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Abstract

This paper strives to track a target object in a video.

Rather than specifying the target in the first frame of a video

by a bounding box, we propose to track the object based on

a natural language specification of the target, which pro-

vides a more natural human-machine interaction as well as

a means to improve tracking results. We define three vari-

ants of tracking by language specification: one relying on

lingual target specification only, one relying on visual target

specification based on language, and one leveraging their

joint capacity. To show the potential of tracking by natu-

ral language specification we extend two popular tracking

datasets with lingual descriptions and report experiments.

Finally, we also sketch new tracking scenarios in surveil-

lance and other live video streams that become feasible with

a lingual specification of the target.

1. Introduction

The goal of this paper is to track an object in video,

a long-standing challenge in computer vision. The com-

mon approach is to specify a target by means of a bound-

ing box around the object and to track this target as it

moves throughout the video [38, 33, 20]. The paradigm has

proven to be effective and considerable progress has been

achieved [17, 37, 34, 3, 11]. Yet, the fundamental assump-

tion of having a bounding box target specification available

has never been challenged. In this paper, we propose a new

approach to object tracking in video, in addition to or in

contrast to target specification by means of a bounding box.

We are inspired by recent progress in object retrieval [15,

14, 26]. Both Hu et al. [15, 14] and Mao et al. [26] present

a recurrent neural network able to localize an object in an

image by means of a natural language query only, either re-

turning a bounding box [15] or a free-form segment [14].

To cope with language ambiguity, Mao et al. introduce re-

ferring expressions that uniquely describe an object in an

image. However, unlike in still images, in videos objects

may change their appearance and position, also the back-

ground can vary dramatically from frame to frame. Even

if the video frames contain the same object category, that

Figure 1: Tracking by natural language specification al-

lows for a novel type of human-machine interaction in ob-

ject tracking. It enhances standard trackers by helping them

against drift. It also opens up opportunities for new applica-

tions like random start tracking, for example when the target

is lost, or simultaneous multiple-video tracking.

object might have a different appearance, be in different lo-

cation or in a different background, thus rendering any de-

scription challenging. Unlike [15, 14, 26] we do not retrieve

but track the object of interest in video from a natural lan-

guage specification.

First and foremost, the contribution of this paper is track-

ing by natural language specification, which allows for a

novel type of human-machine interaction in tracking, see

Figure 1. In several real-life applications, such as robotics

or autonomous driving, defining the target by a description

is more natural, e.g., “track the red car in the middle lane”.

As a second contribution, we define three variants of track-

ing by language specification, that are dominated by lingual

target specification, visual target specification, or leverages

their joint capacity. As third novelty we enrich standard
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tracking from a human-provided bounding box with our

language specification. To show the potential of tracking by

natural language specification we extend the OTB100 [38]

object tracking dataset and ImageNet Video Object Detec-

tion dataset [31] with lingual descriptions and report exper-

iments. Finally, we also sketch new tracking application

scenarios for surveillance and other live video streams that

become feasible with a lingual specification of the target.

2. Related Work

Tracking. The breadth and depth of single object track-

ing is covered by recent reviews [38, 33] including an

overview of the many diverse and dynamic factors to over-

come conditions general to the scene: uneven illumination,

shadow casting, reflection, as well as to the target: shape

changes, and in relation to other objects: occlusion, simi-

lar close objects, clutter with the background, and the cam-

era: fast motion and zooming. Diverse benchmarks like

OTB [38], ALOV [33], and VOT [20], have accelerated the

performance of trackers in general, and they have caused a

convergence in tracking methods.

Many modern trackers rely on discriminative correla-

tion filters [4, 12, 7]. While originally selected for the Fast

Fourier Transform to compute one channel quickly, Danell-

jan et al. [10] use multiple channels to augment the dis-

crimination of the correlation filters. Henriques et al. [12]

introduce kernelized filters to further refine the trimming of

features to the tracking situation at hand. Ma et al. [25] en-

rich the model with long-term memory, while Danelljan et

al. [8] proposes a scale-invariant version and Liu et al. [24]

use structured correlation filters. They all aim to enhance

the robustness of discriminative correlation filters against

the diverse circumstances of tracking as well as to enhance

the generality of discriminating the target from the back-

ground.

