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Abstract

Searching persons in large-scale image databases with

the query of natural language description has impor-

tant applications in video surveillance. Existing meth-

ods mainly focused on searching persons with image-based

or attribute-based queries, which have major limitations

for a practical usage. In this paper, we study the prob-

lem of person search with natural language description.

Given the textual description of a person, the algorithm

of the person search is required to rank all the samples in

the person database then retrieve the most relevant sam-

ple corresponding to the queried description. Since there

is no person dataset or benchmark with textual descrip-

tion available, we collect a large-scale person description

dataset with detailed natural language annotations and per-

son samples from various sources, termed as CUHK Person

Description Dataset (CUHK-PEDES). A wide range of pos-

sible models and baselines have been evaluated and com-

pared on the person search benchmark. An Recurrent Neu-

ral Network with Gated Neural Attention mechanism (GNA-

RNN) is proposed to establish the state-of-the art perfor-

mance on person search.

1. Introduction

Searching person in a database with free-form natural

language description is a challenging problem in computer

vision. It has wide applications in video surveillance and ac-

tivity analysis. Nowadays urban areas are usually equipped

with thousands of surveillance cameras which generate gi-

gabytes of video data every second. To search possible

criminal suspects from such large-scale videos manually

might take tens of days or even months to complete. Thus

automatic person search is in urgent need. Based on modal-

ities of the queries, existing person search methods can be

mainly categorized into the ones with image-based queries

and attribute-based queries. However, both modalities have

major limitations and might not be suitable for practical us-

ages. Facing such limitations, we propose to study the prob-

lem of searching persons with natural language descrip-
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The woman is wearing a long, 

bright orange gown with a white 

belt at her waist. She has her hair 

pulled back into a bun or ponytail. 

Query Description 

Person Image Database 

Retrieval Results 

Figure 1. Given the natural language description of a person,

our person search system searches through a large-scale person

database then retrieve the most relevant person samples.

tions. Figure 1 illustrates one example of the person search.

Person search with image-based queries is known as per-

son re-identification in computer vision [44, 24, 39]. Given

a query image, the algorithms obtain affinities between the

query and those in the image database. The most similar

persons can be retrieved from the database according to the

affinity values. However, such a problem setting has ma-

jor limitations in practice, as it requires at least one photo

of the queried person being given. In many criminal cases,

there might be only verbal description of the suspects’ ap-

pearance available.

Person search could also be done through attribute-based

queries. A set of pre-defined semantic attributes are used to

describe persons’ appearances. Classifiers are then trained

on each of the attributes. Given a query, similar persons in

the database can be retrieved as the ones with similar at-

tributes [36, 35]. However, the attributes have many practi-

cal limitations as well. On the one hand, attributes have lim-

ited capability of describing persons’ appearance. For in-

stance, the PETA dataset [4] defined 61 binary and 4 multi-
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The man has dark hair 

and is wearing glasses. 

He has on a pink shirt, 

blue shorts, and white 

tennis shoes. He has on 

a blue backpack and is 

carrying a re-useable 

tote.

The man is wearing 

blue scrubs with a white 

lab coat on top. He is 

holding paperwork in 

his hand and has a name 

badge on the left side of 

his coat.

The woman has long 

light brown hair, is 

wearing a black 

business suit with white 

low-cut blouse with 

large, white cuffs, a 

gold ring, and is talking 

on a cellphone.

The woman is dressed 

up like Marilyn 

Monroe, with a white 

dress that is blowing 

upward in the wind, 

short curly blonde hair, 

and high heels.

The man is wearing 

yellow sneakers, 

white socks with blue 

stripes on the top of 

them, black athletic 

shorts and a yellow 

with blue t-shirt. He 

has short black hair.

The girl is wearing 

a pink shirt with 

white shorts, she 

is wearing black 

converse, with her 

hair in a pony tail.

Figure 2. Example sentence descriptions from our dataset that describe persons’ appearances in detail.

class person attributes, while there are hundreds of words

for describing a person’s appearance. On the other hand,

even with the exhausted set of attributes, labeling them for

a large-scale person image dataset is expensive.

