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Abstract

Computers still struggle to understand the interdepen-

dency of objects in the scene as a whole, e.g., relations be-

tween objects or their attributes. Existing methods often ig-

nore global context cues capturing the interactions among

different object instances, and can only recognize a hand-

ful of types by exhaustively training individual detectors

for all possible relationships. To capture such global in-

terdependency, we propose a deep Variation-structured Re-

inforcement Learning (VRL) framework to sequentially dis-

cover object relationships and attributes in the whole im-

age. First, a directed semantic action graph is built us-

ing language priors to provide a rich and compact rep-

resentation of semantic correlations between object cate-

gories, predicates, and attributes. Next, we use a variation-

structured traversal over the action graph to construct a

small, adaptive action set for each step based on the current

state and historical actions. In particular, an ambiguity-

aware object mining scheme is used to resolve semantic

ambiguity among object categories that the object detector

fails to distinguish. We then make sequential predictions us-

ing a deep RL framework, incorporating global context cues

and semantic embeddings of previously extracted phrases

in the state vector. Our experiments on the Visual Rela-

tionship Detection (VRD) dataset and the large-scale Visual

Genome dataset validate the superiority of VRL, which can

achieve significantly better detection results on datasets in-

volving thousands of relationship and attribute types. We

also demonstrate that VRL is able to predict unseen types

embedded in our action graph by learning correlations on

shared graph nodes.

1. Introduction

Although much progress has been made in image classi-

fication [7], detection [25, 16, 18] and segmentation [20,

15, 17], we are still far from reaching the goal of holis-

tic scene understanding—that is, a model capable of rec-

man

skateboard

standing.on

helmet

yellow green

wearing

black

shirt

white

logon

yellow

object relationships attributes

woman

surfboard

kneeling.on

wetsuit

white

wearing

blue

log

on

yellow

on

beach

has foot

Figure 1. In each example (left and right), we show the bound-

ing boxes of objects in the image (top), and the relationships and

attributes recognized by our proposed VRL framework (bottom).

Only the top few results are illustrated for clarity.

ognizing the interactions and relationships between objects,

and describing their attributes. While objects are the core

building blocks of an image, it is often the relationships

and attributes that determine the holistic interpretation of

the scene. For example in Fig. 1, the left image can be un-

derstood as “a man standing on a yellow and green skate-

board”, and the right image as “a woman wearing a blue wet

suit and kneeling on a surfboard”. Being able to extract and

exploit such visual information would benefit many real-

world applications such as image search [24], question an-

swering [1, 9, 14], and fine-grained recognition [34, 4, 32].

Visual relationships are a pair of localized objects con-

nected via a predicate; for example, predicates can be ac-

tions (“kick”), comparative (“smaller than”), spatial (“near

to”), verbs (“wear”), or prepositions (“with”). Attributes

describe a localized object, e.g., with color (“yellow”) or

state (“standing”). Detecting relationships and attributes is

more challenging than traditional object detection [25] due

to the following reasons: (1) There are a massive number of

possible relationship and attribute types (e.g., 13,894 rela-

tionship types in Visual Genome [13]), resulting in a greater

skew of rare and infrequent types. (2) Each object can be

associated with many relationships and attributes, making it

inefficient to exhaustively search all possible relationships

for each pair of objects. (3) A global, holistic perspective of
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Figure 2. An overview of the VRL framework that sequentially detects relationships (“subject-predicate-object”) and attributes (“subject-

attribute”). First, we build a directed semantic action graph G to configure the whole action space. In each step, the input state consists of

the current subject and object instances (“sub:man”, “obj:skateboard”) and a history phrase embedding, which captures the search paths

that have already been traversed by the agent. A variation-structured traversal scheme over G dynamically constructs three small action sets

∆a, ∆p, ∆c. The agent predicts three actions: (1) ga ∈ ∆a, an attribute of the subject; (2) gp ∈ ∆p, the predicate between the subject

and object; and (3) gc ∈ ∆c, the next object category of interest (“obj:helmet”). The new state consists of the new subject/object instances

(“sub:man”, “obj:helmet”) and an updated history phrase embedding.

the image is essential to resolve semantic ambiguities (e.g.,

“woman wearing wetsuit” vs. “woman wearing shirt”). Ex-

isting approaches [27, 10, 21, 33] only predict a limited set

of relationship types (e.g., 13 in Visual Phrase [27]) and ig-

nore semantic interdependencies between relationships and

attributes by evaluating each region within a scene sepa-

rately [21]. It is impractical to exhaustively search all pos-

sibilities for each region, and also deviates from human per-

ception. Therefore, it is preferable to have a more principled

decision-making framework, which can discover all rele-

vant relationships and attributes within a small number of

search steps. To address the aforementioned issues, we pro-

pose a deep Variation-structured Reinforcement Learning

(VRL) framework which sequentially detects relationship

and attribute instances by exploiting global context cues.

