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Abstract

Zero-shot recognition aims to accurately recognize ob-

jects of unseen classes by using a shared visual-semantic

mapping between the image feature space and the seman-

tic embedding space. This mapping is learned on training

data of seen classes and is expected to have transfer ability

to unseen classes. In this paper, we tackle this problem by

exploiting the intrinsic relationship between the semantic

space manifold and the transfer ability of visual-semantic

mapping. We formalize their connection and cast zero-shot

recognition as a joint optimization problem. Motivated by

this, we propose a novel framework for zero-shot recogni-

tion, which contains dual visual-semantic mapping paths.

Our analysis shows this framework can not only apply pri-

or semantic knowledge to infer underlying semantic mani-

fold in the image feature space, but also generate optimized

semantic embedding space, which can enhance the transfer

ability of the visual-semantic mapping to unseen classes.

The proposed method is evaluated for zero-shot recognition

on four benchmark datasets, achieving outstanding results.

1. Introduction

Visual object recognition typically requires a large col-

lection of labeled images for each category, and can on-

ly classify objects into categories that have been seen.

As recognition tasks evolve towards large-scale and fine-

grained categories, it is difficult to meet these requirements.

For example, many object classes, such as critically endan-

gered birds and rare plant species, often follow a long-tailed

distribution [38] and we can not easily collect their images

beforehand. Moreover, fine-grained annotation of a large

number of images is laborious and even requires annota-

tors with specialized domain knowledge [16, 29, 34]. These

challenges motivate the rise of zero-shot recognition (ZS-

R) algorithms, in which many classes have no labeled im-

ages [20, 17].
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Figure 1. Illustration of our proposed method for ZSR. All object

classes present two different class-level manifolds in Xs and Ks

respectively, as shown in the subgraphs. Two parallel paths, start-

ing with the same space Xs, arriving at different spaces Ks and

K̃s, represent two visual-semantic mappings fs and f̃s. Current

ZSR methods only need a single path, i.e. fs, to project Xs onto

Ks, and predict labels in Ks. Our method uses dual paths setup

and includes three steps: (1) learning fs from two heterogeneous

space Xs and Ks; (2) extract underlying class-level manifold in

Xs and generate K̃s that is homologous to Xs; (3) iteratively align

two manifolds in Xs and K̃s to obtain f̃s and refined K̃s.

Current ZSR algorithms widely adopt an effective

methodology of introducing some intermediate semantic

embedding space K between input image feature space

X and output label space L. The space K contains a

number of semantic embeddings (abbreviated as embed-

ding), which can be attribute vectors that have been man-

ually defined [35, 1, 17, 24, 10, 11], or word vectors that

have been automatically extracted from auxiliary text cor-

pus [19, 2, 5, 18, 21]. Being a more semantic counterpart

to object labels, that is, each attribute vector or word vector

corresponds to a unique object class, the embeddings can

establish the inter-class connections. For example, the at-

tributes e.g. furry, striped and four-legged etc., are shared

among all categories and can be transferred to predict the

unseen tigers from the seen zebras, cats and so on.

Compared with the class labels, the embeddings own

several special properties. (1) They present a more com-

plicated geometric structure in the space K than an ordi-

3279



nary one of typical label representations, e.g. one-hot vec-

tors in the space L, which are distributed on the vertices

of hypersimplex with same edge length. This extraordinary

geometric structure, namely semantic manifold in this pa-

per, can encode the relationship between seen and unseen

classes, which is missing in the label space L. (2) Different

embeddings have their own characteristic manifold struc-

tures, which can lead to obvious variation in recognition

performance. For example, on the same dataset AwA [16],

attribute vectors usually achieve better recognition perfor-

mance on unseen classes than word vectors [2, 32]. (3) The

embeddings need to be constructed in advance and remain

constant during the learning period.

These properties naturally raise several issues worthy of

further study. First, what kind of semantic manifold in K
can be used for ZSR? [24] has demonstrated that a K con-

sisted of orthogonal or random vectors is failed in ZSR, but

more discussion on this issue deserves to be expected. Sec-

ond, why does the ZSR performance change with different

K? It seems that the manifold structure in K is one of the

key factors causing this variance, but the intrinsic connec-

tion between them is still lack of in-depth analysis. Third,

how to construct a better K to enhance the recognition per-

formance on unseen classes? Some work has yielded en-

couraging results. [2] proposed to learn task-oriented word

vectors for Dogs dataset from a specialized collection of

corpora. [22] proposed a deep learning framework to learn

new embedding through the joint training of image and text

data. Both strategies proved to be feasible by experimental

results, but they need to collect a lot of side information to

help the training. In contrast, [36] learned new latent em-

bedding from a given K by supervised dictionary learning.