Neural networks have aided in focusing the tracking on

the target by attention-based tracking in [6, 5]. Wang et

al. [36] transform deep network optimization into sequen-

tial ensemble learning by online training. In [28] Nam et al.

enable fine-tuning to more than one domain, where each do-

main is represented by a single training sequence. In [34, 3],

tracking is cast as instance search for which a Siamese net-

work architecture is used. The original window of the tar-

get is compared with candidates windows from the current

frame by a similarity function, learned from many examples

before the tracking starts. As they function on the similar-

ity to a stable original, and they are not updated during the

tracking, Siamese trackers achieve state-of-the-art perfor-

mance and recovery from loss, while being robust against

variations in the query definition [34].

As we are anticipating a sloppy definition of the starting

box, we rely on the last of the above mentioned methods.

We adopt the Siamese tracker in [34] as our starting point

for the visual object tracking in our model, for its robustness

against errors in the starting box-definition. Furthermore,

the Siamese tracking scheme has the advantage that it does

not rely on model dynamics and hence it can be rebooted at

any time as long as the lingual description is valid.

Natural language and images. What is common be-

tween all the aforementioned tracking methods is that they

ask the user to provide a bounding box around the target in

the first frame. In this work we do not require a bounding

box in any frame. When provided with a target box, the

method described here would still be valid to enhance the

tracking. Instead, we track on the basis of a lingual descrip-

tion of the target.

Automatically describing the content of images has

been an important challenge in computer vision for years,

e.g., [27, 29]. The interest has increased since recurrent

neural architectures have become available [35, 18, 16]

with impressive qualitative and quantitative results. In

these encoder-decoder models, the encoder typically is

a CNN [32], while the decoder is composed of LSTM-

cells [13], sequentially predicting the words in the cap-

tion. As evaluating captions is subjective, recently a turn

has been made to question-answer tasks [1, 21, 40, 22].

In this paper, we also consider the interplay between vi-

sual appearance and a lingual description. In contrast

to [21, 27, 29, 35, 18, 16, 40, 22], where natural language is

the output of the system, for our tracker a natural language

expression specifying one or more targets is the input.

Recently [15] proposes the task of object retrieval by

natural language specification. A related topic is zero-

shot object localization [23], where an object is localized

from a verbal description of a previously unseen object.

Where [23] learns a matching function between attributes

and object segment appearances, [15, 14] learns a matching

function between segment appearances and lingual queries.

Since a sentence can match many patches in an image

dataset, Hu et al. [15, 14] cast this as an object segment

retrieval problem within an image. They rank image lo-

cations according to the estimated resemblance to the sen-

tence description. In the references [23, 15, 14], a sentence

is supposed to capture one complete image. It is difficult

to generalize the approach beyond single, static images, as

the sentence relevant for one frame is not necessarily rele-

vant for all. We propose a model that localizes the target in

the video and also learns how to attend to these parts of the

query when they become more or less relevant over time.

Our attention model conditions text on a video frame, dif-

fering from others, e.g. Bahdanau et al. who condition text

on text [2], or Xu et al. who condition image on text [39].

Ultimately, we combine lingual specifications with tracking

based on visual specifications over time.
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3. Tracking by Natural Language Specification

Given a frame in a video and a natural language expres-

sion as query, the goal of our work is to track the target in

the video as specified by the expression. To achieve this

goal we present three models, illustrated in Figure 2.

Model I: Lingual Specification Only

The first model relies on the lingual specification only for

tracking. Model I utilizes the Lingual Specification Network

to analyze the textual description and localizes the target in

an arbitrary video frame, as shown in Figure 2.

To analyze the lingual specification we first embed each

word into a vector and use an LSTM network to scan the

word embedding sequence. For an input sequence W =
(w1, ..., wK) with K words, at each time step i, an LSTM

network takes the i-th word embedding wi as input and out-

puts its hidden state hi. In this manner, the lingual speci-

fication is encoded by the hidden states of the LSTM net-

work. We choose the hidden state hK at the final time step

K as the representation of the whole expression. We em-

ploy a deep CNN to extract the visual feature map of an in-

put frame. To enable the model to reason about the spatial

relationships such as “car in the middle”, the spatial coordi-

nates (x, y) of each position are also added as extra channels

to the feature maps. We use relative coordinates by normal-

izing them into (−1,+1). The augmented feature map It
for frame ft now contains both local visual and spatial de-

scriptors.

