptable mIoU of 70.42.

Nonetheless, it uses an ultra-deep ResNet-101 model as the

backbone network, its speed of inference is thus slow (7.1
FPS). On the contrary, SegNet is faster due to a smaller

model size, however, its accuracy is greatly compromised.

In particular, it increases its speed to 14.6 FPS through

sacrificing of over 10 mIoU. The proposed LC alleviates the

need of trading-off speed with a large drop in performance.

The cascaded end-to-end trainable framework with region

convolution allows it to achieve the best performance (73.91

Table 3: A comparison of performance and speed of Layer

Cascade (LC) against existing methods.

mIoU ms FPS

DeepLab-v2 [4] 70.42 140.0 7.1

SegNet [1] 59.90 69.0 14.6

LC 73.91 65.1 14.7

LC (fast) 66.95 42.5 23.6

mIoU) with an acceptable speed (14.7 FPS).

Further Performance and Speed Trade-off. It is worth

pointing out that the runtime of LC can be further reduced

by decreasing ρ to allow more regions to be handled by

early stages. The performance and speed trade-off is

depicted in Fig. 7 (a) with the corresponding ρ values. It

is observed that decreasing ρ slightly affects the accuracy,

but it greatly reduces the computation time. Notably, when

LC attains real-time inference at 23.6 FPS, it still exhibits

competitive mIoU of 66.95, in comparison to mIoU of

70.42 yielded by at 7.1 FPS. We also include the per-stage

runtime in Fig. 7 (b). The increasing computation for higher

performance mainly comes from later stages.

4.4. Benchmark

In this section, we show that LC can achieve state-of-the-

art performance on standard benchmarks like VOC12 [8]

and Cityscapes [5] datasets. Following [4], atrous spatial

pyramid pooling [4], three-scale testing and dense CRF [16]

are employed.

VOC12. Table 4 lists the per-class and overall mean IoU

3199



Table 4: Per-class results on VOC12 test set. Approaches pre-trained on COCO [20] are marked with †.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN [25] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeepLab [3] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

RNN [40] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

Adelaide [37] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1

RNN† [40] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

BoxSup† [6] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2

DPN† [22] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

DeepLab-v2† [4] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

LC 94.1 63.0 91.2 67.9 79.5 93.4 90.0 93.8 37.4 83.7 65.9 90.7 86.1 88.8 87.5 68.5 86.9 64.3 85.6 72.2 80.3

LC† 85.5 66.7 94.5 67.2 84.0 96.1 89.8 93.5 47.2 90.4 71.5 88.9 91.7 89.2 89.1 70.4 89.4 70.7 84.2 79.6 82.7

Table 5: Per-class results on Cityscapes test set. “sub” denotes whether the method used subsampling images for training.

sub road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU

RNN [40] 2 96.3 73.9 88.2 47.6 41.3 35.2 49.5 59.7 90.6 66.1 93.5 70.4 34.7 90.1 39.2 57.5 55.4 43.9 54.6 62.5

DeepLab [3] 2 97.3 77.7 87.7 43.6 40.5 29.7 44.5 55.4 89.4 67.0 92.7 71.2 49.4 91.4 48.7 56.7 49.1 47.9 58.6 63.1

FCN [25] no 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3

DPN [22] no 97.5 78.5 89.5 40.4 45.9 51.1 56.8 65.3 91.5 69.4 94.5 77.5 54.2 92.5 44.5 53.4 49.9 52.1 64.8 66.8

Dilation10 [39] no 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55 93.3 45.5 53.4 47.7 52.2 66 67.1

DeepLab-v2 [4] no 97.8 81.3 90.3 48.7 47.3 49.5 57.8 67.2 91.8 69.4 94.1 79.8 59.8 93.7 56.5 67.4 57.4 57.6 68.8 70.4

Adelaide [19] no 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6 71.6

LC no 97.9 83.1 91.6 53.7 57.4 58.4 62.0 73.3 91.9 61.3 93.8 78.8 53.1 93.4 62.2 76.9 53.5 57.0 74.7 71.1

Figure 7: (a) shows the performance and speed trade-off in Layer

Cascade (LC) by adjusting ρ. (b) is the time spent in each stage.

on VOC12 test set. The approaches pre-trained on COCO

[20] are marked with †. LC achieves a mIoU of 80.3 and

further improves the mIoU to 82.7 with pre-training on

COCO, which is the best-performing method on VOC12

benchmark. By inspecting closer, we observe that LC wins

16 out of 20 foreground classes. For other 4 classes, LC also

achieves competitive performance. Large gain is observed

in some particular classes such as “bike”, “chair”, “plant”,

and “sofa”. Based on our statistics in Fig. 5, we found that

these few classes, in general, require a deeper stage to make

decisions on hard regions.

Cityscapes. Next, we evaluate LC on Cityscapes bench-

mark, with results summarized in Table 5. “sub” denotes

whether the method used subsampling images for training.

LC also achieves promising performance with a mIoU of

71.1, which shows its great generalization ability to diverse

objects and scenes. Lin et al. [19]’s performance is slightly

better than ours, however, LC still wins on 9 out of 19

classes. It is noticed that [19] used a deeper backbone-

network and explored richer contextual information. We

believe that further performance gain can be achieved if LC

is incorporated with these techniques. LC gains outstanding

performance on the classes that are ‘traditionally regarded’

as hard classes, e.g., “fence”, “pole”, “sign”, “truck”, “bus”

and “bike”, which usually exhibit flexible shapes and fine-

grained details. The results suggest that the end-to-end

cascading mechanism in LC is meaningful, especially in

alleviating the burden of deeper layers on analyzing easy

regions but focusing themselves on hard regions adaptively.