Facing the limitations of both modalities, we propose to

use natural language description to search person. It does

not require a person photo to be given as in those image-

based query methods. Natural language also can precisely

describe the details of person appearance, and does not re-

quire labelers to go through the whole list of attributes.

Since there is no existing dataset focusing on describ-

ing person appearances with natural language, we first

build a large-scale language dataset, with 40,206 images

of 13,003 persons from existing person re-identification

datasets. Each person image is described with two sen-

tences by two independent workers on Amazon Mechan-

ical Turk (AMT). On the visual side, the person images

pooled from various re-identification datasets are under dif-

ferent scenes, view points and camera specifications, which

increases the image content diversity. On the language

side, the dataset has 80,412 sentence descriptions, contain-

ing abundant vocabularies, phrases, and sentence patterns

and structures. The labelers have no limitations on the lan-

guages for describing the persons. We perform a series of

user studies on the dataset to show the rich expression of the

language description. Examples from the dataset are shown

in Figure 2.

We propose a novel Recurrent Neural Network with

Gated Neural Attention (GNA-RNN) for person search.

The GNA-RNN takes a description sentence and a person

image as input and outputs the affinity between them. The

sentence is input into a word-LSTM and processed word

by word. At each word, the LSTM generates unit-level

attentions for individual visual units, each of which deter-

mines whether certain person semantic attributes or visual

patterns exist in the input image. The visual-unit attention

mechanism weights the contributions of different units for

different words. In addition, we also learn word-level gates

that estimate the importance of different words for adap-

tive word-level weighting. The final affinity is obtained by

averaging over all units’ responses at all words. Both the

unit-level attention and word-level sigmoid gates contribute

to the good performance of our proposed GNA-RNN.

The contribution of this paper is three-fold. 1) We pro-

pose to study the problem of searching persons with nat-

ural language. This problem setting is more practical for

real-world scenarios. To support this research direction, a

large-scale person description dataset with rich language

annotations is collected and the user study on the natural

language description of person is given. 2) We investigate

a wide range of plausible solutions based on different vi-

sion and language frameworks, including image caption-

ing [19, 37], visual QA [45, 32], and visual-semantic em-

bedding [31], and establish baselines on the person search

benchmark. 3) We further propose a novel Recurrent Neu-

ral Network with Gated Neural Attention (GNA-RNN) for

person search, with the state-of-the-art performance on the

person search benchmark.

1.1. Related work

As there are no existing datasets and methods designed

for the person search with natural language, we briefly sur-

vey the language datasets for various vision tasks, along

with the deep language models for vision that can be used

as possible solutions for this problem.

Language datasets for vision. Early language datasets

for vision include Flickr8K [12] and Flickr30K [42]. In-

spired by them, Chen et al. built a larger MS-COCO Cap-

tion [2] dataset. They selected 164,062 images from MS-

COCO [25] and labeled each image with five sentences

from independent labelers. Recently, Visual Genome [20]

dataset was proposed by Krishna et al., which incorporates

dense annotations of objects, attributes, and relationships

within each image. However, although there are persons in

the datasets, they are not the main subjects for descriptions

and cannot be used to train person search algorithms with

language descriptions. For fine-grained visual descriptions,

Reed et al. added language annotations to Caltech-UCSD
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birds [38] and Oxford-102 flowers [29] datasets to describe

contents of images for text-image joint embedding.

Deep language models for vision. Different from con-

volutional neural network which works well in image clas-

sification [21, 10] and object detection [18, 17, 16], re-

current neural network is more suitable in processing se-

quential data. A large number of deep models for vision

tasks [40, 1, 13, 15, 8, 3, 5] have been proposed in recent

years. For image captioning, Mao et al. [28] learned feature

embedding for each word in a sentence, and connected it

with the image CNN features by a multi-modal layer to gen-

erate image captions. Vinyal et al. [37] extracted high-level

image features from CNN and fed it into LSTM for estimat-

ing the output sequence. The NeuralTalk [19] looked for the

latent alignment between segments of sentences and image

regions in a joint embedding space for sentence generation.