Dynamic convolutional layer. To localize the target in

the video frame, we propose a dynamic convolutional layer.

This layer generates new convolutional filters on the fly de-

pending on the text query. In the first frame the only in-

formation we have about the target is its lingual specifica-

tion encoded by the last hidden state of the LSTM, namely

st = LSTM(W ) = hK . We, therefore, generate target-

specific visual filters based on the language input only. A

single layer perceptron is adopted to transform the seman-

tic information in st into novel convolutional visual filters

v
language
t :

v
language
t = σ(Wvst + bv), (1)

where σ is the sigmoid function, and v
language
t has the same

number of channels as the image feature map It. We use the

same repertoire of filters for all frames in a video. Differ-

ent from the general, static filters in a CNN, the dynami-

cally generated filters can be thought of as filters special-

ized by and fine-tuned for the semantics of the lingual spec-

ification. For example, the target specification “a brown

dog” will generate visual filters that are more specific to the

“brownness” and the “dogness”. This approach is, there-

fore, more flexible than [14], where a fixed repertoire of

filters are learnt and then convolved with the concatenated

linguistic and visual features.

After obtaining the generated dynamic filters, we con-

volve the augmented image feature map It:

A
language
t = v

language
t ∗ It, (2)

where A
language
t is the response map for the frame ft con-

taining classification scores for each location in the feature

map. The network is applied in a fully convolutional way

over an input image.

To track the object over a sequence of frames the lingual

specification network is applied repeatedly and for each

frame independently, namely:

t = 0, . . . , T : xlanguage
t = arg max

r∈R

A
language
t (r), (3)

where A
language
t (r) is the output of the response map

A
language
t for region r and R are all the candidate locations

for the target and T is the number of video frames. The

tracking trajectory over time, therefore, is x
language
t , t =

0, . . . , T .

Model I details. We employ the VGG-16 [32] as our

fully convolutional network architecture for the input frame

by treating fc6, fc7 and fc8 as convolutional layers.

All the LSTM units have 1000-dimensional hidden states.

Since there is no spatial extent encoded in the language ex-

pression, we generate 1 × 1 dynamic convolutional filters

for v
language
t . The dynamic convolution is then performed

on the feature maps from the fc8 layer output. To enable

training with a segmentation mask, we further upsample the

response map A
language
t to produce a response map which

has the same size as the input image. The upsampling is im-

plemented with a deconvolution layer using stride 32 [14].

During test, we also propose a bounding box location of the

target in a video frame described by our language expres-

sion input. We use simple thresholding to first segment the

regions of which the response value is above 50% of the

max value in the response map. Then we take the bound-

ing box that covers the largest connected component in the

binary segmentation map.

Model II: Lingual First, then Visual Specification

The second model relies on the lingual specification for

identifying the location of the target in the first frame.

Then, the discovered target is used as the visual specifi-

cation for a visual tracker, e.g., [34, 9]. Thus, the first

step for model I and model II is the same, by applying the

Lingual Specification Network on the first frame, namely

xvisual
t=0

= x
language
t=0

. Then, xvisual
t=0

is used to initialize a

visual tracker, i.e., the Visual Specification Network in Fig-

ure 2.
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Figure 2: Three models for our tracking by natural language specification. In the first query frame (t = 0), all three

models rely on the Lingual Specification Network to identify the target. An LSTM scans the text query and feeds a dynamic

filter generation layer that produces novel visual filters to convolve the frame’s feature map. In the following frames (t =
1, 2, 3, ...), Model I tracks the target by lingual specification only, independently applying the Lingual Specification Network

on all frames. Model II takes the visual patch corresponding to the target identified from the first frame as input to the Visual

Specification Network, which employs a CNN to dynamically generate the visual filters and convolves an input frame with the

filters. Model III relies jointly on the lingual and visual specification. The visual specification utilizes the Visual Specification

Network, while the lingual specification utilizes the Lingual Specification Attention Network, including an attention model

that selectively focuses on parts of the lingual description.