5. Conclusion

Deep layer cascade (LC) is proposed in this work to

simultaneously improve the accuracy and speed of semantic

image segmentation. It has three advantages over previous

approaches. First, LC adopts a “difficulty-aware” learning

paradigm, where earlier stages are trained to handle easy

and confident regions and hard regions are progressively

forwarded to later stages. Secondly, since each stage only

processes part of the input, LC can accelerate both training

and testing by the usage of region convolution. Thirdly, LC

is an end-to-end trainable framework that jointly optimizes

the feature learning for different regions, thus achieving

state-of-the-art performance on both PASCAL VOC and

Cityscapes datasets. LC is capable of running in real-time

yet still yielding competitive accuracies.

Acknowledgement. This work is supported by SenseTime

Group Limited, the Hong Kong Innovation and Tech-

nology Support Programme, the General Research Fund

sponsored by the Research Grants Council of the Hong

Kong SAR (CUHK 416713, 14241716, 14224316), and the

National Natural Science Foundation of China (61503366,

91320101, 61472410; Corresponding author is Ping Luo).

3200



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015. 2, 7

[2] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

complexity-aware cascades for deep pedestrian detection. In

ICCV, pages 3361–3369, 2015. 2

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep

convolutional nets and fully connected crfs. In ICLR, 2015.

2, 3, 8

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully

connected crfs. arXiv:1606.00915, 2016. 5, 7, 8

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 1, 5, 7

[6] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding

boxes to supervise convolutional networks for semantic seg-

mentation. arXiv:1503.01640v2, 2015. 8

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, pages 248–255, 2009. 2

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 88(2):303–338, 2010. 1, 5, 7

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. PAMI, 35(8):1915–

1929, 2013. 1

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for

autonomous driving? the kitti vision benchmark suite. In

CVPR, pages 3354–3361, 2012. 1

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 5

[12] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.

Semantic contours from inverse detectors. In ICCV, pages

991–998, 2011. 5

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. arXiv preprint arXiv:1512.03385,

2015. 1, 4

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 3

[15] A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Aug-

menting crfs with boltzmann machine shape priors for image

labeling. In CVPR, pages 2019–2026, 2013. 2

[16] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. NIPS, 2011. 2,

7

[17] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, volume 2, page 6, 2015. 2, 4,

5, 6

[18] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-

tional neural network cascade for face detection. In CVPR,

pages 5325–5334, 2015. 1, 2, 3

[19] G. Lin, C. Shen, I. Reid, and A. Hengel. Efficient piecewise

training of deep structured models for semantic segmenta-

tion. arXiv:1504.01013v2, 23 Apr 2015. 5, 8

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco:

Common objects in context. In ECCV, pages 740–755. 2014.

8

[21] B. Liu and X. He. Learning dynamic hierarchical models for

anytime scene labeling. In ECCV, pages 650–666. Springer,

2016. 2

[22] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic

image segmentation via deep parsing network. In ICCV,

pages 1377–1385, 2015. 2, 8

[23] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Deep

learning markov random field for semantic segmentation.

arXiv preprint arXiv:1606.07230, 2016. 2

[24] Z. Liu, S. Yan, P. Luo, X. Wang, and X. Tang. Fashion

landmark detection in the wild. In ECCV, pages 229–245,

2016. 2

[25] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, pages 3431–

3440, 2015. 2, 6, 8

[26] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and

D. Comaniciu. Deep decision network for multi-class image

classification. In CVPR, 2016. 2

[27] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet:

A deep neural network architecture for real-time semantic

segmentation. arXiv preprint arXiv:1606.02147, 2016. 2

[28] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

CVPR, pages 761–769, 2016. 5

[29] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1

[30] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. JMLR, 15(1):1929–1958, 2014.

2, 5, 6

[31] Y. Sun, X. Wang, and X. Tang. Deep convolutional network

cascade for facial point detection. In CVPR, pages 3476–

3483, 2013. 3

[32] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. arXiv preprint arXiv:1602.07261, 2016. 1, 2, 3, 6

[33] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. In CVPR, pages 1653–1660,

2014. 2, 3

[34] V. Vineet, J. Warrell, and P. H. Torr. Filter-based mean-

field inference for random fields with higher-order terms and

product label-spaces. In ECCV, pages 31–44. 2012. 2

[35] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, pages I–511, 2001. 1

[36] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Val Gool. Temporal segment networks: Towards good

practices for deep action recognition. In ECCV, 2016. 1

3201



[37] Z. Wu, C. Shen, and A. v. d. Hengel. High-performance

semantic segmentation using very deep fully convolutional

networks. arXiv preprint arXiv:1604.04339, 2016. 8

[38] J. Yang, B. Price, S. Cohen, and M.-H. Yang. Context driven

scene parsing with attention to rare classes. In CVPR, pages

3294–3301, 2014. 2

[39] F. Yu and V. Koltun. Multi-scale context aggregation by

dilated convolutions. arXiv preprint arXiv:1511.07122,

2015. 8

[40] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional random

fields as recurrent neural networks. arXiv:1502.03240v2, 30

Apr 2015. 2, 8

3202