Visual QA methods were proposed to answer questions

about given images [32, 30, 41, 34, 27, 7]. Yang et al. [41]

presented a stacked attention network that refined the joint

features by recursively attending question-related image re-

gions, which leads to better QA accuracy. Noh et al. [30]

learned a dynamic parameter layer with hashing techniques,

which adaptively adjusts image features based on different

questions for accurate answer classification.

Visual-semantic embedding methods [6, 19, 31, 26, 33]

learned to embed both language and images into a common

space for image classification and retrieval. Reed et al. [31]

trained an end-to-end CNN-RNN model which jointly em-

beds the images and fine-grained visual descriptions into the

same feature space for zero-shot learning. Text-to-image

retrieval can be conducted by calculating the distances in

the embedding space. Frome et al. [6] associated seman-

tic knowledge of text with visual objects by constructing a

deep visual-semantic model that re-trained the neural lan-

guage model and visual object recognition model jointly.

2. Benchmark for person search with natural

language description

Since there is no existing language dataset focusing on

person appearance, we build a large-scale benchmark for

person search with natural language, termed as CUHK

Person Description Dataset (CUHK-PEDES). We collected

40,206 images of 13,003 persons from five existing person

re-identification datasets, CUHK03 [23], Market-1501 [43],

SSM [39], VIPER [9], and CUHK01 [22], as the subjects

for language descriptions. Since persons in Market-1501

and CUHK03 have many similar samples, to balance the

number of persons from different domains, we randomly

selected four images for each person in the two datasets.

All the image were labeled by crowd workers from Amazon

Mechanical Turk (AMT), where each image was annotated

with two sentence descriptions and a total of 80,412 sen-

tences were collected. The dataset incorporates rich details

about person appearances, actions, poses and interactions

Figure 3. High-frequency words and person images in our dataset.
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Figure 4. Top-1 accuracy, top-5 accuracy, and average used time

of manual person search using language descriptions with different

number of sentences and different sentence lengths.

with other objects. The sentence descriptions are generally

long (> 23 words in average), and has abundant vocabulary

and little repetitive information. Examples of our proposed

dataset are shown in Figure 2.

2.1. Dataset statistics

The dataset consists of rich and accurate annotations

with open word descriptions. There were 1,993 unique

workers involved in the labeling task, and all of them have

greater-than 95% approving rates. We asked the workers

to describe all important characteristics in the given images

using sentences with at least 15 words. The large number

of workers means the dataset has diverse language descrip-

tions and methods trained with it are unlikely to overfit to

descriptions of just a few workers.

Vocabulary, phrase sizes, and sentence length are impor-

tant indicators on the capacity our language dataset. There

are a total of 1,893,118 words and 9,408 unique words in

our dataset. The longest sentence has 96 words and the av-

erage word length is 23.5 which is significantly longer than

the 5.18 words of MS-COCO Caption [25] and the 10.45

words of Visual Genome [20]. Most sentences have 20 to

40 words in length. Figure 3 illustrates some person exam-

ples and high-frequency words.
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2.2. User study

Based on the language annotations we collect, we con-

duct the user studies to investigate 1) the expressive power

of language descriptions compared with that of attributes,

2) the expressive power in terms of the number of sentences

and sentence length, and 3) the expressive power of differ-

ent word types. The studies provide us insights for under-

standing the new problem and guidance on designing our

neural networks.

Language vs. attributes. Given a descriptive sentence

or annotated attributes of a query person image, we ask

crowd workers from AMT to select its corresponding im-

age from a pool of 20 images. The 20 images consist

of the ground truth image, 9 images with similar appear-

ances to the ground truth, and 10 randomly selected im-

ages from the whole dataset. The 9 similar images are

chosen from the whole dataset by the LOMO+XQDA [24]

method, which is a state-of-the-art method for person re-

identification. The other 10 distractor images are randomly

selected and have no overlap with the 9 similar images. The

person attribute annotations are obtained from the PETA [4]

dataset, which have 1,264 same images with our dataset. A

total of 500 images are manually searched by the workers,

and the average top-1 and top-5 accuracies of the searches

are evaluated. The searches with language descriptions have

58.7% top-1 and 92.0% top-5 accuracies, while the searches

with attributes have top-1 and top-5 accuracies of 33.3%

and 74.7% respectively. In terms of the average used time

for each search, using language descriptions takes 62.18s,

while using attributes takes 81.84s. The results show that,

from human’s perspective, language descriptions are much

precise and effective in describing persons than attributes.

