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Abstract

We present a method for removing specular highlight

reflections in facial images that may contain varying illu-

mination colors. This is accurately achieved through the

use of physical and statistical properties of human skin and

faces. We employ a melanin and hemoglobin based model

to represent the diffuse color variations in facial skin, and

utilize this model to constrain the highlight removal solu-

tion in a manner that is effective even for partially satu-

rated pixels. The removal of highlights is further facili-

tated through estimation of directionally variant illumina-

tion colors over the face, which is done while taking ad-

vantage of a statistically-based approximation of facial ge-

ometry. An important practical feature of the proposed

method is that the skin color model is utilized in a way that

does not require color calibration of the camera. More-

over, this approach does not require assumptions commonly

needed in previous highlight removal techniques, such as

uniform illumination color or piecewise-constant surface

colors. We validate this technique through comparisons to

existing methods for removing specular highlights.

1. Introduction

A human face usually exhibits specular highlights

caused by sharp reflections of light off its oily skin surface.

Removing or reducing these highlights in photographs is

often desirable for the purpose of aesthetic enhancement or

to facilitate computer vision tasks, such as face recognition

which may be hindered by these illumination-dependent ap-

pearance variations. Extraction of a specular highlight layer

can moreover provide useful information for inferring scene

properties such as surface normals and lighting directions.

Specular highlight removal is a challenging task because

for each pixel there are twice as many quantities to be es-

timated (specular color and diffuse color) as there are to

observe (image color). To manage this problem, previous

methods typically require simplifying assumptions on the

imaging conditions, such as white illumination [33, 34, 41,

40], piecewise-uniform surface colors [13, 1], repeated sur-

face textures [31], or a dark channel prior [11]. These con-

ditions, however, generally do not exist in facial images,

which are normally captured in natural lighting environ-

ments and do not exhibit the assumed surface properties.

To address this problem, we present a highlight removal

method that takes advantage of physical and statistical prop-

erties of human skin and faces, and also jointly estimates an

approximate model of the lighting environment. Accurate

estimation of illumination and its colors is essential for re-

moving highlights, since highlight reflections have the color

of the lighting. Most previous highlight separation tech-

niques simply assume the illumination color to be uniform

and/or known, but this is typically not the case for real-

world photographs. We instead solve for it together with

highlight removal while utilizing priors on human faces. In

this way, our method not only is able to account for high-

light information and facial priors in estimating the illumi-

nation, but it can also estimate an environment map with di-

rectionally variant colors often present in everyday scenes,

like an office with both fluorescent ceiling lights and sun-

light from windows.

Besides the environment map, better prior knowledge

about the diffuse colors of an object is also important for

effectively separating specular highlights. In this work, we

utilize a physically-based model of human skin color to bet-

ter constrain the highlight removal solution. Human skin is

a turbid medium containing melanin and hemoglobin as its

two dominant pigments. Spatial variations in the amount

of melanin, which is contained in the epidermal layer of

the skin, result in skin features such as freckles or moles.

Hemoglobin, which is a protein in blood, flows within the

dermal layer and forms the appearance of blood circulation.

The variation of skin color is mainly caused by different

densities of these two pigments. Darker skin is a result of

denser concentrations of melanin, while pinkish cheeks in-

dicate a high density of hemoglobin. We use a skin color

model based on these two pigments as a constraint on esti-

mated diffuse colors as well as to effectively deal with high-

lights that cause partial saturation of measured color values,

a problem neglected in previous techniques.

A well-known ambiguity that exists in separating specu-

lar highlights from diffuse reflection occurs when the illu-

mination chromaticity is similar to the diffuse chromaticity
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of the object. In such cases, it is difficult to distinguish the

two reflection components. To deal with this issue for faces,

we additionally make use of a statistically-based approxi-

mation of the facial geometry to help infer the magnitude

of diffuse reflections and thus reduce the aforementioned

ambiguity.

With this approach, our method obtains results that com-

pare favorably to state-of-the-art highlight removal tech-

niques, especially for scenes that contain different types of

light sources. A noteworthy feature of this work is that the

model of skin color is employed in a way that does not

require color calibration of the camera. We evaluate our

method on laboratory captured images that allow for quan-

titative comparisons, and on real images taken under natural

imaging conditions.