First, we use language priors to build a directed seman-

tic action graph G, where the nodes are nouns, attributes,

and predicates, connected by directed edges that represent

semantic correlations (see Fig. 2). This graph provides a

highly-informative, compact representation that enables the

model to learn rare relationships and attributes from fre-

quent ones using shared graph nodes. For example, the se-

mantic meaning of “riding” learned from “person-riding-

bicycle” can help predict the rare phrase “child-riding-

elephant”. This generalizing ability allows VRL to handle

a considerable number of possible relationship types.

Second, existing deep reinforcement learning (RL) mod-

els [29] often require several costly episodes of trial and

error to converge, even with a small action space, and our

large action space would exacerbate this problem. To ef-

ficiently discover all relationships and attributes in a small

number of steps, we introduce a novel variation-structured

traversal scheme over the action graph which constructs

small, adaptive action sets ∆a,∆p,∆c for each step based

on the current state and historical actions: ∆a contains can-

didate attributes to describe an object; ∆p contains candi-

date predicates for relating a pair of objects; and ∆c con-

tains new object instances to mine in the next step. Since

an object instance may belong to multiple object categories

which the object detector cannot distinguish, we introduce

an ambiguity-aware object mining scheme to assign each

object with the most appropriate category given the global

scene context. Our variation-structured traversal scheme of-

fers a very promising technique for extending the applica-

tions of deep RL to complex real-world tasks.

Third, to incorporate global context cues for better rea-

soning, we explicitly encode the semantic embeddings of

previously extracted phrases in the state vector. It makes a

better tradeoff between increasing the input dimension and

utilizing more historical context, compared to appending

history frames [35] or binary action vectors [2] as in pre-

vious RL methods.

Extensive experiments on the Visual Relationship Detec-

tion (VRD) dataset [21] and Visual Genome dataset [13]

demonstrate that the proposed VRL outperforms state-of-

the-art methods for both relationship and attribute detection,

and also has good generalization capabilities for predicting

unseen types.

2. Related Works

Visual relationship and attribute detection. There

has been an increased interest in the problem of visual

relationship detection [27, 26, 13]. However, most ex-

isting approaches [27] [13] can detect only a handful of

pre-defined, frequent types by training individual detectors
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for each relationship. Recently, Lu et al. [21] leveraged

word embeddings to handle large-scale relationships. How-

ever, their model still ignores the structured correlations be-

tween objects and relationships. Furthermore, some meth-

ods [10, 28, 19] organized predictions into a scene graph

which can provide a structured representation for describing

the objects, their attributes and relationships in each image.

In particular, Johnson et al. [10] introduced a conditional

random field model for reasoning about possible ground-

ings of scene graphs while Schuster et al. [28] proposed a

rule-based and classifier-based scene graph parser. In con-

trast, the proposed VRL makes the first attempt to sequen-

tially discover objects, relationships and attributes by fully

exploiting global interdependency.

Deep reinforcement learning. Integrating deep learn-

ing methods with reinforcement learning (RL) [11] has

recently shown very promising results on decision-making

problems. For example, Mnih et al. [23] proposed using

deep Q-networks to play ATARI games. Silver et al. [29]

proposed a new search algorithm based on the integration

of Monte-Carlo tree search with deep RL, which beat the

world champion in the game of Go. Other efforts applied

deep RL to various real-world tasks, e.g., robotic manipu-

lation [6], indoor navigation [35], and object proposal gen-

eration [2]. Our work deals with real-world scenes that are

much more complex than ATARI games or images taken in

some constrained scenarios, and investigates how to make

decisions over a larger action space (e.g., thousands of at-

tribute types). To handle such a large action space, we pro-

pose a variation-structured traversal scheme over the whole

action graph to decrease the number of possible actions in

each step, which substantially reduces the number of trials

and thus speeds up the convergence.

3. Deep Variation-structured Reinforcement

Learning

We propose a novel VRL framework which formulates

the problem of detecting visual relationships and attributes

as a sequential decision-making process. An overview is

provided in Fig. 2. The key components of VRL, including

the directed semantic action graph, the variation-structured

traversal scheme, the state space, and the reward function,

are detailed in the following sections.