It is worth noting that all of these methods do not consider

using the underlying manifold information in X to construct

K, which makes it not correlated to X .

In this paper, we focus on addressing above key problem-

s with the ideas from manifold alignment [30, 31]. Similar

to K, X also contains an intrinsic manifold structure, espe-

cially for deep features. In ZSR, we need to align two dif-

ferent manifolds in X and K by learning a visual-semantic

mapping fs on seen classes. Directly learning such map-

ping is a very challenging task, thus we propose to trans-

form it as a joint optimization problem of K and fs, which

results in surprising results even with simple linear fs.

In our work, we first answer what kind of semantic mani-

fold in K can provide a useful intrinsic relationship between

seen and unseen classes for ZSR. Then, we propose a mea-

sure of inter-class semantic consistency for evaluating the

matching degree between two semantic manifolds. In par-

ticular, based on this measure, we derive an important con-

clusion, which announces a connection between the seman-

tic manifold and the transfer ability of fs on unseen classes.

That means, the more the two manifolds in X and K are

consistent, the better the mapping fs can align them and the

higher the recognition accuracy can be achieved on unseen

classes. Motivated by this conclusion, we propose a effec-

tive learning strategy for solving ZSR problem, which al-

ternately optimizes the mapping fs and the semantic space

K, and gradually make the semantic manifold in K more

consistent with that in X .

To summarize, our main contributions are as follows.

• We formalize the intrinsic relationship between the se-

mantic manifolds and the transfer ability of the visual-

semantic mapping fs, which reveals the importance of

optimizing semantic manifold in the development of

new ZSR algorithms.

• We introduce a novel idea to cast ZSR problem as joint

optimization of the manifold structure in the semantic

space K and the visual-semantic mapping fs. Benefit

from this idea, we can compensate for the lack of the

transfer ability of fs by refining the manifold structure

in K, especially when two manifolds in X and K are

seriously inconsistent.

• We propose a new framework, namely dual visual-

semantic mapping paths (DMaP), to solve this join-

t optimization problem. Our algorithm can learn not

only a optimized visual-semantic mapping fs but also

a new semantic space which is correlated to X . Our

experiments show that using this optimized semantic

space can significantly enhance the transfer ability of

fs on unseen classes.

• We test our approach on four datasets: Animals with

Attributes, Caltech-USCD Birds [29], Standford Dogs

[14] and ImageNet, and evaluate it on two different

ZSR tasks: conventional setup and generalized setup

(See details in next section). Our results in both tasks

have achieved state-of-art performance.

2. Related work

We focus on the following three aspects to compare our

proposed approach and related work.

Visual-semantic mapping path. From visual-semantic

connection point of view, all ZSR methods need to con-

struct a mapping path from the image feature space X to

the semantic space K. Some methods directly project X in-

to K by learning a visual-semantic mapping fs [16, 13, 17,

24, 13, 2, 33], while others indirectly achieve the same pur-

pose through introducing the intermediary spaces. For ex-

ample, [8] proposes to transform X to a new feature space

first by using a kernel projection, then this new feature can

be readily used in the learning of fs. [6] suggests to project

X and K into a shared embedding space simultaneously,

then fs is learned in new space via CCA. [36] proposes to
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separately project X and K into two new sparse coefficient

spaces based on dictionary learning, then fs can be learned

to connect two new spaces. All these works need to learn a

projection fs to align two manifolds which originate from

two uncorrelated spaces X and K, respectively. Since X
and K are heterogeneous, e.g. one is image feature space

and another is textual semantic space, mandatory training

of fs will expose it to the risk of increased complexity and

over-fitting on seen classes. Our approach uses a different s-

trategy which creates two parallel visual-semantic mapping

paths, and the semantic manifold can be transferred from

one path to another for generating new semantic space, as

shown in Fig. 1. Benefit from this transfer mechanism, a

new visual-semantic mapping between two homogeneous

spaces is learned, which can obtain better transfer ability.