2. Related Work

In this section, we briefly review previous work on

single-image highlight removal and illumination estima-

tion.

Highlight removal from a single input image is a prob-

lem that has been studied for decades. Early approaches

aim to recover diffuse and specular colors through an analy-

sis of color histogram distributions, under the assumption of

piecewise-constant surface colors [13, 1]. This color-space

approach was later extended to also account for image-

space configurations, which has enabled handling of surface

textures that can be inpainted [32] or that have a repetitive

structure [31]. A recent approach is to first derive a pseudo

diffuse image that exhibits the same geometric profile as the

diffuse component of the input image [33, 34]. Highlights

are then removed by iteratively propagating the maximum

chromaticity of the diffuse component to neighboring pix-

els. Variants of this approach have employed a dark chan-

nel prior in generating the pseudo diffuse image [11]. A

real-time implementation has been presented based on bilat-

eral filtering [41]. In contrast to these previous techniques,

our work derives and utilizes additional constraints based

on prior knowledge for a particular object of great interest,

namely human faces. These physical and statistical con-

straints allow our method to avoid previous restrictions on

surface textures, and enable handling of partially saturated

highlight pixels, varying illumination color, and ambiguities

caused by similar illumination chromaticity and diffuse re-

flection chromaticity, which these previous methods do not

address.

Illumination estimation also has a long history in com-

puter vision. Research on this problem has primarily fo-

cused on estimating either the directional distribution of

light or the illumination color, but not both. By contrast,

both color and direction are needed in our work to take

advantage of the physical and statistical priors on human

faces.

Methods for recovering the directional distribution of

light have analyzed shading [42, 44, 38], cast shadows [25,

26, 27, 28, 22, 12], and specular reflections [21, 17] on sur-

faces with known geometry. Our method also utilizes sur-

face shape in recovering the lighting distribution, but esti-

mates unknown geometry as well as lighting color with the

help of statistical data on human faces. Reflections from

human eyes have also been used to estimate the lighting en-

vironment [20, 37], but require close-up views of an eye and

the estimates can be significantly degraded by iris textures.

For estimation of illumination color, there have been two

main approaches. One is to employ color constancy based

on prior models for surface colors [6, 8, 19, 10, 4, 2]. Most

closely related to our work are methods that utilize a com-

prehensive set of measured skin tones [4, 2]. Color con-

stancy methods, however, are unsuitable for our work be-

cause they neither recover a directional distribution nor dis-

tinguish between the color of light for diffuse reflection (i.e.

from the upper hemisphere of a surface point) and specular

highlights (i.e. from a mirror reflection angle), which is es-

sential for highlight removal.

The other approach is to estimate illumination color from

specular reflections [35, 5, 16, 30, 9] based on the dichro-

matic reflection model [29]. Under this model, the pixels

of a monochromatic surface are restricted to a dichromatic

plane in the RGB color space. To determine the point on

this plane that corresponds to the illuminant color, some of

these methods find the intersection of the dichromatic plane

with the Planckian locus [5, 16], which models the emit-

ted light color of an incandescent blackbody radiator as a

function of its temperature. While the Planckian locus is

a powerful physical constraint for light color estimation, it

requires color calibration of the camera, which is avoided in

our work to make the method more widely applicable. Our

method also employs the dichromatic model, but uses it in

conjunction with face and skin attributes that constrain the

color estimates. Unlike these techniques, our method also

recovers the directional distribution of light.

3. Reflection Model

As mentioned in the previous section, the dichromatic

reflection model [29] has been commonly used for specular

highlight separation. According to this model, the image of

an inhomogeneous dielectric object consists of two reflec-

tion components, namely diffuse and specular:

I(p) = Id(p) + Is(p), (1)

where p denotes the pixel index, and Id and Is represent

diffuse and specular reflection, respectively.

Given a distant lighting environment L that is incident on

the face, part of it is directly reflected by the skin surface,
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producing specular reflection Is:

Is(p) =

∫

L

fs(p,np, ωo, ωi)L(ωi) dωi, (2)

where fs is the bidirectional reflectance distribution func-

tion (BRDF) for specular reflection, np is the surface nor-

mal of pixel p, and ωi is the incident direction of the light.