3.1. Directed Semantic Action Graph

We build a directed semantic graph G = (V, E) to orga-

nize all possible object nouns, attributes, and relationships

into a compact and semantically meaningful representation

(see Fig. 2). The nodes V consist of the set of all candi-

date object categories C, attributes A. Object categories in

C are nouns, and may be people, places, or parts of objects.

Attributes in A can describe color, shape, or pose. Rela-

tionships including predicate categories P are directional,

i.e. they relate a subject noun and an object noun via a

predicate. Predicate edges can be spatial (e.g., “inside of”),

compositional (e.g. “part of”) or action (e.g., “swinging”).

The directed edges E consist of attribute phrases EA ⊆
C × A and predicate edges. The predicate phrases are thus

C × P × C. An attribute phrase (c, a) ∈ EA represents an

attribute a ∈ A belonging to a noun c ∈ C. For example, the

attribute phrase “young girl” can be represented by (“girl”,

“young”) ∈ EA. A predicate phrase (c, p, c′) represents a

subject noun c ∈ C and an object noun c′ ∈ C related by

a predicate edge p ∈ P . For example, the predicate phrase

“a man is swinging a bat” can be represented by (“man”,

“swinging”, “bat”).

The recently released Visual Genome dataset [13]

provides a large-scale annotation of images containing

18,136 unique object categories, 13,041 unique attributes,

and 13,894 unique relationships. We then select the types

that appear at least 30 times in Visual Genome dataset,

resulting in 1,750 object-, 8,561 attribute-, and 13,823

relationship-types. From these attribute and relationship

types, we build a directed semantic action graph by extract-

ing all unique object category words, attribute words, and

predicate words as the graph nodes. Our directed action

graph thus contains |C| = 1750 object nodes, |A| = 1049
attribute nodes, and |P| = 347 predicates as edges. On

average, each object word is connected to 5 attribute words

and 15 predicate words. This semantic action graph serves

as the action space for VRL, as we will see in the next

section.

3.2. Variation­structured RL

Instead of learning in the entire action space as in tra-

ditional deep RL [23, 35], we propose a novel variation-

structured traversal scheme over the semantic action graph

that dynamically constructs small action sets for each step.

First, VRL uses an object detector to get a set S of candi-

date object instances, and then sequentially assigns relation-

ships and attributes to each instance s ∈ S . For our exper-

iments, we used state-of-the-art Faster R-CNN [25] as the

object detector, where the network parameters were initial-

ized using the pre-trained VGG-16 ImageNet model [30].

Since subject instances in an image often have multiple

relationships and attributes, we do a breadth-first search: we

predict all relationships and attributes with respect to the

current subject instance of interest, and then move onto the

next instance. We start from the subject instance with the

most confident classification score. To prevent the agent

from being trapped in a single search path (e.g., in a small

local region), the agent selects a new starting subject in-

stance if it has traversed through 5 neighboring objects in

the breadth-first search.

The same object in multiple scenarios may be described

by different, semantically ambiguous noun categories that
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Figure 3. Network architecture of deep VRL. The state vector f is a concatenation of (1) a 4096-dim feature of the whole image, taken from

the fc6 layer of the pre-trained VGG-16 ImageNet model [30]; (2) two 4096-dim features of the subject s and object s′ instances, taken

from the conv5 3 layer of the trained Faster R-CNN object detector; and (3) a 9600-dim history phrase embedding, which is created by

concatenating four 2400-dim semantic embeddings from a Skip-thought language model [12] of the last two relationship phrases (relating

s and s′) and the last two attribute phrases (describing s) that were predicted by VRL. A variation-structured traversal scheme over the

directed semantic action graph produces a smaller action space from the whole action space, which originally consists of |A| = 1049
attributes, |P| = 347 predicates, and |C| = 1750 object categories plus one terminal trigger. From this variation-structured action space,

the model selects actions with the highest predicted Q-values in state f .

1

man standing

man

man standing

man catching

head bare

shorts brown

Frisbee green

tree brown manbehind

tree unknown

wall bricked manbehind

wall large

wallbeside

tree unknown

1

2

3

4

5

6

headhas

shortsin

Frisbeeholding

young

man

man

man

tree

tree

wall

2

3

4

5
6

Figure 4. The VRL does a sequential breadth-first search, predict-

ing all relationships and attributes with respect to the current sub-

ject instance before moving onto the next instance.

cannot be distinguished by the object detector. To address

this semantic ambiguity, we introduce an ambiguity-aware

object mining scheme which leverages scene contexts cap-

tured by extracted relationships and attributes to help deter-

mine the most appropriate object category.