Dynamic convolutional layer. Similar to the Lingual

Specification Network, we also rely on a dynamic convo-

lutional layer to generate filters regarding the visual target.

However, instead of employing the target’s language speci-

fication to generate the convolutional filters, following [34]

we adopt a CNN to generate the visual features of the target

as our filters, namely:

vvisualt = CNN(B), (4)

where B = ft=0(x
language
t=0

) is the image patch that cor-

responds to the location retrieved in the first frame by the

lingual specification network. We choose not to update the

visual model vvisualt while the target may still appear dif-

ferently over time. We rely on off-line training without any

online-updates to handle visual changes of the target [34, 3].

After obtaining the filters we convolve the feature map It of

the input frame ft as follows:

Avisual
t = vvisualt ∗ It, (5)

where Avisual
t is the response map for the frame ft regard-

ing to the visual target.

Model II details. The Visual Specification Network is

also implemented as a fully convolutional network [3]. We

use the VGG-16 [32] as our CNN architecture for both the

input frame and the visual target B. They share the parame-

ters in all the layers. We concatenate the feature maps from

conv3 and conv4 outputs to generate the dynamic filters

vviusalt and produce the features It for the input frame. A

pooling layer is used after conv3 to ensure the same fea-

ture map size. In the end, we compute the tracking trajec-

tory of the object by:

t = 0 : xvisual
t = x

language
t

t > 0 : xvisual
t = arg max

r∈R

Avisual
t (r)

(6)

where Avisual
t (r) is the output of the visual tracker’s re-

sponse map Avisual
t for region r.

Model III: Lingual and Visual Specification

The third model relies jointly on lingual and visual spec-

ification for tracking. The Visual Specification Network is

once more initialized with the visual target identified in the

first frame by the lingual specification. However, different
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from model II, the lingual specification is also employed for

the rest of the frames. In particular, the Lingual Specifica-

tion Attention Network is utilized with an attention model

that selectively focuses on parts of the lingual description,

as illustrated in Figure 2.

Attention model. We start from the network architec-

tures presented in the previous sections. We note, however,

that the lingual specification originally describes the visual

target in the first video frame only. Therefore, the lingual

specification must be adapted over time, as the target text

potentially has words that are not relevant for subsequent

frames. For example, in the lingual specification “man with

blue shirt and backpack next to a tree”, see Figure 2, the

specification “next to a tree” is irrelevant after the man has

walked away. Therefore, we develop an attention model in

the language tracking network to selectively focus on parts

of the lingual specification about the visual target.

The attention model aims to attend the parts of the tar-

get’s lingual specification that are more likely to be con-

sistent throughout the video. Again we embed each word

into a vector and use an LSTM network to generate the

hidden states hi, i = 1, ...,K from the word sequence

W = (w1, ..., wK). Instead of using the hidden state at the

final time step, we compute the representation of the lingual

specification as a weighted sum of these hidden states:

s̃t =
K∑

i=1

α̃i ∗ hi, (7)

where the weights α̃i, i = 1, ...,K indicate the word impor-

tance. The weights are computed by a multi-layer percep-

tron conditioned on the hidden state hi at each word posi-

tion and the visual features z of the target B through CNN,

αi = Wαφ(Whhi +Wzz + b) + bα

α̃i = P (i|hi, z) =
exp(αi)∑K

l=1
exp(αl)

(8)

where φ is a rectified linear unit (ReLU) and the attention

weights are also normalized using softmax. The attention

weights are basically generated by matching the visual tar-

get with the word sequence at each word position. As a

result, the words that relate to the target object properties

rather than the context are more likely to be emphasized.

For example, in Figure 2, over time the attention weights

will focus more on the “man with blue shirt and backpack”,

while the “next to a tree” part of the target text query will

be suppressed. Once we have the attention weighted rep-

resentation s̃t we generate target-specific filters ṽ
language
t

and produce the response map Ã
language
t by convolving the

input image feature map It as in eq. 1, eq. 2.