They partially endorse our choice of using language de-

scriptions for person search.

Sentence number and length. We design manual ex-

periments to investigate the expressive power of language

descriptions in terms of the number of sentences for each

image and sentence length. The images in our dataset are

categorized into different groups based on the number of

sentences associated with each image and based on differ-

ent sentence lengths. Given the sentences for each image,

we ask crowd workers from AMT to manually retrieve the

corresponding images from pools of 20 images. The aver-

age top-1 and top-5 accuracies, and used time for different

image groups are shown in Figure 4, which show that 3 sen-

tences for describing a person achieved the highest retrieval

accuracy. The longer the sentences are, the easier for users

to retrieve the correct images.

Word types. We also investigate the importance of dif-

ferent word types, including nouns, verbs, and adjectives by

using manual experiments with the same 20-image pools.

For this study, nouns, or verbs, or adjectives in the sen-

tences are masked out before provided to the workers. For

instance, “the girl has pink hair” is converted to “the ****

orig. sent. w/o nouns w/o adjs w/o verbs

top-1 0.59 0.38 0.44 0.57

top-5 0.92 0.81 0.85 0.92

time (min) 1.14 1.01 0.98 1.12

Table 1. Top-1 accuracy, top-5 accuracy, and average used time

of manual person search results using the original sentences, and

sentences with nouns, or adjectives, or verbs masked out.
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Figure 5. The network structure of the proposed GNA-RNN. It

consists of a visual sub-network (right blue branch) and a language

sub-network (left branch). The visual sub-network generates a se-

ries of visual units, each of which encodes if certain appearance

patterns exist in the person image. Given each input word, The

language sub-network outputs world-level gates and unit-level at-

tentions for weighting visual units.

has pink ****”, where the nouns are masked out. Results in

Table 1 demonstrate that the nouns provide most informa-

tion followed by the adjectives, while the verbs carry least

information. This investigation provides us important in-

sights that nouns and adjectives should be paid much atten-

tion to when we design neural networks or collecting new

language data.

3. GNA-RNN model for pedestrian search

The key to address the person search with language de-

scription is to effectively build word-image relations. Given

each word, it is desirable if the neural network would search

related regions to determine whether the word with its con-

text fit the image. For a sentence, all such word-image re-

lations can be investigated, and confidences of all relations

should be weighted and then aggregated to generate the fi-

nal sentence-image affinity.

Based on this idea, we propose a novel deep neural net-

work with Gated Neural Attention (GNA-RNN) to capture

1973



word-image relations and estimate the affinity between a

sentence and a person image. The overall structure of the

GNA-RNN is shown in Figure 5. The network model con-

sists of a visual sub-network and a language sub-network.

The visual sub-network generates a series of visual unit

activations, each of which encodes if certain human at-

tributes or appearance patterns (e.g., white scarf) exist in

the given person image. The language sub-network is a

Recurrent Neural Network (RNN) with Long Short-Term

Memory (LSTM) units, which takes words and images as

input. At each word, it outputs unit-level attention and

word-level gate to weight the visual units from the visual

sub-network. The unit-level attention determines which vi-

sual units should be paid more attention to according to the

input word. The word-level gate weight the importance of

different words. All units’ activations are weighted by both

the unit-level attentions and word-level gates, and are then

aggregated to generate the final affinity. By training such

network in an end-to-end manner, the Gated Neural Atten-

tion mechanism is able to effectively capture the optimal

word-image relations.

3.1. Visual units

The visual sub-network takes person images that are re-

sized to 256×256 as inputs. It has the same bottom structure

as VGG-16 network, and adds two 512-unit fully-connected

layers at the “drop7” layer to generate 512 visual units,

v = [v1, ..., v512]
T . Our goal is to train the whole net-

work jointly such that each visual unit determines whether

certain human appearance pattern exist in the person image.