Variation-structured action space. The directed se-

mantic graph G serves as the action space for VRL. For any

object instance s ∈ S in an image, denote its object category

by sc ∈ C and its bounding box by B(s) = (sx, sy, sw, sh)
where (sx, sy) is the center coordinate, sw is the width, and

sh is the height. Given the current subject instance s and

object instance s′, we select three actions ga ∈ A, gp ∈ P ,

gc ∈ C according to the VRL network as follows:

(1) Select an attribute ga describing s from the set ∆a =
{a : (sc, a) ∈ EA\HA(s)}, where HA(s) denotes the set

of previously mined attribute phrases for s.

(2) Select a predicate gp relating the subject noun sc and

object noun s′c from ∆p = {p : (sc, p, s
′
c)}.

(3) To select the next object instance s̃ ∈ S in the im-

age, we select its corresponding object category gc from

a set ∆c ⊆ C, which is constructed using an ambiguity-

aware object mining scheme as follows (also illustrated

in Fig. 5). Let N(s) ⊆ S be the set of objects neigh-

boring s, where a neighbor of s is defined to be any ob-

ject s̃ ∈ S such that |s̃x − sx| < 0.5(s̃w + sw) and

|s̃y−sy| < 0.5(s̃h+sh). For each object s̃, let C(s̃) ⊆ C be

the set of object categories of s̃ whose confidence scores are

at most 0.1 less than that of the most confident category. Let

∆c =
∪

s̃∈N(s)\HS
C(s̃) ∪ {Terminal}, where HS is the

set of previously extracted object instances and Terminal

is a terminal trigger indicating the end of the object mining

scheme for this subject instance. If N(s)\Hs is empty or

the terminal trigger is activated, then we select a new subject

instance following the breadth-first scheme. The terminal

trigger allows the number of object mining steps for each

subject instance to be dynamically specified and limited to

a small number. Each object can be naturally described with

many attributes while the ground truth annotations are often

incomplete. Thus, we eliminate the terminal trigger for at-

tributes in order to allow VRL to predict more attributes. To

eliminate poor predictions in the final results, we filter out

detected attributes which have low confidence scores.

In each step, the VRL selects actions from the adaptive

action sets ∆a,∆p, and ∆c, which we call the variation-

structured action space due to their dynamic structure.

State space. A detailed overview of the state feature ex-

traction process is shown in Fig. 3. Given the current subject

s and object s′ instances in each time step, the state vector

f is a concatenation of (1) the feature vectors of s and s′;

(2) the feature vector of the whole image; and (3) a history

phrase embedding vector, which is created by concatenat-

ing the semantic embeddings of the last two relationship

phrases (relating s and s′) that the VRL agent selects in its

action history and the last two attribute phrases (describ-

ing s) that were mined via the variation-structured traversal
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Figure 5. Illustration of ambiguity-aware object mining. The im-

age on the left shows the subject instance (red box) and its neigh-

boring object instances (green boxes). The action set ∆c contains

candidate object categories of each neighboring object which the

object detector cannot distinguish (e.g., “hat” vs. “helmet”), and

a terminal trigger indicating the end of the object mining scheme

for this subject instance.

scheme. More specifically, each phrase (e.g., “person riding

bicycle”) is embedded into a 2400-dim vector using a pre-

trained Skip-thought language model [12], thus resulting in

a 9600-dim history phrase embedding.

The feature vector of the whole image provides global

context cues which not only help in recognizing relation-

ships and attributes, but also allow the agent to be aware

of other uncovered objects. The history phrase embedding

captures the search paths and scene contexts that have al-

ready been traversed by the agent.

Rewards: Suppose we have groundtruth labels, which

consist of the set Ŝ of object instances in the image, and

attribute phrases ÊA and predicate phrases ÊP describing

the objects in Ŝ . Given a predicted object instance s ∈ S ,

we say that a groundtruth object ŝ ∈ Ŝ overlaps with s

if they have the same object category (i.e., sc = ŝc ∈ C),

and their bounding boxes have at least 0.5 Intersection-over-

Union (IoU) overlap.

We define the following reward functions to reflect the

detection accuracy of taking action (ga,gp,gc) in state f ,

where the current subject and object instances are s and s′,

respectively:

(1) Ra(f ,ga) returns +1 if there exists a groundtruth ob-

ject ŝ ∈ Ŝ that overlaps with s, and the predicted attribute

relationship (sc,ga) is in the groundtruth set ÊA. Other-

wise, it returns -1.