A taxonomy of ZSR methods. Based on the usage of im-

age data of unseen classes during testing, we classify the

ZSR works into two categories, namely the inductive ZSR

and transductive ZSR. (1) Inductive ZSR: Most ZSR work-

s are considered to be inductive, which receive the unseen

samples serially during testing, and are the most direct and

intuitive methods [17, 12, 7, 36, 32]. (2) Transductive ZS-

R: Due to the manifold structural information exists in un-

seen samples, transductive ZSR works process them in par-

allel and make use of the underlying manifold information

to boost ZSR performance [23, 6, 15]. For example, the

graph-based label propagation strategy is widely used in

transductive ZSR. Our approach employs the transductive

ZSR setting and use a simple transductive learning strategy:

averaging the k-nearest neighbours to exploit the manifold

structure of the test data.

More generalized ZSR settings. Current ZSR works are

evaluated on default setting that assumes the absence of

seen classes during testing, thus we only need to discrim-

inate among unseen categories [17]. In [4], they advo-

cate a new generalized zero-shot recognition (gZSR) set-

ting, where test data are from both seen and unseen classes

and we need to classify them into whole label space. In

this paper, we also test our method on gZSR setting and the

experiments demonstrate the effectiveness.

3. Methodology

3.1. Problem Setting

Let Ls = {l1s , ..., l
k
s} denotes a set of k seen class label-

s and Lu = {l1u, ..., l
l
u} a set of l unseen class labels with

Ls ∩Lu = ∅. In p-dimensional semantic embedding space

K, their corresponding embedding are Ks = {k1

s, ...,k
k
s}

and Ku = {k1

u, ...,k
l
u}. Suppose we have a labeled train-

ing dataset Ds = {xi,ki, yi}
n
i=1

of n samples, where

xi ∈ Xs = {x1, ...,xn} is the feature representation of

image i, ki ∈ Ks and yi ∈ Ls. Given a new testing data

fs

X

Ku

i

Ku

j
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i
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j

u uu

i
( )u
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Figure 2. Illustration of the proposition. The circles and the trian-

gles denote seen and unseen classes, respectively. S denotes the

subspace spanned by Ks. We show the orthogonal projections of

unseen classes onto the S in dashed triangles. More information

please refer to the text.

xj , the problem of ZSR is thus to estimate its semantic em-

bedding kj and the label yj . Typical ZSR methods take a

two-stage approach: (1) predicting the embedding kj by a

learned visual-semantic mapping fs : Xs → Ks; (2) infer-

ring class label by comparing kj to the embedding of either

Ku in default ZSR setting, or Ks ∪ Ku in gZSR setting.

3.2. PreInspection of Semantic Space K

For a given embedding, e.g. attribute vectors, word vec-

tors or their concatenations, we usually use them in our

models directly and assume their effectiveness of transfer-

ring fs from seen to unseen classes. However, for different

partitions of seen and unseen classes, their semantic mani-

folds may have natural defects for some ZSR methods that

can cause ZSR task to fail. Here, we suggest a proposition

to detect this manifold defect.

Proposition. For the embedding of two unseen classes in

the semantic space K, if their orthogonal projections onto

the subspace S spanned by the embedding of seen classes

are equal, then K has no transfer ability of these two unseen

classes for ZSR.

Proof. As is shown in Fig. 2, suppose S is the sub-

space spanned by Ks, i.e. S = span(Ks). ∀ki
u ∈

Ku, let ui
u ∈ S be its orthogonal projection onto S , i.e.

u
i
u = Ksαi, s.t.αi = argminαi

||ki
u −Ksαi||, we have

k
i
u = u

i
u + v

i
u, where v

i
u ⊥ S and Ks = [k1

s, ...,k
k
s ].

Given a test image x and its embedding fs(x), we have

⟨fs(x),k
i
u⟩ = ⟨fs(x), (u

i
u + v

i
u)⟩ = fs(x)

T
u
i
u. Likewise,

∀kj
u ̸= k

i
u, we have ⟨fs(x),k

j
u⟩ = fs(x)

T
u
j
u. If ui

u = u
j
u,

then ⟨fs(x),k
i
u⟩ = ⟨fs(x),k

j
u⟩. Thus, these two unseen

classes can not be distinguished.