The visual sub-network is first pre-trained on our dataset for

person classification based on person IDs. During the joint

training with language sub-network, only parameters of the

two new fully-connected layers (“cls-fc1” and “cls-fc2” in

Figure 5) are updated for more efficient training. Note that

we do not manually constrain which units learn what con-

cepts. The semantic meanings of the visual units automati-

cally capture necessary semantic concepts via jointly train-

ing of the whole network.

3.2. Attention over visual units

To effectively capture the word-image relations, we pro-

pose a unit-level attention mechanism for visual units. At

each word, the visual units having similar semantic mean-

ings with the word should be assigned with more weights.

Take Figure 5 as example, given the words “white scarf”,

the language sub-network would attend more the visual unit

that corresponds to the concept of “white scarf”. We train

the language sub-network to to achieve this goal.

The language sub-network is a LSTM network [11],

which is effective at capturing temporal relations of sequen-

tial data. Given an input sentence, the LSTM generates

attentions for visual units word by word. The words are

first encoded into length-K one-hot vectors, where K is the

vocabulary size. Given a descriptive sentence, a learnable

fully connected layer (“word-fc1” in Figure 5) converts the

tth raw word to a word embedding feature xt
w. Two 512-

unit fully connected layers (“vis-fc1” and “vis-fc2” in Fig-

ure 5) following the “drop7” layer of VGG-16 are treated as

visual features xv for the LSTM. At each step, the LSTM

takes xt = [xw
t , x

v]T as input, which is concatenation of tth

word embedding xw
t and image features xv .

The LSTM consists of a memory cell ct and three con-

trolling gates, i.e. input gate it, forget gate ft, and output

gate ot. The memory cell preserves the knowledge of previ-

ous step and current input while the gates control the update

and flow direction of information. At each word, the LSTM

updates the memory cell ct and output a hidden state ht in

the following way,

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf ),

ot = σ(Wxoxt +Whoht−1 + bo), (1)

ct = ft ⊙ ct−1 + it ⊙ h(Wxcxt +Whcht−1 + bc),

ht = ot ⊙ h(ct),

where ⊙ represents the element-wise multiplication, W and

b are parameters to learn.

For generating the unit-level attentions at each word, the

output hidden state ht is fed into a fully-connected layer

with ReLU non-linearity function and a fully-connected

layer with softmax function to obtain the attention vector

At ∈ R
512, which has the same dimension as the visual

units v. The affinity between the sentence and the person

image at the tth word can then be obtained by

at =
512
∑

n=1

At(n)vn, s.t.

512
∑

n=1

At(n) = 1, (2)

where At(n) denotes the attention value for the nth visual

unit. Since each visual unit determines the existence of

certain person appearance patterns in the image, the visual

units alone cannot generate sentence-image affinity. The

attention values At generated by the language sub-network

decides which visual units’ responses should be summed up

to compute the affinity value. If the language sub-network

generates high attention value at certain visual unit, only if

the visual unit also has high response, which denotes exis-

tence of certain visual concepts, will the elementwise mul-

tiplication generates high affinity value at this word. The

final sentence-image affinity is summation of affinity val-

ues at all words, a =
∑T

t=1
at, where T is the number of

words in the given sentence.

3.3. Word­level gates for visual units

The unit-level attention is able to associate the most re-

lated units to each word. However, the attention mech-

anism requires different units’ attentions competing with

each other. In our case with the softmax non-linearity func-

tion, we have
∑

512

n=1
At(n) = 1, and found that such con-

straints are important for learning effective attentions.
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NeuralTalk [37] CNN-RNN [31] EmbBoW QAWord QAWord-img QABoW GNA-RNN

top-1 13.66 8.07 8.38 11.62 10.21 8.00 19.05

top-10 41.72 32.47 30.76 42.42 44.53 30.56 53.64

Table 2. Quantitative results of the proposed GNA-RNN and compared methods on the proposed dataset.