(2) Rp(f ,gp) returns +1 if there exists ŝ, ŝ′ ∈ Ŝ that

overlap with s and s′ respectively, and (sc,gp, s
′
c) ∈ ÊP .

Otherwise, it returns -1.

(3) Rc(f ,gc) returns +5 if the next object instance s̃ ∈
S corresponding to category gc ∈ C overlaps with a new

groundtruth object ŝ ∈ S . Otherwise, it returns -1. Thus, it

encourages faster exploration over all objects in the image.

3.3. Deep Variation­structured RL

We optimize three policies to select three actions for each

state by maximizing the sum of discounted rewards, which

can be formulated as a decision-making process in the deep

RL framework. Due to the high-dimensional continuous

image data and a model-free environment, we resort to the

deep Q-Network (DQN) framework proposed by [22, 23],

which generalizes well to unseen inputs. The detailed archi-

tecture of our Q-network is illustrated in Fig. 3. Specifically,

we use DQN to estimate three Q-value sets, parametrized

by network weights θa, θp, θc, which correspond to the ac-

tion sets A,P, C. In each training episode, we use an ϵ-

greedy strategy to select actions ga,gp,gc in the variation-

structured action space ∆a,∆p,∆c, where the agent selects

random actions with probability ϵ, and selects actions with

the highest estimated Q-values with probability 1− ϵ. Dur-

ing testing, we directly select the best actions with high-

est estimated Q-values in ∆a,∆p,∆c. The agent sequen-

tially determines the best actions to discover objects, rela-

tionships, and attributes in the given image, until either the

maximum search step is reached or there are no remaining

uncovered object instances.

We also utilize a replay memory to store experience

from past episodes. In each step, we draw a random mini-

batch from the replay memory to perform the Q-learning

update. The replay memory helps stabilize the training by

smoothing the training distribution over past experiences

and reducing correlation between training samples [22, 23].

Given a transition sample (f , f ′,ga,gp,gc,Ra,Rp,Rc),

the network weights θ
(t)
a , θ

(t)
p , θ

(t)
c are updated as follows:

θ
(t+1)
a =θ

(t)
a + α(Ra + λmax

g
a′

Q(f ′,ga′ ; θ(t)−a )

−Q(f ,ga; θ
(t)
a ))▽

θ
(t)
a

Q(f ,ga; θ
(t)
a ),

θ
(t+1)
p =θ

(t)
p + α(Rp + λmax

g
p′

Q(f ′,gp′ ; θ
(t)−
p )

−Q(f ,gp; θ
(t)
p ))▽

θ
(t)
p

Q(f ,gp; θ
(t)
p ),

θ
(t+1)
c =θ

(t)
c + α(Rc + λmax

g
c′

Q(f ′,gc′ ; θ
(t)−
c )

−Q(f ,gc; θ
(t)
c ))▽

θ
(t)
c

Q(f ,gc; θ
(t)
c ),

(1)

where ga′ , gp′ , gc′ represent the actions that can be taken in

state f ′, α is the learning rate, and λ is the discount factor.

The target network weights θ
(t)−
a , θ

(t)−
p , θ

(t)−
c are copied

every τ steps from the online network, and kept fixed in all

other steps.

4. Experiments

Dataset. We conduct our experiments on the Visual

Relationship Detection (VRD) dataset [21] and the Visual

Genome dataset [13]. VRD [21] contains 5000 images

(4000 for training, 1000 for testing) with 100 object cat-

egories and 70 predicates. In total, the dataset contains

37,993 relationship instances with 6,672 relationship types,

out of which 1,877 relationships occur only in the test

set and not in the training set. For the Visual Genome
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Table 1. Results for relationship phrase detection (Phr.) and rela-

tionship detection (Rel.) on the VRD dataset. R@100 and R@50

are abbreviations for Recall@100 and Recall@50.

Method Phr. R@100 Phr. R@50 Rel. R@100 Rel. R@50

Visual Phrases [27] 0.07 0.04 - -

Joint CNN+R-CNN [30] 0.09 0.07 0.09 0.07

Joint CNN+RPN [30] 2.18 2.13 1.17 1.15

Lu et al. V only [21] 2.61 2.24 1.85 1.58

Faster R-CNN [25] 3.31 3.24 - -

Joint CNN+Trained RPN [25] 3.51 3.17 2.22 1.98

Faster R-CNN V only [25] 6.13 5.61 5.90 4.26

Lu et al. [21] 17.03 16.17 14.70 13.86

Our VRL 22.60 21.37 20.79 18.19

Lu et al. [21] (zero-shot) 3.76 3.36 3.28 3.13

Our VRL (zero-shot) 10.31 9.17 8.52 7.94

Dataset [13], we experiment on 87,398 images (out of

which 5000 are held out for validation, and 5000 for test-

ing), containing 703,839 relationship instances with 13,823

relationship types and 1,464,446 attribute instances with

8,561 attribute types. There are 2,015 relationship types

that occur in the test set but not in the training set, which

allows us to evaluate VRL on zero-shot learning.