The manifold defect in K can be observed when the num-

ber of seen classes is much smaller than the number of un-

seen classes. Hence, this proposition is desirable for such

scenarios and can be considered as a pre-inspection step be-

fore implementing ZSR. In addition, αi in the proposition

defines an important inter-class relationship between seen
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and unseen classes, that will be used in the next subsection.

3.3. Interclass Relationship Consistency

As reported in many ZSR works, using the same model

and X , different K could cause obvious variation in recog-

nition performance. For example, when predicting unseen

animals in AwA dataset, manually annotated attributes usu-

ally achieve better performance than word vectors. Intu-

itively, we believe that the attributes are more abstract and

semantic than word vectors. However, further experimental

results show that, using the same model and K, different X
could also cause changes in recognition performance. Thus,

it is natural to infer that some association between X and K
is the key to recognition performance.

In order to clearly understand this connection, we try

to provide a formalized explanation from the view of se-

mantic manifold consistency. We first assume that there

is an underlying class-level manifold in the image feature

space X , which is more abstract than the manifold at in-

stance level in the same space. This class-level mani-

fold is composed of abstract class prototypes or exemplars

extracted from the instance-level manifold, as shown in

Fig.1. We denote the k seen class prototypes and l un-

seen class prototypes as X̃s = [x̃1

s, ..., x̃
k
s ] ∈ R

d×k and

X̃u = [x̃1

u, ..., x̃
l
u] ∈ R

d×l, respectively. In accordance

with the above proposition, we extract the inter-class rela-

tionship matrix Rx = [α1, ...,αl] ∈ R
k×l in X as follows:

αi = argmin
αi

||x̃i
u − X̃sαi||2+λΩ(αi), (1)

where x̃
i
u is the prototype of i-th unseen class and αi de-

notes its association with seen classes. λ is the trade-off

parameter and Ω(αi) is a regularizer on αi. Similarly,

we can extract the inter-class relationship matrix Rk =
[β

1
, ...,βl] ∈ R

k×l in K in the same way.

Inter-class Relationship Consistency. If X̃sRx =
X̃sRk, then we claim that two semantic manifolds in X
and K have consistent inter-class relationship, or inter-class

relationship consistency (IRC).

For ki
u ∈ Ku, let ui

u be its orthogonal projection onto

span(Ks), i.e. u
i
u = Ksαi. If we have learned a linear

visual-semantic mapping fs, projecting x̃
i
s to k

i
s, and IRC

is satisfied, then we derive a nice conclusion for ZSR, as

shown next.

Corollary 3.2. If two semantic manifolds in X
and K have consistent inter-class relationship, then ∀i ∈
[1, ..., l], fs(x̃

i
u) = u

i
u.

Proof. If IRC is satisfied, then X̃sαi = X̃sβi for i-

th unseen class. According to the homomorphism of lin-

ear mapping, for x̃
i
u, we have fs(x̃

i
u) = fs(X̃sαi) =

fs(X̃sβi) = Ksβi = u
i
u.

From the proposition, we have known that ui
u and k

i
u

are in one-to-one correspondence, therefor x̃i
u is able to as-

sociate a unique k
i
u via fs(x̃

i
u) . In other words, IRC can

ensure the transfer ability of fs from seen to unseen class-

es. However, IRC is often violated in real circumstances if

X̃sRx ̸= X̃sRk, e.g. X and K are heterogeneous that they

have inherently inconsistent inter-class relationship.

Consistency Measure. To quantitatively evaluate inter-

class relationship consistency, we provide a consistency

measure,

CM(X|K) =
1

l

l∑

i=1

exp(
−||X̃sαi − X̃sβi||2

||X̃sαi||2||X̃sβi||2
), (2)

where ||·||2 denotes the ℓ2 norm. At the simplest level, we

can use the mean vector of each class as the class prototype

or exemplar and then compute CM .

3.4. Transductive Method for ZSR

The IRC gives us a hint that, given the image feature s-

pace X , a more semantically consistent K can enhance the

transfer ability of fs. This inspires us to construct new s-

pace K which has more consistent semantic manifold with

X . As described above, the intrinsic class-level manifold in

X can be considered as an off-the-shelf option. To achieve

this goal, we propose a simple method to jointly optimize

the manifold structure in K and the visual-semantic map-

ping fs, during which a new homogeneous K̃ with X is

generated.