However, according to our user study on different word

types in Section 2.2, different words carry significantly dif-

ferent amount of information for obtaining language-image

affinity. For instance, the word “white” should be more im-

portant than the word “this”. At each word, the unit-level

attentions always sum up to 1 and cannot reflect such dif-

ferences. Therefore, we propose to learn world-level scalar

gates at each word for learning to weight different words.

The word-level scalar gate is obtained by mapping the hid-

den state ht of the LSTM via a fully-connected layer with

sigmoid non-linearity function gt = σ(Wght+bg), where σ

denotes the sigmoid function, and Wg and bg are the learn-

able parameters of the fully-connected layer.

Both the unit-level attention and world-level gate are

used to weight the visual units at each word to obtain the

per-word language-image affinity ât,

ât = gt

512
∑

n=1

At(n)vn, (3)

and the final affinity is the aggregation of affinities at all

words â =
∑T

t=1
ât.

3.4. Training scheme

The proposed GNA-RNN is trained end-to-end with

batched Stochastic Gradient Descent, except for the VGG-

16 part of the visual sub-network, which is pre-trained for

person classification and fixed afterwards. The training

samples are randomly chosen from the dataset with corre-

sponding sentence-image pairs as positive samples and non-

corresponding pairs as negative samples. The ratio between

positive and negative samples is 1:3. Given the training

samples, the training minimizes the cross-entropy loss,

E = −
1

N

N
∑

i=1

[

yi log âi + (1− yi) log(1− âi
)

] (4)

where âi denotes the predicted affinity for the ith sample,

and yi denotes its ground truth label, with 1 represent-

ing corresponding sentence-image pairs and 0 representing

non-corresponding ones. We use 128 sentence-image pairs

for each training batch. All fully connected layers except

for the one for word-level gates have 512 units.

4. Experiments

There is no existing method specifically designed for the

problem. We investigate a wide range of possible solutions

based on state-of-the-art language models for vision tasks,

GNA-RNN w/o pre-train w/o gates w/o attention

top-1 19.05 8.93 13.86 4.85

top-10 53.64 32.32 44.27 27.16

Table 3. Quantitative results of GNA-RNN on the proposed dataset

without VGG-16 re-id pre-training, without world-level gates or

without unit-level attentions.

# units 128 256 512 1024 2048

top-1 16.15 16.75 19.05 18.62 18.25

top-10 48.58 49.25 53.64 52.39 51.59

Table 4. Top-1 and top-10 accuracies of GNA-RNN with different

number of visual units.

and compare those solutions with our proposed method.

We also conduct component analysis of our proposed deep

neural networks to show that our proposed Gated Neu-

ral Attention mechanism is able to capture complex word-

image relations. Extensive experiments and comparisons

with state-of-the-art methods demonstrate the effectiveness

of our GNA-RNN for this problem.

4.1. Dataset and evaluation metrics

The dataset is splitted into three subsets for training, val-

idation, and test without having overlaps with same person

IDs. The training set consists of 11,003 persons, 34,054 im-

ages and 68,108 sentence descriptions. The validation set

and test set contain 3,078 and 3,074 images, respectively,

and both of them have 1,000 persons. All experiments are

performed based on this train-test split.

We adopt the top-k accuracy to evaluate the performance

of person retrieval. Given a query sentence, all test im-

ages are ranked according to their affinities with the query.

A successful search is achieved if any image of the corre-

sponding person is among the top-k images. Top-1 and top-

10 accuracies are reported for all our experiments.

4.2. Compared methods and baselines

We compare a wide range of possible solutions with deep

neural networks, including methods for image captioning,

visual QA, and visual-semantic embedding. Generally, each

type of methods utilize different supervisions for training.

Image captioning, visual QA, and visual-semantic embed-

ding methods are trained with word classification losses,

answer classification losses, and distance-based losses, re-

spectively. We also propose several baselines to investigate

the influences of detailed network structure design. To make

fair comparisons, the image features for all compared meth-

ods are from our VGG-16 network pre-trained model.
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Image captioning. Vinyals et al. [37] and Karpathy et

al. [19] proposed to generate natural sentences describing

an image using deep recurrent frameworks. We use the

code provided by Karpathy et al. to train the image cap-

tioning model. We follow the testing strategy in [14] to

use image captioning method for text-to-image retrieval.