We orient the coordinate system such that the viewing di-

rection, ωo, is in direction (0, 0, 1)T and will not need to

be referenced in the remainder of the paper. The rest of

the light enters the human skin volume and exits as diffuse

reflection Id:

Id(p) = D(p)A(p), (3)

where A(p) is the diffuse albedo of skin at pixel p and D(p)
is the geometry-dependent diffuse shading:

D(p) =

∫

L

fd(p,np, ωi)L(ωi) dωi (4)

which represents the interaction between lighting L and the

skin volume according to the diffuse BRDF fd.

Substituting Eq. (2), Eq. (3) and Eq. (4) into Eq. (1)

yields the following reflection model:

I(p) = A(p)

∫

L

fd(·)L(ωi) dωi +

∫

L

fs(·)L(ωi) dωi. (5)

3.1. Illumination Modeling

A typical assumption in previous specular separation

methods is that the illumination color is uniform. However,

this assumption often does not hold for real-world scenes,

since many lighting environments contain different types of

illuminants.

To handle varying illumination colors, we model the

lighting environment using spherical harmonics, which are

the analogue on the sphere to the Fourier basis on the line

or circle:

L(ωi) =
∑

l,m

LlmYlm(ωi)

= L
T
lmYlm(ωi), (6)

where Ylm denote spherical harmonics (SH) and Llm are

the SH coefficients, with l ≥ 0 and −l ≤ m ≤ l. The SH

coefficients Llm are estimated for the R,G,B color chan-

nels separately as Llm = {Llm,R, Llm,G, Llm,B} in order

to model varying illumination colors. Uniform illumination

chromaticity is thus a special case where the SH coefficients

differ by only a scalar factor among the three color chan-

nels.

Diffuse and specular reflections are represented as inte-

grations over the environment map L in Eq. (5). To facilitate

optimization, we avoid evaluating the integrals by solving

Epidermis

Dermis

Air

Hemoglobin

Melanin

(a) (b) (c) (d)

Figure 1. An illustration of the melanin-hemoglobin based skin

model. (a) Two layered skin model. (b) A diffuse skin patch. (c)

Color and density ρm of the melanin component. (d) Color and

density ρh of the hemoglobin component.

directly for diffuse shading D(p) at each pixel p. The spec-

ular component Is(p) can be approximated by only consid-

ering its mirror reflection as:

Is(p) =

∫

L

fs(p,np, ωo, ωi)L(ωi) dωi

≈ L(ωp)ms(p), (7)

and

ωp =
2np − ωo

‖2np − ωo‖
, (8)

where ms is the specular coefficient, and the surface nor-

mal np of pixel p is the half-angle direction of ωp and ωo.

A single-image 3D face reconstruction algorithm [39] based

on morphable models is used to recover an approximate nor-

mal direction map N̂, from which we obtain the values of

np.

3.2. Skin color model

Some previous works [34, 41, 11] utilize a pseudo

specular-free image to estimate the diffuse chromaticity of

A(p), but not estimate A(p) itself. As we focus on specu-

lar highlight removal specifically for facial images, we can

instead deal with A(p) directly instead of its chromaticity,

with the help of prior knowledge on human skin. This dif-

ference will allow our method to accurately handle partially

saturated pixels.

Illustrated in Fig. 1, skin reflectance can be physically

represented as a two layered model consisting of an epider-

mis layer containing melanin and a dermis layer containing

hemoglobin. This model is used in [36] for skin texture syn-

thesis to achieve certain visual effects such as the appear-

ance of alcohol consumption or tanning. According to the

modified Lambert-Beer law [7] which models subsurface

scattering in layered surfaces in terms of one-dimensional

linear transport theory, the diffuse reflection of skin is:

R(p, λ) = exp{ρm(p)σ′

m(λ)lm(λ)+ρh(p)σ
′

h(λ)lh(λ)}R(p, λ),
(9)

where λ denotes wavelength, and R and R are the incident
spectral irradiance and reflected spectral radiance. ρm(p),
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ρh(p), σ
′
m, σ′

h are the pigment densities and spectral cross-
sections of melanin and hemoglobin, respectively. lm and
lh are the mean path lengths of photons in the epidermis and
dermis layers. Following the simplification used in [36], we
process the wavelength-dependent melanin and hemoglobin
scattering terms σ′

m, σ′
h, lm, lh at the resolution of RGB

channels:

σ
′

m(λ)lm(λ) = {σ̄′
m,R l̄m,R, σ̄′

m,G l̄m,G, σ̄′
m,B l̄m,B},(10)

σ
′

h(λ)lh(λ) = {σ̄′
h,R l̄h,R, σ̄′

h,G l̄h,G, σ̄′
h,B l̄h,B}. (11)

We define the relative absorbance vectors σm, σh of
melanin and hemoglobin as:

σm = exp{σ̄′
m,R l̄m,R, σ̄′

m,G l̄m,G, σ̄′
m,B l̄m,B}, (12)

σh = exp{σ̄′
h,R l̄h,R, σ̄′

h,G l̄h,G, σ̄′
h,B l̄h,B}. (13)

By combining Eq. (9), Eq. (12), Eq. (13) and R = AR,

skin albedo A(p) can be expressed as

A(p) = σρm(p)
m σ

ρh(p)
h . (14)

As reported in [36] and empirically verified in the sup-

plemental material, the relative absorbance vectors σm,

σh vary within a restricted range for typical human faces.

Based on this observation, we make the assumption that

σm, σh are the same among people, and variations in skin

color are attributed to differences in pigment densities ρm
and ρh. The computation of σm and σh is performed by

independent components analysis (ICA) on a set of facial

images captured under neutral illumination. Further details

on this ICA are given in the supplemental material.

The effects of camera color filters can in general be

mixed with estimates of surface albedos and illumination

colors. In our case, the surface albedos are circumscribed

by σm and σh, which are both known and illumination-

independent properties. The effects of camera color filters

will thus be intertwined with the estimated lighting colors,

for which we make no assumptions. As a result, our method

does not require color calibration of the camera, unlike tech-

niques that use the Planckian locus as a constraint on illu-

mination [5, 16, 18].

4. Facial Specular Highlight Removal

Our objective function for removing specular highlights

under varying illumination colors is

argmin
Llm,ρ,D,ms

EO + λSES + λHEH + λGEG (15)

subject to ρm(p) ≥ 0, ρh(p) ≥ 0,

where we define the SH coefficients Llm of the lighting en-

vironment map L in Eq. (6), the pigment densities ρ =
{ρm, ρh} in Eq. (14), the diffuse shading D in Eq. (3), and

the specular coefficient ms in Eq. (7). λS , λH , λG are regu-

larization weights for balancing the data term EO, isotropic

smoothness term ES , anisotropic smoothness term EH , and

global shading term EG. Each of these terms is presented

in the following subsections.

4.1. Data Term

The data term EO measures the difference between the

skin reflectance model of Eq. (5) and the observed input

image I:

EO(Llm,ρ,D,ms) =
∑

p∈I

e
ms(p)‖A(p)D(p)+L(ωp)ms(p)−I(p)‖2,

(16)

where the albedo A(p) is computed according to Eq. (14)

and ωp is defined in Eq. (8). Since our method is focused on

removing specular highlights, we place greater emphasis on

pixels that contain greater specular reflection, through the

adaptive weight ems(p).

4.2. Isotropic Smoothness Term

The isotropic smoothness term ES constrains the gra-

dient of the diffuse shading D and specular coefficient

ms to be locally smooth. Similar constraints have been

used in prior work to increase the stability of highlight re-

moval [11, 32]. We define this prior as the isotropic TV-l2
regularizer:

ES(D,ms) =
∑

p∈I

(‖ ▽D(p)‖2 + ‖ ▽ms(p)‖2), (17)

where ▽ is the gradient operator.

4.3. Anisotropic Smoothness Term

We also regularize the pigment densities ρ to be locally

smooth while accounting for skin textures. In previous

work [41, 11], guided bilateral filtering or a TV-l1 term was

used to obtain a smooth but edge preserving estimate of dif-

fuse chromaticity. Since in our case we are solving for pig-

ment densities ρ, which are physical quantities that give rise

to diffuse chromaticity, we enforce anisotropic smoothness

on them instead:

EH(ρ) =
∑

p∈I

(e−▽ρm(p)‖▽ρm(p)‖2+e−▽ρh(p)‖▽ρh(p)‖2).