3.4.1 Training Phrase

We propose a three-step training process, as shown in Alg.1,

to generate new K̃s, which is able to capture the class-level

manifold in Xs. First, we learn fs : Xs → Ks from training

dataset to help infer the underlying manifold in Xs. Then,

we construct new K̃s by means of the local manifold of fs
in Ks. Finally, we alternately optimize f̃s : Xs → K̃s and

refine K̃s to be more semantically consistent with Xs.

Step 1: Learn the visual-semantic mapping. Without

loss of generality, assume there is a linear map fs : Xs →
Ks from image features to the embedding. Given n labelled

training data X ∈ R
d×n and their corresponding embed-

ding K ∈ R
k×n, we follow the conventional idea to learn

fs by the following function,

argmin
W

l(WX,K) + γg(W), (3)

where W is the parameter matrix and g(.) is a regularizer.

l(.) is the general loss function, e.g. hinge loss, logistic loss

etc. In our experiments, there is no substantial performance

difference among them. In this paper, we apply the sim-

ple squared loss in Eq. 3, which is a standard least squares

problem and have a closed form solution [24].

Step 2: Extract class-level manifold in Xs and con-

struct K̃s. We aim to extract the class-level manifold in

Xs by means of the manifold in fs(X), instead of using
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the mean vector of each class in Xs mainly for two reason-

s. First, considering the case where instances in a class are

distributed over a complex manifold, e.g. crescent mani-

fold, clearly its mean vector cannot serve as the prototype

or exemplar of this class. Second, when applying this step

to the testing phrase in which instances are given unlabelled,

we cannot tell which instances belong to a specific category

exactly, thus fail in getting their mean vector.

We exploit the idea in manifold learning that if the se-

mantic representations of some instances and a class em-

bedding are on the same local manifold structure, they are

most likely from the same class. To be specific, for each

class embedding k
i
s , we search for its m nearest neighbors

in K from fs(X), then regard the average of those images as

the class-level prototype, i.e. k̃
i
s. Comparing with Ks, the

new K̃s = {k̃i
s}

k
i=1

is more semantically consistent with

Xs.

Step 3: Align manifolds iteratively. K̃s captures the

latent class-level manifold in Xs and can be further refined.

We alternate between (3a) learn f̃s : Xs → K̃s and (3b) re-

fine K̃s, which are learned in the same way above, until the

optimization procedure converges or the maximal iteration

number is reached. In practice, the algorithm can converge

on the first few iterations.

Algorithm 1 Training algorithm of our method

1: Input: Labelled training dataset Ds = {xi,ki, yi}
n
i=1

,

semantic embedding Ks.

2: Output: fs, f̃s and K̃s = {k̃i
s}

k
i=1

.

3: Step 1:

4: Learn fs : Xs → Ks on Ds by Eq. 3.

5: Step 2:

6: for ∀ki
s ∈ Ks do

7: Find its m nearest neighbors from all predictions

{fs(xi)}
n
i=1

and denote the corresponding images as

NNm
K
(ki

s).

8: Construct new semantic embedding k̃
i
s as the aver-

age 1

m

∑
NNm

X
(ki

s).
9: end for

10: Step 3:

11: repeat

12: Learn f̃s : Xs → K̃s.

13: Refine K̃s as formulated above.

14: until Done

3.4.2 Testing Phrase

During testing, we take fs, f̃s, K̃s, Ks and Ku as inputs.

Given nt testing instances Xu ∈ R
d×nt , we first predict

their semantic representations as fs(Xu), then we construct

the jump-start K̃u transductively as in Step 2. Finally, for

each testing instance xj , we compare f̃s(xj) with new label

embedding using the inner product measure d and label it as

the nearest class, i.e. yj = argmaxc d(f̃s(xj), k̃c), where

k̃c ∈ K̃u in ZSR and k̃c ∈ {K̃s ∪ K̃u} in gZSR.

4. Experiments

4.1. Experimental Setup

Datasets We evaluate on three small-scale benchmark

datasets and a large-scale dataset in our experiments: the

Animals with Attributes (AwA) [16], Caltech-UCSD Birds-

200-2011 (CUB) [29], Standford Dogs (Dogs) [14] and Im-

ageNet ILSVRC 2012 (ImageNet) [25]. AwA consists of

30,475 images of 50 image classes, each containing at least

92 images, paired with a human provided 85-attribute in-

ventory and corresponding class-attribute associations. We

follow the commonly agreed experimental protocol in the

literature, i.e. 40 classes for training and 10 for testing.