Model III details. Again we produce the response map

Avisual
t based on the visual target B derived from the lin-

gual specification in the first frame. To obtain the final

prediction, we first concatenate the response map from lan-

guage Ã
language
t and visual target Avisual

t . Then the final

response map is obtained by applying a 1 × 1 convolution

on the stacked response maps, namely

A
linguovisual
t = β ∗ [Avisual

t , Ã
language
t ], (9)

which is essentially a weighted average of the stacked re-

sponse maps. For model III we compute the tracking trajec-

tory of the object by:

t = 0 : xlinguovisual
t = x

language
t

t > 0 : xlinguovisual
t = arg max

r∈R

A
linguovisual
t (r)

(10)

where A
linguovisual
t (r) is the output of the visual tracker’s

response map A
linguovisual
t for region r.

End-to-end Learning. All the network architectures pre-

sented are trained end-to-end with video frames. Suppose

we obtain the final response map A, where A can be either

of the {Alanguage, Avisual, Alinguovisual}, and the binary

ground truth label Y for an input frame. The loss function

for a training sample is defined as the average over all the

response map locations:

L =
1

WH

W∑

i=1

H∑

j=1

Lij , (11)

where W and H are the width and height of the response

map. L is the logistic loss defined as follows:

Lij = log(1 + exp(−AijYij)). (12)

When we have the ground truth segmentation mask, the bi-

nary label Yij indicates a binary label at pixel (i, j). For

tracking, however, where we do not have pixel-labels at our

disposal, we calculate the logistic loss over the response

map where each entry corresponds to a bounding box in

the original image. An entry is considered positive if the

intersection over union between its corresponding box and

ground truth box is larger than a threshold τ (τ = 0.7).

4. Experiments

4.1. Datasets

Lingual OTB99. The popular OTB100 [37] object tracking

dataset contains 100 videos of a target being tracked, with

51 originating from OTB51 [38]. As we are interested in

tracking by natural language specification, we augment the

videos in OTB100 with natural language descriptions of the

target object. Following the guidelines in [19] we ask anno-

tators for a discriminative referring description of the target.

For fairness the annotators describe the target based on the

first frame only. We extend the OTB100 set with one sen-

tence description of each target per video. As the annotators
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P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 overall IoU

Hu et al. [14] 34.0 26.7 19.3 11.6 3.9 48.0

Hu et al. [15] (from [14]) 11.9 7.7 4.3 1.5 0.3 17.8

Rohrbach et al. [30] (from [14]) 14.1 9.6 5.8 2.7 0.6 20.1

This paper: Lingual specification network 38.6 31.3 23.3 14.8 5.9 54.3

Table 1: Target identification by lingual specification. We evaluate our lingual specification network in the task of seg-

mentation by natural language expressions [14] with the precision at different overlap thresholds and the overall IoU.

could not describe one video, we arrive at Lingual OTB99.

The OTB51 videos are kept for fine-tuning and the other 48

for testing the results.

Lingual ImageNet Videos. We start from the recently in-

troduced ImageNet Video Object Detection dataset [31] by

selecting 4 videos for each of the 25 object categories. We

then augment the 100 videos following similar steps as for

Lingual OTB99. We ask annotators to return a query de-

scription of the target object on the first frame in the video.

Again we use 50 videos for fine-tuning and the other 50 for

reporting results.

ReferIt [19]. The ReferIt dataset is proposed in [19] for

the task of object localization and segmentation by natu-

ral language expression. It is the largest publicly available

dataset that contains natural language expressions annotated

on segmented regions. It contains about 20,000 images and

130,525 expressions annotated on 96,654 segmented image

regions. We follow [14] and use 10,000 images for training

and validation and 10,000 images for testing.

4.2. Implementation Details

Training. To train the lingual specification network, we

first pre-train the network on the ReferIt [19] dataset using

segmentation masks, since language queries from Lingual

OTB99 and Lingual ImageNet Videos are still limited. For

the visual specification network, instead of using the full

image as input, we follow [3] to crop a large search region

around the center of the target box location. The network

is initialized from the pre-trained model on the ImageNet

classification task [31]. We fine-tune it using the training

videos from Lingual OTB99 or Lingual ImageNet Videos.