(18)

4.4. Global Shading Term

An ambiguity in specular highlight separation occurs

when the illumination chromaticity is similar to the diffuse

reflection chromaticity. In such cases, which can happen

for faces, it is difficult to separate the contributions of spec-

ular and diffuse reflections. To resolve this ambiguity, we

take advantage of additional prior information about human

faces, in the form of a statistically-based approximation of
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the facial geometry. This prior is used to constrain the esti-

mates of diffuse shading, which in turn determines the mag-

nitude of specular highlights.

Although the illumination distribution can be arbitrary,

the appearance of diffuse shading can be described by a

low-dimensional model. The Lambertian reflectance func-

tion acts as a low-pass filter on the lighting environment and

can be modeled as a quadratic polynomial of the surface

normal direction [23]:

D(p) = n
T
p Mnp, (19)

where np = (x, y, z, 1)T is the surface normal of pixel p

and M is a symmetric 4 × 4 matrix encoding the illumina-

tion distribution. According to [23], M is determined by

the first nine coefficients of Llm as

M =

⎛

⎜

⎝

c1L22 c1L2−2 c1L21 c2L11

c1L2−2 −c1L22 c1L2−1 c2L1−1

c1L21 c1L2−1 c3L20 c2L10

c2L11 c2L1−1 c2L10 c4L00 − c5L20

⎞

⎟

⎠
,

(20)

c1 = 0.429043, c2 = 0.511664, c3 = 0.743125,

c4 = 0.886227, c5 = 0.247708.

Based on this, we define our global shading term as

EG(D) =
∑

p∈I

‖D(p)− n
T
p Mnp‖2, (21)

where np is obtained using the statistically-based single-

image 3D face reconstruction algorithm of [39]. Though the

diffuse reflectance of human skin does not exactly adhere to

the Lambertian model, we nevertheless found this global

shading term to be helpful in providing good approximate

solutions, especially in cases of the aforementioned ambi-

guity.

We note that related shading constraints have been em-

ployed in various low-level vision problems, including 3D

reconstruction [43, 15] and intrinsic image decomposi-

tion [16, 14]. In [14], the space of surface normals1 is di-

vided into small bins, and pixels are assigned to them ac-

cording to their known surface orientations reconstructed

from a Kinect camera. A non-local smoothness constraint

is applied to the diffuse coefficients of pixels within the

same bin based on the assumption that similar normal di-

rections indicate similar diffuse coefficients. Our work like-

wise places non-local constraints on diffuse reflection, but

leverages statistical models of face geometry instead of re-

lying on depth sensors.

4.5. Optimization

We minimize the objective function of Eq. (15) using

an alternating optimization scheme, where the parameters

1Polar and azimuth angles (θ, φ), θ ∈ [0, 2π], φ ∈ [0, π/2].

{Llm,ρ,D,ms} are estimated sequentially while the val-

ues of the other unknowns are fixed. The optimization is

iterated until the change in the objective energy falls below

a threshold. We set the value of the regularization weights

{λS , λH , λG} to {0.1, 0.1, 0.001} in our experiments.

We initialize Llm as uniform white illumination2 and ms

using the results of [41]. D and ρ are initialized by project-

ing the input image I to the σm-σh plane in log-RGB space

(described further in the supplemental material):

⎛

⎝

logD(p)
ρm(p)
ρh(p)

⎞

⎠ =
(

1, logσm, logσh

)−1
log I(p), (22)

where 1 = (1, 1, 1)T is the shading direction in log-RGB

space.

Update ρ and D: We first estimate ρ and D while fixing

Llm and ms. To satisfy the bounds for ρ:

ρm(p) ≥ 0, ρh(p) ≥ 0, (23)

we simply express the estimation of ρ as the estimation of

ρ′m = log ρm, ρ′h = log ρh and optimize the objective func-

tion in Eq. (15) by the Gauss-Newton method.

To correctly handle pixels with saturated image values,

we omit the saturated color channels when computing the

data term EO. For the case of partially saturated pixels

with two non-saturated channels, although the observation

I is incomplete, the correct skin albedo A can still be ac-

curately estimated from the non-saturated channels based

on their intersection with the skin albedo model in Eq. (14)

(which forms a plane in log-RGB space as described in the

supplemental material) in addition to the smoothness term

EH , which propagates estimated pigment densities ρ from

non-saturated regions.