CUB is a fine-grained dataset with 312 attributes annotat-

ed for 200 different bird classes. It contains 11,788 images

in total. Following [2], we use the same zero-shot split with

150 classes for training and 50 for testing. Dogs contain-

s 19,501 images of 113 fine-grained dog species, with no

human-defined attributes annotated. 85 classes are used for

training, while the rest for testing. The large-scale Ima-

geNet dataset contains 1,000 categories and more than 1.2

million images. We follow the 800/200 split [5] to perform

our method.

Choices for X and K For all four datasets, we choose

3 types of deep features for X due to their superior perfor-

mance, as well as the prevalence in ZSR literature. They are

extracted from VGG [26], GoogLeNet [27] and ResNet [9]

and are denoted as vgg, goog and res, respectively. Com-

pared with the low-level features, they have a richer se-

mantic manifold. For K, we adopt 2 types of semantic

embedding, i.e. human annotated attributes (denoted as at-

t) and continuous word vector representations (Word2Vec)

learned from Wikipedia. For Word2Vec, 2 types are includ-

ed, i.e. skipgram [18] and glove [21].

ZSR tasks and evaluation metrics We consider two

different ZSR settings in a variety of experiments: conven-

tional ZSR (cZSR) and generalized ZSR (gZSR). In cZSR,

we train on seen classes and test on unseen ones, where the

test instances are assumed to be from the unseen categories

(denoted as U → U ). While in gZSR, we assume the test

instances to come from all the target classes (denoted as

U → T ). We report the average classification accuracy on

unseen classes.

Implementation details We learn fs and f̃s using the

simple linear mapping in [24]. It is extremely easy to

be implemented, requiring just one line of code for train-

ing. fs is learned by optimizing: argminV||XT
s VKs −

Ys||
2

F+Ω(V), where Xs and Ys denote the training in-

stances and training labels, respectively. We name our
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proposed method in inductive and transductive manners as

DMaP-I and DMaP-T, respectively. And DMaP-I is to

conduct classification directly after learning fs. We use ℓ2-

norm to extract the relationship αi and fix the parameter λ

in Eq. 1 as 10−4. And we fix a consistent number m = 100
of nearest neighbors for all these datasets.

Table 1. ZSR average accuracy (%) and CM values using different

pairs of X and K by DMaP-I on CUB. v + g + r, gl and sk are

short for vgg + goog + res, glove and skipgram, to save space.

K
X goog vgg+goog v+g+r

Acc CM Acc CM Acc CM

att 51.09 0.47 52.83 0.57 54.55 0.63

gl 23.69 0.38 24.55 0.48 25.72 0.55

sk 26.28 0.40 26.38 0.49 27.48 0.56

att+gl 51.23 0.51 53.38 0.60 55.14 0.66

att+sk 51.62 0.52 53.48 0.61 56.34 0.67

4.2. Validation of Interclass Relationship Consis
tency

In the first set of experiments, we verify whether differ-

ent semantic embedding space K has a different IRC with

X and test the impacts of IRC on cZSR performance using

DMaP-I. In addition to the spaces listed above, we com-

pare with another two K spaces, i.e. att+skipgram and at-

t+glove, where + denotes the concatenation of two embed-

ding. We use the mean of image features of each class as

prototype to extract the inter-class semantic relationship αi,

which we use to compute CM. For demonstration, we show

the results on CUB in Tab. 1.

From Tab.1, we observe that ZSR performance is pos-

itively correlated to the CM value. This not only validates

our assumption that the manifold structure in K affects ZSR

performance, but also illustrates the feasibility of the mani-

fold alignment for ZSR.

We also find that CM(X|att+skipgram) > CM(X|att) >

CM(X|skipgram), and this trend holds true for ZSR perfor-

mance as well. This trend for performance has appeared in

the ZSR literature. This suggests that these two different

semantic embedding spaces contain complementary infor-

mation which should be combined for ZSR.