Implementation Details. We train a deep Q-network

for 60 epochs with a shared RMSProp optimizer [31]. Each

epoch ends after performing an episode on all training im-

ages. We use a mini-batch size of 64 images. The maxi-

mum search step for each image is empirically set to 300.

During ϵ-greedy training, ϵ is annealed linearly from 1 to

0.1 over the first 20 epochs, and is fixed to 0.1 in the re-

maining epochs. The discount factor λ is set to 0.9, and

the network parameters θ
(t)−
a , θ

(t)−
p and θ

(t)−
c are copied

after every τ = 10000 steps. The learning rate α is initial-

ized to 0.0007 and decreased by a factor of 10 after every 10

epochs. Only the top 100 candidate object instances, ranked

by objectness confidence scores by the trained object detec-

tor, are selected for mining relationships and attributes in an

image, in order to balance efficiency and effectiveness. On

VRD [21], VRL takes about 8 hours to train an object de-

tector with 100 object categories, and two days to converge.

On the Visual Genome dataset [13], VRL takes between 4

to 5 days to train an object detector with 1750 object cat-

egories, and one week to converge. On average, it takes

300ms to feed-forward one image into VRL. More details

about the dataset are provided in Sec. 4. The implementa-

tions are based on the publicly available Torch7 platform on

a single NVIDIA GeForce GTX 1080.

Evaluation. Following [21], we use recall@100 and

recall@50 as our evaluation metrics. Recall@x computes

the fraction of times the correct relationship or attribute in-

stance is covered in the top x confident predictions, which

are ranked by the product of objectness confidence scores

for the relevant object instances (i.e., confidence scores of

Table 2. Results for relationship detection on Visual Genome.

Method Phr. R@100 Phr. R@50 Rel. R@100 Rel. R@50

Joint CNN+R-CNN [30] 0.13 0.10 0.11 0.08

Joint CNN+RPN [30] 1.39 1.34 1.22 1.18

Lu et al. V only [21] 1.66 1.54 1.48 1.20

Faster R-CNN [25] 2.25 2.19 - -

Joint CNN+Trained RPN [25] 2.52 2.44 2.37 2.23

Faster R-CNN V only [25] 5.79 5.22 4.87 4.36

Lu et al. [21] 10.23 9.55 7.96 6.01

Our VRL 16.09 14.36 13.34 12.57

Lu et al. [21] (zero-shot) 1.20 1.08 1.13 0.97

Our VRL (zero-shot) 7.98 6.53 7.14 6.27

the object detector) and Q-values of the selected predicates

or attributes. As discussed in [21], we do not use the mean

average precision (mAP), which is a pessimistic evaluation

metric because the dataset cannot exhaustively annotate all

possible relationships and attributes in an image.

Following [21], we evaluate on three tasks: (1) In re-

lationship phrase detection [27], the goal is to predict a

“subject-predicate-object” phrase, where the localization

of the entire relationship has at least 0.5 overlap with a

groundtruth bounding box. (2) In relationship detection, the

goal is to predict a “subject-predicate-object” phrase, where

the localizations of the subject and object instances have

at least 0.5 overlap with their corresponding groundtruth

boxes. (3) In attribute detection, the goal is to predict a

“subject-attribute” phrase, where the subject’s localization

has at least 0.5 overlap with a groundtruth box.

Baseline models. First, we compare our model with

state-of-the-art approaches, Visual Phrases [27], Joint

CNN+R-CNN [30] and Lu et al. [21]. Note that the lat-

ter two methods use R-CNN [5] to extract object propos-

als. Their results on VRD are reported in [21], and we also

experiment their methods on the Visual Genome dataset.

Lu et al. V only [21] trains individual detectors for ob-

ject and predicate categories separately, and then combines

their confidences to generate a relationship prediction. Fur-

thermore, we train and compare with the following mod-

els: “Faster R-CNN [25]” directly detects each unique re-

lationship or attribute type, following Visual Phrases [27].

“Faster R-CNN V only [25]” model is similar to Lu et al.