Update Llm: We then fix ρ, D, ms to update the SH ap-

proximation Llm by optimizing EO + EG. EO can be rep-

resented as a quadratic energy

EO =
∑

p∈I

ems(p)‖ms(p)L
T
lmYlm(ωp)+A(p)D(p)−I(p)‖2,

(24)

where A(p), D(p), ms(p) and Ylm(ωp) have been fixed.

Similar to EO, the global shading term EG in Eq. (21) can

also be represented as a quadratic energy with fixed D. As

a result, this optimization problem can be solved in closed

form as

‖ALlm − I‖2 + ‖BLlm −D‖2 = 0, (25)

2Initialized spherical harmonics coefficients are zero for all values ex-

cept for L00 = 3.544881.
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where A and B are two P × K matrices with P denoting

the number of face pixels in the image and K representing

the number of SH coefficients Llm.

Update ms: Thirdly, we update ms with fixed Llm, ρ and

D by solving

argmin
ms

EO + λSES . (26)

This energy function is also optimized by the Gauss-

Newton method.

5. Results

In this section, we evaluate the proposed method. The

face region is automatically segmented by applying Grab-

cut [24] on the facial landmarks detected using an Active

Appearance Model [3]. Facial features which do not fol-

low the proposed skin model, such as teeth and eyes, are

excluded from the segmented region using the landmarks.

The results of specular highlight removal for facial im-

ages are evaluated using both laboratory captured images

for quantitative comparison and real natural images for

qualitative comparison. Results for additional images are

provided in the supplemental material, which also includes

experimentation on illumination chromaticity estimation, a

byproduct of our method.

We compare the specular highlight removal results of

our method to four existing techniques [34, 41, 11, 16].

ILD [34] uses the pseudo diffuse image to generate a

specular-free image, and then removes specular reflections

through comparisons between the specular-free image and

the input image. MDCBF [41] takes the pseudo diffuse im-

age as a guide for applying edge-preserving filters to es-

timate the maximum diffuse chromaticity. We use the re-

sults of MDCBF [41] to initialize the value of ms in our

work. DarkP [11] utilizes a dark channel prior to initial-

ize the pseudo diffuse image. FacePL [16] considers the

Planckian locus as a soft constraint together with a statisti-

cal property of skin albedo to remove specular highlights.

ILD [34], MDCBF [41], and DarkP [11] assume a cali-

brated uniform illumination color, and FacePL [16] works

under an unknown uniform illumination color.

5.1. Laboratory Images

Figure 2 presents a quantitative evaluation of specular

highlight removal where the ground truth results in Fig. 2(h)

are obtained through cross-polarization. Three different il-

lumination configurations are considered among the input

images in Fig. 2(a), namely calibrated uniform white illu-

mination, three 3000K color temperature lamps, and one

3000K lamp + two 6000K lamps.

Under the uniform white illumination, ILD [34] and

DarkP [11] do not perform well because their pseudo-

diffuse assumptions, i.e. that the diffuse chromaticity is lo-

cally uniform [34] and the dark channel of the diffuse com-

ponent is zero [11], do not hold for facial images. The re-

sults of MDCBF [41] and FacePL [16] are better but spec-

ular reflections still exist, especially in the region around

the nose; the results in (f) show significant improvement

over previous methods by considering the diffuse skin color

model, and our results in (g) exhibit further improvement

by incorporating the global shading term EG.

For the case of uncalibrated but uniform illumination in

the second input image, the results for most of the other

methods degrade in quality due to unknown illumination

chromaticity. Our method does not perform as well with-

out the global shading term because the chromaticity of a

3000K lamp is close to that of the skin, which increases the

ambiguity between the specular and diffuse components.

After considering the global shading term, our method bet-

ter estimates the illumination color, which leads to an im-

proved specular highlight separation.