4.3. Evaluation of Our Method on cZSR and gZSR

In the second set of experiments, we evaluate our method

on both cZSR and gZSR tasks. In the Step 1 of Alg. 1, an

initial mapping fs : Xs → Ks is learned. As described

in Sec. 3.3, different configurations of X and K may result

in different ZSR performance. To verify this statement, we

run various configurations and show the best performance

in Tab. 2. We use att, skipgram and att+skipgram for K
on AwA and CUB. While on Dogs and ImageNet, due to

the lack of attributes, we use only skipgram for K. Tab.2
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Figure 3. Accuracy improvement using DMaP-T over DMaP-I.
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Figure 4. ZSR average accuracy (%) and the corresponding CM

values (the y-axis) obtained with different number of iterations on

CUB (the x-axis).

presents the recognition accuracies of DMaP-I and DMaP-

T in two iterations.

4.3.1 Experimental results on cZSR

The performance improvements over DMaP-I are shown in

the left three columns of Tab. 2 and Fig. 3. These results

demonstrate that in all cases, our manifold alignment pro-

cess can significantly boost DMaP-I. Using only two itera-

tions, it can be improved by an average accuracy of 10.71%.

On AwA, the performance improvement even achieves the

astonishing accuracy of 22.3%, as shown in Fig. 3. And

even if the initial performance of fs is relatively lower, our

algorithm still has the ability to achieve good performance.

In other words, even though the initial manifold in K is of

lower quality, it will still be driven to be more consistent

with X . For example, on Dogs, one iteration can increase

the accuracy from 30.90% to 40.97% impressively.

In another experiment, we test how the number of itera-

tions affects the performance. Fig. 4 illustrates the results

on CUB datasets. On both K, a fast convergence tenden-

cy can be observed. Generally, after one or two iterations,

DMaP-T can achieve remarkable improvement. Moreover,

since fs is a linear mapping, the computational complexity

is very low. These results once again validate the feasibility

and effectiveness of our method.
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Table 2. ZSL average accuracy (%) achieved by our method (DMaP-I and DMaP-T with two iterations, denoted as Iter1 and Iter2 to save

space) on both cZSR and gZSR tasks on AwA, CUB, Dogs and ImageNet datasets. We report top-1 accuracy on ImageNet.

cZSR(U → U ) gZSR(U → T )

Dataset fs : X → K DMaP-I Iter1 Iter2 DMaP-I Iter1 Iter2

AwA

vgg → att 78.71 85.31 85.66 17.23 49.66 52.70

res → skipgram 63.43 78.25 85.70 6.44 6.72 18.85

vgg+res → att+skipgram 80.63 90.42 90.49 2.72 10.60 17.82

CUB

goog → att 51.59 61.52 61.79 13.55 24.28 27.83

vgg+goog → glove 24.55 27.93 30.34 2.07 3.62 6.41

vgg+goog+res →att+skipgram 56.34 66.17 67.69 7.00 19.86 21.86

Dogs

vgg → skipgram 26.60 32.17 33.57 0.54 2.93 4.96

goog → skipgram 29.46 35.12 38.92 0.18 4.64 5.10

vgg+goog→ skipgram 30.90 40.97 44.59 0.22 4.94 5.10

ImageNet goog → skipgram 28.30 38.76 38.94 0.74 12.00 17.00

4.3.2 Experimental results on gZSR

The right three columns of Tab. 2 summarize the accuracy

on gZSR task, i.e. predict testing labels from all classes.

We observe that compared with results on cZSR, DMaP-I

on gZSR achieves considerably poor performance, which is

consistent with the phenomenon reported in [4]. On Dogs

and ImageNet, nearly all test data from unseen classes are

misclassified into the seen ones. In addition, we reproduced

both DeViSE [5] and ConSE [19], and conducted exten-

sive ZSR experiments on ImageNet, i.e. 1K for training

and 21K for testing. We found that the top-1 accuracies of

most classes are actually close to 0. We think Proposition 1

can give us a reasonable explanation for this phenomenon,

i.e. the manifold defect. This unusual degradation in per-

formance highlights the challenge of gZSR. However, our

method can still increase the recognition accuracy signifi-

cantly. On AwA, the best accuracy is 52.7%, which mean-

s 35.47% improvement over DMaP-I, 50.3% improvement

over DAP and 52.3% improvement over SynC [4]. Even on

the large-scale ImageNet, we also obtain a surprising and

remarkable improvement.