V only [21], with the only difference being that Faster R-

CNN is used for object detection. “Joint CNN+RPN [30]”

extracts proposals using the pre-trained RPN [25] model on

VOC 2012 [3] and then performs the classification. “Joint

CNN+Trained RPN [25]” trains a separate RPN model on

our dataset to generate proposals.

4.1. Comparison with State­of­the­art Models

Comparison of results with baseline methods on VRD

and Visual Genome are reported in Tables 1, 2, and 3.

Shared Detectors vs Individual Detectors. The com-
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Table 3. Results for attribute detection on Visual Genome.

Method Attribute Recall@100 Attribute Recall@50

Joint CNN+R-CNN [30] 2.38 1.97

Joint CNN+RPN [30] 3.48 2.63

Faster R-CNN [25] 7.36 5.22

Joint CNN+Trained RPN [25] 9.77 8.35

Our VRL 26.43 24.87

VRD:%person%wear%shirtVRD:%person%wear%helmet

Our%VRL:%person%hold%phone Our%VRL:%person%wear%shirt

Figure 6. Qualitative comparison between VRD [21] and our VRL.

pared models can be categorized into two classes: (1)

Models that train individual detectors for each predicate

or attribute type, i.e., Visual Phrases [27], Joint CNN+R-

CNN [30], Joint CNN+RPN [30], Faster R-CNN [25], Joint

CNN+Trained RPN [25]. (2) Models that train shared de-

tectors for predicate or attribute types, and then combine

their results with object detectors to generate the final pre-

diction, i.e., Lu et al. V only [21], Faster R-CNN V

only [25], Lu et al. [21] and our VRL. Since the space of all

possible relationships and attributes is often large, there are

insufficient training examples for infrequent relationships,

leading to poor average performance of the models that use

individual detectors.

RPN vs R-CNN. In all cases, we obtain performance

improvements using RPN network [25] over R-CNN [5]

for proposal generation. Additionally, training the proposal

network on VRD and VG datasets can also increase the re-

calls over the pre-trained networks on other datasets.

Language Priors. Unlike baselines that simply train

classifiers from visual cues, VRL and Lu et al. [21] leverage

language priors to facilitate prediction. Lu et al. [21] uses

semantic word embeddings to finetune the likelihood of

a predicted relationship, while VRL follows a variational-

structured traversal scheme over a directed semantic action

graph built from language priors. Both VRL and Lu et

al. [21] achieve significantly better performance than other

baselines, which demonstrates the necessity of language

priors for relationship and attribute detection. Moreover,

VRL still shows substantial improvements comparison to

Lu et al. [21]. Therefore, VRL’s directed semantic action

graph provides a more compact and rich representation of

semantic correlations than the word embeddings used in Lu

et al. [21]. The significant performance improvement is also

VRL w/o ambiguity boy holding stickman wearing pant

skier wearing pant boy holding batVRL

Figure 7. Comparison between “VRL w/o ambiguity” and VRL.

Using ambiguity-aware object mining, VRL successfully resolves

vague predictions into more concrete ones (“man” → “skier” and

“stick” → “bat”).

due to the sequential reasoning of RL.

Qualitative Comparisons We show some qualitative

comparison with Lu et al. [21] in Fig. 6, and more detection

results of VRL in Fig. 8. Our VRL generates a rich under-

standing of the image, including the localization and recog-

nition of objects, and the detection of object relationships

and attributes. For instance, VRL can correctly detect inter-

actions (“person on elephant”, “man riding motor”), spatial

layouts (“picture hanging on wall”, “car on road”), parts of

objects (“person has shirt”, “wheel of motor”), and attribute

descriptions (“television old”, “woman standing”).

4.2. Discussion

We give further analysis on the key components of VRL,

and report the results in Table 4.

Reinforcement Learning vs. Random Walk. The vari-

ant “RL” is a standard deep RL model that selects three

actions over the entire action space instead of the variation-

structured action space. We compare RL with a simple

“Random Walk” traversal scheme where in each step, the

agent randomly selects one object instance in the image,

and predicts relationships and attributions for the two most-

recently selected instances.“Random Walk” only achieves

slightly better results than “Joint+Trained RPN [25]” and

performs much worse than the remaining variants, again

demonstrating the benefit of sequential mining in RL.

Variation-structured traversal scheme. VRL achieves

a remarkably higher recall compared to RL (e.g., 13.34% vs

6.23% on relationship detection and 26.43% vs 12.47% on

attribute detection, in terms of Recall@100). Thus, we con-

clude that using a variation-structured traversal scheme to

dynamically configure the small action set for each state can

accelerate and stabilize the learning procedure, by dramati-

cally decreasing the number of possible actions. For exam-

ple, the number of predicate actions (347) can be dropped

to 15 on average.