For the third lighting configuration, which includes

different-color light sources, the 6000K illumination com-

ing from the front and right leads to a grayish color for

skin pixels with specular reflection. As a result, the meth-

ods that assume calibrated white illumination overestimate

the specular component because they cannot distinguish

between specular and diffuse reflections when they have

similar chromaticity. Because of our models for melanin-

hemoglobin skin color and directional illumination, the re-

sults of (f) exhibit improvement except for the highlight

from the 3000K lamp, which still exists. This highlight is

removed in (g) by utilizing the global shading term which

takes advantage of diffuse shading estimates of other face

pixels. The estimated illumination environments for the last

two lighting configurations and the corresponding ground

truth environment maps captured using a mirrored sphere

(and expressed as 4th-order SH) are presented for a qualita-

tive comparison in the upper-right corners of corresponding

specular highlight components.

5.2. Natural Images

Figure 3 displays several qualitative comparisons to

[34, 41, 11, 16] on facial images captured under different

lighting environments. We note that it is generally imprac-

tical to capture accurate ground truth by cross-polarization

in natural scenes due to the number and spatial extent of

light sources (e.g., outdoor light from windows). Results

for additional images are provided in the supplemental ma-

terial. The input images in the first and second rows are

captured under a uniform calibrated illumination color; the

images in the third and fourth rows are captured with a uni-

form but uncalibrated illumination color; the images in the

fifth and sixth rows are examples with directionally varying

illumination color.
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(a) Input (b) ILD [34] (c) MDCBF [41] (d) DarkP [11] (e) FacePL [16] (f) Ours w/o EG (g) Ours (h) Ground truth

5.59 3.82 6.81 3.45 2.54 2.00

7.96 4.85 2.82 4.07 3.93 1.98

9.38 3.87 10.4 6.02 2.96 2.31
Figure 2. Quantitative evaluation of specular highlight removal. (a) Input images. (b-h) Separated diffuse and specular components by (b)

ILD [34], (c) MDCBF [41], (d) DarkP [11], (e) FacePL [16], (f) our method without global shading term EG, (g) our method, and (h)

ground truth from cross-polarization. The illumination for the three input images are respectively: calibrated uniform white; three lamps

with color temperature of 3000K; one 3000K lamp and two 6000K lamps. In the upper-right corners of the separated specular components,

we show for qualitative comparison the corresponding illumination estimates (in terms of 4th order SH). The RMSE of the separated

specular components (shown rescaled by 100 for better viewing) is given in the lower-right corners.

One of the advantages of our approach is that it can

more accurately handle partially saturated pixels, such as

those around the nose and forehead in the first image, com-

pared to the other methods. Aside from the partially satu-

rated region, our approach also outperforms the others even

under calibrated illumination as shown for the second im-

age. Although facial hair is not modeled by our skin model,

our method still performs adequately in those regions be-

cause the facial hair contains little specular reflection and

has low pixel intensity. Due to the lack of illumination cal-

ibration, the diffuse results of the previous methods on the

third and fourth images contain much specular reflection.

Note that because of the utilization of global shading term

EG, our method obtains a good result even though the il-

lumination chromaticity of the third image is similar to the

skin color. Since the dark channel prior in DarkP [11] does

not hold in most facial images, the method generally over-

estimates specular reflections except for the fourth image,

whose deeply reddish illumination leads to the blue chan-

nel becoming nearly zero, thus satisfying the dark channel

prior. The fifth and sixth images are captured under varying

illumination colors, which is problematic for previous tech-

niques as shown in the results. Note that our method suc-

cessfully removes the specular highlights on the right side

of the forehead in the sixth image, which is caused by illu-

mination with chromaticity similar to the skin, thanks to the

global shading constraints.
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(a) Input (b) ILD [34] (c) MDCBF [41] (d) DarkP [11] (e) FacePL [16] (f) Ours

Figure 3. Specular highlight removal results for natural lighting environments. (a) Input images. (b/c/d/e/f) Diffuse images estimated by

(b) ILD [34], (c) MDCBF [41], (d) DarkP [11], (e) FacePL [16], and (f) our method.

6. Conclusion

We presented a method for removing specular highlight

reflections in facial images that may contain varying illumi-

nation colors. By jointly separating the specular highlights

and estimating the illumination environment while utiliz-

ing physical and statistical priors on human faces, our ap-

proach demonstrates appreciable improvements over previ-

ous state-of-art methods, especially for handling partially

saturated pixels, varying illumination colors, and ambigu-

ities caused by the similarity between illumination chro-

maticity and diffuse chromaticity.
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