For better understanding of our method, we visualize the

U → T results of each iteration using t-SNE [28] in Fig. 5

and show the confusion matrices for DMaP-I and DMaP-

T in Fig. 6. For clear demonstration, we only display the

results on AwA. We use 40 colors with lower brightness

to denote seen classes and the other 10 colors with high

brightness to represent unseen ones. Instances are classi-

fied as the label shown by their color. By comparing Fig. 5

(a) with Fig. 5 (b), we observe that with one iteration, our

method could better classify the unseen instances. For ex-

ample, although “bobcat”, “leopard” and “giraffe” have a

large overlap, 89% of leopard images are classified correct-

ly after one iteration, much more than 9% in DMaP-I. How-

ever, our method fails for some categories such as “chim-

panzee”. Chimpanzee images are always classified as “go-

rilla”. This may be because these two classes are very close

to each other on the manifold in X .

4.4. Comparison with Stateofthearts

Table 3. cZSR (U → U ) comparison on AwA, CUB and Dogs. We

compare ours (achieved using 2 iteration) with the state-of-the-art

results using different K, including word vector (W) and attribute

(A). See Supp file for more details. ‘T’ or ‘I’ denotes transductive

or inductive methods. ‘+’ indicates the concatenation operation.

‘–’ means no result reported in the original paper.

Methods K T/I AwA CUB Dogs

SSE A I 76.23 30.41 –

SJE A/W I 66.7 50.1 33.0

SynC A+W I 72.9 54.7 –

LatEm A+W I 76.1 51.7 36.3

RKT A+W I 82.43 46.24 28.29

AMP A+W I 66 – –

TMV-HLP A+W T 80.5 47.9 –

UDA A T 75.6 40.6 –

PST A T 42.7 – –

DMaP

A T 85.66 61.79 –

W T 85.70 30.34 44.59

A+W T 90.49 67.69 –

We provide a direct comparison between our method

(denoted as DMaP) and three transductive ZSR method-

s, i.e. PST [23], TMV-HLP [6] and UDA [15]. In addi-

tion, the performance of our approach is also compared a-

gainst inductive methods, i.e. AMP [7], SSE [37], SJE [2],

SynC [3], LatEm [33] and RKT [32], which are, to the

best of our knowledge, state-of-the-art methods for ZSR.

All these methods except PST use deep features to repre-

sent images in X . We report their best published results on

cZSR on three benchmark datasets in Tab. 3.

It is clear that our method significantly outperforms the

others on all three datasets. Even if initiating from a low-

quality semantic embedding space (e.g. word vector rep-

resentations), it can still achieve higher performance than
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giraffe (85%)

leopard ( %)9

gorilla (88%)
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( )a ( )b ( )c

Figure 5. Illustration of the results of U → T task on AwA dataset. (a) Results obtained by DMaP-I. (b) Results obtained by DMaP-T with

one iteration. (c) Ground truth unseen class label. The percentage in parentheses denotes the proportion of the ground-truth unseen class

classified as this corresponding category, e.g. bobcat 2% in (a) denotes 2% leopard samples are inaccurately classified as bobcat. This

figure is best viewed in color.
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Figure 6. Confusion matrix for recognition accuracies of U → T task evaluated on AwA dataset. (The first 40 in x-axis are seen classes,

and the others are unseen ones.) (a) results obtained by DMaP-I. (b) results obtained by DMaP-T with one iteration.

others using a better A+W . For instance, DMaP achieves

the highest accuracy of 44.59% on Dogs. In addition, [7]

reported the hit@5 accuracy on ImageNet 2010 1K is 41%.

Comparatively, on the more challenging ImageNet 2012

1K, our method achieves the remarkably 38.94% hit@1 ac-

curacy. This superior performance demonstrate the effec-

tiveness of our proposed method. Note that DMaP is a very

general method since the alignment process could be added

to inductive DMaP flexibly. When incorporated with oth-

er inductive ZSR methods, it is expected to further improve

the performance.

5. Discussion and Conclusion

We presented an analysis of the semantic embedding s-

pace for ZSR, and revealed a connection between the man-

ifold structure and the transfer ability of visual-semantic

mapping. It is reasonable to think that the inter-class seman-

tic consistency of two spaces is the key to effective ZSR.

Motivated by this, we developed a DMaP framework to gen-

erate more consistent semantic space with the image feature

space as well as learn more effective visual-semantic map-

ping. Our method outperform the state-of-the-art approach-

es on four challenging datasets.
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