History phrase embedding. To validate the effective-

ness of history phrase embeddings, we evaluate two variants

of VRL: (1) “VRL w/o history phrase” does not incor-

porate history phrase embedding into state features. This
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Figure 8. Examples of relationship and attribute detection results generated by VRL on the Visual Genome dataset. We show the top

predictions for each image: the localized objects (top) and a semantic graph describing their relationships and attributes (bottom).

Table 4. Performance of VRL and its variants on Visual Genome.

Method Rel. R@100 Rel. R@50 Attr. R@100 Attr. R@50

Joint CNN+Trained RPN [25] 2.37 2.23 9.77 8.35

Random Walk 3.67 3.09 10.21 8.59

RL 6.23 5.10 12.47 10.09

VRL w/o history phrase 9.05 8.12 20.09 19.45

VRL w/ directional actions 10.66 9.85 20.31 18.62

VRL w/ historical actions 11.98 10.01 23.02 22.15

VRL w/o ambiguity 12.01 11.20 24.78 22.46

Our VRL 13.34 12.57 26.43 24.87

VRL w/ LSTM 13.86 13.07 25.98 25.01

variant causes the recall to drop by over 4% compared to

the original VRL. Thus, leveraging history phrase embed-

dings can help inform the current state what has happened

in the past and stabilize search trajectories that might get

stuck in repetitive cycles. (2) “VRL w/ historical actions”

directly stores a historical action vector in the state [2].

Each historical action vector is the concatenation of four

(|C|+|A|+|P|)-dim action vectors corresponding to the last

four actions taken, where each action vector is zero in all el-

ements except the indices corresponding to the three actions

taken in C, A, P . This variant still causes the recall to drop,

demonstrating that semantic phrase embeddings learned by

language models can capture richer history cues (e.g., rela-

tionship similarity).

Ambiguity-aware object mining. “VRL w/o ambigu-

ity” only considers the top-1 predicted category of each ob-

ject for the action set ∆c. It obtains lower recall than VRL,

suggesting that incorporating semantically ambiguous cat-

egories into ∆c can help identify a more appropriate cate-

gory for each object under different scene contexts. Fig. 7

illustrates two examples where VRL successfully resolves

vague predictions of “VRL w/o ambiguity” into more con-

crete ones (“man”→“skier” and “stick”→“bat”).

Spatial actions. Similar to [2], we experiment using spa-

tial actions in the deep RL setting to sequentially extract ob-

ject instances. The variant “VRL w/ directional actions”

replaces the 1751-dim object category action vector with a

9-dim action vector indexed by directions (N, NE, E, SE,

S, SW, W, NW) plus one terminal trigger. In each step, the

agent selects a neighboring object instance with the highest

confidence whose center lies in one of the eight directions

w.r.t. that of the subject instance. The diverse spatial layouts

of object instances across different images make it difficult

to learn a spatial action policy, and causes this variant to

perform poorly.

Long Short-Term Memory “VRL w/ LSTM” is a vari-

ant where all fully-connected layers in Fig. 3 are replaced

with LSTM [8] layers, which have shown promising results

in capturing long-term dependencies. However, “VRL w/

LSTM” has no noticeable performance improvements over

VRL, while requiring much more training time. This shows

that history phrase embeddings can sufficiently model his-

torical context for sequential prediction.

4.3. Zero­shot Learning

We also compare VRL with Lu et al. [21] in the zero-

shot learning setting (see Tables 1 and 2). A promising

model should be capable of predicting unseen relationships,

since the training data will not cover all possible relation-

ship types. Lu et al. [21] uses word embeddings to project

similar relationships onto unseen ones, while our VRL uses

a large semantic action graph to learn similar relationships

on shared graph nodes. Our VRL achieves > 5% perfor-

mance improvements over Lu et al. [21] on both datasets.

5. Conclusion and Future Work

We proposed a novel deep variation-structured reinforce-

ment learning framework for detecting visual relationships

and attributes. The VRL sequentially discovers the relation-

ship and attribute instances following a variation-structured

traversal scheme on a directed semantic action graph. It in-

corporates global interdependency to facilitate predictions

in local regions. As future work, a larger directed action

graph can be built using natural language sentences. Ad-

ditionally, VRL can be generalized into an unsupervised

learning framework to learn from a massive number of un-

labeled images.
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