During the test phase, given a person image, instead of

recursively using the predicted word as inputs of the next

time step to predict the image caption, the LSTM takes the

given sentence word by word as inputs. It calculates the

per-word cross entropy losses between the given word and

the predicted word from LSTM. Corresponding sentence-

image pairs would have low average losses, while non-

corresponding ones would have higher average losses.

Visual QA. Agrawal et al. [1] proposed the deeper

LSTM Q + norm I method to answer questions about the

given image. We replace the element-wise multiplication

between the question and image features, with concatena-

tion of question and image features, and replace the multi-

class classifier with a binary classifier. Since the proposed

GNA-RNN has only one layer for the LSTM, we change

the LSTM in deeper LSTM Q + norm I to one layer as

well for fair comparison. The norm I in [1] is also changed

to contain two additional fully-connected layers to obtain

image features instead of the original one layer following

our model’s structure. We call the modified model QA-

Word. Where to concatenate features of question and im-

age modalities might also influence the classification per-

formance. The QAWord model concatenates image features

with sentence features output by the LSTM. We investigate

concatenating the word embedding features and image fea-

tures before inputting them into the LSTM. Such a modified

network is called QAWord-img. We also replace the lan-

guage model in QAWord with the simple language model

in [45], which encodes sentences using the traditional Bag-

of-Word (BoW) method, and call it QABoW.

Visual-semantic embedding. These methods try to map

image and sentence features into a joint embedding space.

Distances between image and sentence features in the joint

space could then be interpreted as the affinities between

them. Distances between corresponding sentence-image

pairs should be small, and should be high between non-

corresponding paris. Reed et al. [31] presented a CNN-

RNN for zero-shot text-to-image retrieval. We utilize their

code and compare it with our proposed framework. We

also investigate replacing the language model in CNN-RNN

with the simple BoW language model [45] for sentence en-

coding and denote it as EmbBoW.

4.3. Quantitative and qualitative results

Quantitative evaluation. Table 2 shows the results of

our proposed framework and the compared methods. We

use a single sentence as query to do the person search. Our

approach achieves the best performance in terms of both

top-1 and top-10 accuracies and outperforms other methods

by a large margin. It demonstrates that our proposed net-

work can better capture complex word-image relations than

the compared ones.

For all the baselines, the image captioning method Neu-

ralTalk outperforms the other baselines. It calculates the av-

erage loss at each word as the sentence-image affinity, and

obtains better results than visual QA and visual embedding

approaches, which encode the entire sentence into a feature

vector. Such results show that the LSTM might have diffi-

culty encoding complex person descriptive sentences into a

single feature vector. Word-by-word processing and com-

parison might be more suitable for the person search prob-

lem. We also observe that QAWord-img and QAWord has

similar performance. This demonstrates that, the modal-

ity fusion between image and word before or after LSTM

has little impact on the person search performance. Both

ways capture word-image relations to some extent. For the

visual-semantic embedding method, the CNN-RNN does

not perform well in terms of top-k accuracies with the pro-

vided code. The distance-based losses might not be suit-

able for learning good models for the person search prob-

lem. EmbBoW and QABoW use the traditional Bag-of-

Word method to encode sentences and have worse perfor-

mances than their counterparts with RNN language models,

which show that the RNN framework is more suitable in

processing natural language data.

Component analysis. We pre-train the visual VGG

model for person re-id task first, and then fine-tune whole

network for text-to-person search. Without the person re-id

pre-training, top-1 and top-10 accuracies drop apparently as

shown in Table 3. This means the initial training affects the

final performance a lot. To investigate the effectiveness of

the proposed unit-level attentions and word-level gates, we

design two baselines for comparison. For the first baseline

(denoted as “w/o gates”), we remove the word-level gates

and only keep the unit-level attentions. In this case, differ-

ent words are equally weighted in estimating the sentence-

image affinity. For the second baseline (denoted as “w/o at-

tention”), we try to keep the world-level gates, and replace

the unit-level attentions with average pooling over units. We

list top-1 and top-10 accuracies of the two baselines in Table

3. Both the unit-level attention and word-level gates are im-

portant for achieving good performance by our GNA-RNN.