Similarly, our joint model is also fine-tuned based on pre-

trained networks using the ReferIt [19] and ImageNet clas-

sification datasets. The parameters of all the networks are

all trained with a standard SGD solver with momentum.

Evaluation criteria. Following the standard protocol in

OTB51 [38] we report our tracking performance on all the

datasets with the AUC (area under the curve) score metric.

4.3. Target Identification by Lingual Specification

We first assess the ability of the lingual specification net-

work for target identification. As target identification in a

single frame resembles the task of segmentation by natu-

ral language expression, we evaluate the task following the

protocol of Hu et al. [14] on ReferIt [19] and compare with

other state-of-the-art approaches, see Table 1.

The lingual specification network of our model results in

2.0− 4.6% higher precision for all overlap thresholds com-

pared to [14]. It also obtains 6.3% more accurate overall

IoU, which is defined as the intersection area divided by the

union area, where both are summed over all the test sam-

ples. We observe that our lingual specification network that

generates visual filters dynamically is stronger on visually

and semantically richer images. This hints that the lingual

specification network generalizes better than [14] from the

examples seen in the training set. We conclude that our lin-

gual specification network allows for state-of-the-art target

localization based on natural language descriptions.

4.4. Tracking by Natural Language Specification

In this experiment we evaluate our three models for

tracking by natural language specification from Section 3.

We discard the user-specified bounding box in the first

frame and all models rely only on the text query to track

the target.

We present our results on Lingual OTB99 in Figure 3. In

this plot the videos are ranked along the y-axis according to

the accuracy of the target identification in the first frame. As

shown in Figure 3, Model II (Lingual first, then visual spec-

ification) and Model III (Lingual and visual specification)

generally perform better than Model I (Lingual specifica-

tion only) in videos where the initial target identification is

precise, whereas Model I is more accurate when the initial

target identification is poor.

Model I, relying on lingual specification only, has dif-

ficulties in handling the scenarios where multiple seman-

tically close objects are present or when some part of the

language description, such as the spatial relationship, is

no longer relevant. In Model II and Model III, the visual

tracker, when well initialized given a precise target iden-

tification in the initial frame, enables to tackle the above

scenarios better. See Figure 4 for some examples. There-

fore, when the target identification in the initial frame is pre-

cise, Model II and Model III are often more accurate than

Model I. However, when the target identification by the lin-

gual specification in the first frame is not good enough, the
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Model I Model II Model III

Lingual ImageNet 26.3 23.3 23.4

Table 2: Performance of our three models for tracking

by language specification on Lingual ImageNet Videos.

visual tracker in Model II and Model III initialized by the

target specification also fails. Even worse, it has a negative,

cumulative effect on subsequent frames. In contrast, model

I that tracks by lingual specification only has no negative

cumulative effect, as each frame is treated independently.

Hence, Model I works better when the initial target specifi-

cation is poor.

Model III is generally better than Model II. Model II may

easily lose the target when the background is cluttered or the

target initialization in the first frame contains extra back-

ground pixels. In contrast to Model II, the lingual tracking

component in Model III can utilize the semantic informa-

tion carried by the language expression to address, to some

extent, the cases with clutter background and inaccurate tar-

get initialization.

Results for the Lingual ImageNet Videos are shown in

Table 2. Note that ImageNet videos are visually more con-

strained than OTB100 videos with respect to tracking vari-

ations. Moreover, in ImageNet videos, the target of interest

is often in the center of the camera view. As a result, the

language description given based on the initial frame, in-

cluding the spatial context information, often holds for a

large portion of the sequence, and it makes tracking by lin-

gual specification only usually suffice.

As a general conclusion, the joint tracking model by lin-

gual and visual specification works better when the target

identification by the lingual specification in the first frame

is good. Otherwise, the tracking by lingual specification

only is advantageous.

4.5. Tracking by Language and Box Specification

In the next experiment we update our model II and model

III. Instead of inferring the target location in the first frame

by lingual specification, we use a user-specified bounding

box as our visual specification, as in a standard visual ob-

ject tracking setting, namely xuser−box. For the remaining

frames, we rely on this predefined visual specification to

initialize the visual tracker in model II (box specification),

as well as the joint tracking by lingual and visual specifica-

tion in mode III (language and box specification). We also

compare with our model I in which only the language spec-

ification is used.

We show the evaluations using AUC scores in Table 3. A

user-specified sentence in combination with a user-specified

bounding box brings an improvement from 56.1% to 57.8%

Figure 3: Performance of our three models for track-

ing by language specification on Lingual OTB99. Videos

are ranked by target identification results in the first frame.

When the target identification in the first frame is accurate

(upper half), joint tracking by lingual and visual specifica-

tion usually outperforms the other models. When the tar-

get identification is poor (bottom half), tracking by lingual

specification only is better in general.

Language Box Language and box

specification specification specification

Lingual OTB99 25.9 56.1 57.8

Lingual ImageNet 26.3 47.9 49.4

Table 3: Tracking by language and box specification.

on Lingual OTB99 and from 47.9% to 49.4% on Lingual

ImageNet. When inspecting qualitative results in Figure 5,

we observe that the tracking by language component helps

against drifting. In the top row the skater deforms her shape

too fast for the bounding box to adapt, a problem that is al-

leviated when adding tracking by language. In the bottom

row the bounding box confuses the target pedestrian with

a white pole having as a consequence the target to be lost.

Combining the bounding box with tracking by language,

correctly grounds the target girl till the end, despite the ex-
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Figure 4: Examples of tracking by natural language

specification. Ground truth, Model I: Tracking by lin-

gual specification only, Model III: Joint tracking by lin-

gual and visual specification. In the top row the language-

only model gets confused because another vehicle is present

and because the spatial description of the query, “on the

left”, is no longer valid. In the bottom row the language-

only model confuses the target, a little girl, with other per-

sons. The joint model is more robust in both cases.

Figure 5: Adding user-specified bounding box to track-

ing by natural language specification. Ground truth,

Tracking by box specification only, similar to SINT [34],

Joint tracking by language and box specification.

treme scale change. We conclude that when a user-specified

bounding box is available adding language specification ar-

rives at more robust tracking that better tackles accidental

drifting.

4.6. Enabling Novel Tracking Scenarios

A unique property of tracking by language is that the

same target text query may apply to multiple videos. This

comes in stark contrast with standard tracking, where the

user defines the target in each video separately. What is

more, tracking by natural language specification does not

need a “first frame” where the query is defined. This is

relevant for live streaming videos where the user would

otherwise need to attend all frames to set the target. We

demonstrate qualitatively these two novel applications in

two videos, in Figure 6. We use the same query for mul-

tiple videos and add irrelevant frames before they start. The

algorithm is capable of tracking a man with blue pants in

both videos, which appears for the first time at frame 25 for

video 1 and frame 45 for video 2. Indeed, tracking by lan-

guage specification allows to track in multiple videos, and

Figure 6: Novel applications: I) Tracking targets in mul-

tiple videos simultaneously. With standard tracking, each

new video requires specification of the target. In tracking

by language “Man with blue pants” applies to all relevant

videos, certainly when running at the same time. II) Start

tracking at arbitrary timestamps. A standard tracker cannot

be directly employed on an arbitrary video, as the user needs

to first browse through frames to find the target of interest.

Our tracking can be initialized by a lingual description, trig-

gering a process to start the tracking once a suitable target

appears. Both applications are ideal for tracking in live-

surveillance.

starts tracking from arbitrary frames. Both are scenarios

where standard trackers cannot offer a natural solution. We

conclude that tracking by language specification paves the

way towards novel applications in visual object tracking.

5. Conclusion

We present tracking by natural language specification as

an alternative to tracking by human-provided bounding box

specification. We show how such tracking can be realized

by presenting three models founded on a common neural

network architecture. We extended two well-known track-

ing datasets with sentences describing the target of inter-

est, to show the potential of the three models for tracking

by natural language specification. Our experiments indicate

the ability of the lingual target specification in determining

the target location, investigate the trade-off between lingual,

visual and joint specification of the target when the initial

box prediction is less reliable, and we also show how tra-

ditional tracking with human-provided bounding box can

be enhanced by the use of language. Finally, we sketch

new tracking scenarios in surveillance and other live video

streams that become feasible with a lingual specification of

the target.
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