Investigation on the impact of the number of visual

units. Results of different number of visual units are listed

in Table 4. Models with more visual units might over-fit the

dataset. 512 units achieves the best result.

Qualitative evaluation. We conduct qualitative evalu-

ation for our proposed GNA-RNN. Figure 6 shows 6 per-

son search results with natural language descriptions by our

proposed GNA-RNN. The four cases in the top 2 rows show

successful cases where corresponding images are within the

top-6 retrieval results. For the successful cases, we can ob-

serve that each top image has multiple regions that fit parts

of the descriptions. Some non-corresponding images also
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The man is  wearing a 

white shirt and a pair 

of brown pants, and a 

black backpack.

The woman is wearing a black 

and white printed skirt, black 

strappy sandals and a white 

blouse. She has a black bracelet 

on her left wrist.

The woman is wearing a white 

wedding dress with brown hair 

pulled back into a long white 

veil. The dress is cinched with 

a white ribbon belt.

A woman is wearing 

a bright red shirt, a 

pair of black pants 

and a pair of black 

shoes.

The woman is wearing 

a white top and khaki 

skirt. She carries a red

hand bag.

A man has short brown hair 

and glasses. He wears a grey 

suit with a white collared shirt 

and black tie. He carries a 

white binder.

Figure 6. Examples of top-6 person search results with natural language description by our proposed GNA-RNN. Corresponding images

are marked by green rectangles. (Rows 1-2) Successful searches where corresponding persons are in the top-6 results. (Row 3) Failure

cases where corresponding persons are not in the top-6 results.

show correlations to the query sentences. In terms of failure

cases, there are two types of them. The first type of failure

searches do retrieve images that are similar to the language

descriptions, however, the exact corresponding images are

not within the top retrieval results. For instance, the bottom

right case in Figure 6 does include persons (top-2, top-3,

and top-4) similar to the descriptions, who all wear white

tops and red shorts/skirts. Other persons have some charac-

teristics that partially fits the descriptions. The top-1 person

has a “hand bag”. The top-4 person wears “white top”, and

the top-6 person carries a “red bag”. The second type of fail-

ure cases show that the GNA-RNN fails to understand the

whole sentence but only captures separate words or phrases.

Take the bottom left case in Figure 6 as an example, the

phrase “brown hair” is not encoded correctly. Instead, only

the word “brown” is captured, which leads to the “brown”

suit for the top-1 and top-6 persons, and “brown” land in

the top-2 image. We also found some rare words/concepts

or detailed descriptions are difficult to learn and to locate,

such as “ring”, “bracelet”, “cell phones”, etc., which might

be learned if more data is provided in the future.

Visual unit visualization. We also inspect the learned

visual units to see whether they implicitly capture common

visual patterns in person images. We choose some frequent

adjectives and nouns. For each frequent word, we collect

its unit-level attention vectors for a large number of training

images. Such unit-level attention vectors are averaged to

identify its most attended visual units. For each of such

units, we retrieve the training images that have the highest

responses on the units. Some examples of the visual units

obtained in this way are shown in Figure 7. Each of them

captures some common image patterns.

5. Conclusions

In this paper, we studied the problem of person search

with natural languages. We collected a large-scale person

backpack

pink

sleeveless

yellow

Figure 7. Images with the highest activations on 4 different visual

units. The 4 units are identified as the one with the maximum

average attention values in our GNA-RNN with the same word

(“backpack”, “sleeveless”, “pink”, “yellow”) and a large number

of images. Each unit determines the existence of some common

visual patterns.

dataset with 80,412 sentence descriptions of 13,003 per-

sons. Various baselines are evaluated and compared on the

benchmark. A GNA-RNN model was proposed to learn

affinities between sentences and person images with the

proposed gated neural attention mechanism, which estab-

lished the state-of-the art performance on person search.
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