
Interpretable Structure-Evolving LSTM

Xiaodan Liang1,2 Liang Lin2,5 ∗ Xiaohui Shen4 Jiashi Feng3 Shuicheng Yan 3 Eric P. Xing1

1 Carnegie Mellon University 2 Sun Yat-sen University 3 National University of Singapore
4 Adobe Research 5 SenseTime Group (Limited)

xiaodan1@cs.cmu.edu, linliang@ieee.org, xshen@adobe.com, elefjia@nus.edu.sg, eleyans@nus.edu.sg, epxing@cs.cmu.edu

Abstract

This paper develops a general framework for learn-

ing interpretable data representation via Long Short-Term

Memory (LSTM) recurrent neural networks over hierar-

chal graph structures. Instead of learning LSTM models

over the pre-fixed structures, we propose to further learn

the intermediate interpretable multi-level graph structures

in a progressive and stochastic way from data during the

LSTM network optimization. We thus call this model the

structure-evolving LSTM. In particular, starting with an ini-

tial element-level graph representation where each node is a

small data element, the structure-evolving LSTM gradually

evolves the multi-level graph representations by stochas-

tically merging the graph nodes with high compatibilities

along the stacked LSTM layers. In each LSTM layer, we es-

timate the compatibility of two connected nodes from their

corresponding LSTM gate outputs, which is used to gener-

ate a merging probability. The candidate graph structures

are accordingly generated where the nodes are grouped into

cliques with their merging probabilities. We then produce

the new graph structure with a Metropolis-Hasting algo-

rithm, which alleviates the risk of getting stuck in local op-

timums by stochastic sampling with an acceptance proba-

bility. Once a graph structure is accepted, a higher-level

graph is then constructed by taking the partitioned cliques

as its nodes. During the evolving process, representation

becomes more abstracted in higher-levels where redundant

information is filtered out, allowing more efficient propaga-

tion of long-range data dependencies. We evaluate the ef-

fectiveness of structure-evolving LSTM in the application of

semantic object parsing and demonstrate its advantage over

state-of-the-art LSTM models on standard benchmarks.

1. Introduction

Recently, there has been a surge of interest in develop-

ing various kinds of Long Short-Term Memory (LSTM)

∗Correspond author is Liang Lin. This work was supported by the Na-

tional Natural Science Foundation of China under Grant No. 61622214.

neural networks for modeling complex dependencies within

sequential and multi-dimensional data, due to their advan-

tage in a wide range of applications such as speech recog-

nition [10], image generation [29], image-to-caption gener-

ation [33] and multi-dimensional image processing [15].

Despite the remarkable success, existing LSTM models

such as chain-structured [10] [33], tree-structured LSTM

models [37, 26] and graph-structured LSTM [18] can only

process data with pre-fixed structures in terms of their inter-

nal information propagation route. They are therefore lim-

ited in dealing with the data containing complex multi-level

correlations. For example, the structure of human social

network is inherently hierarchical, where each individual

is a member of several communities, ranging from small

(e.g., families, friends) to large (e.g., organizations such as

schools and businesses). Semantic object parsing in an im-

age, for another example, can benefit from modeling the

contextual dependencies among regions in different levels,

where the lower-level graph representation on small regions

can preserve the local and fine object boundaries while the

higher-level graph on larger coherent regions captures more

semantic interactions. Thus, to well abstract multi-level

representations of such data, it is desirable to integrate the

data structure evolving with LSTM parameter learning.

In this work, we seek a general and interpretable frame-

work for representing the data via LSTM networks over

the dynamically learned multi-level data structures, in

which hierarchical intrinsic representations are simultane-

ously learned from the data along with encoding the long-

term dependencies via LSTM units. Since numerous im-

portant problems can be framed as learning from graph

data (tree-structure can be treated as one specific graph),

our structure-evolving directly investigates the hierarchi-

cal representation learning over the initial arbitrary graph

structures. However, learning dynamic hierarchical graphs

is much more challenging than the convenient hierarchi-

cal convolution neural networks due to the arbitrary num-

ber of nodes, orderless node layouts and diverse probabilis-

tic graph edges. To learn intermediate interpretable graph

structures of the data and alleviate the over-fitting problem,

11010

Figure 1. An illustration of the structure evolving process of the proposed structure-evolving LSTM model. Starting from an initial graph

G(0), the structure-evolving LSTM learns to evolve the hierarchical graph structures with a stochastic and bottom-up node merging process

and then propagates the information on these generated multi-level graph topologies following a stochastic node updating scheme.

we design a stochastic algorithm to sample the graph struc-

ture (i.e., the grouping of graph nodes) in each LSTM layer

and gradually build the multi-level graph representations

in a bottom-up manner. We thus name our model as the

structure-evolving LSTM. Compared with existing LSTM

structures with pre-fixed chain [10] [33], tree [37, 26] or

graph topologies [18], the structure-evolving LSTM has the

capability of modeling long-range interactions using the dy-

namically evolved hierarchical graph topologies to capture

the multi-level inherent correlations embedded in the data.

As illustrated in Fig. 1, the structure-evolving LSTM

gradually evolves the multi-level graph representations

through a stochastic and bottom-up node merging process,

starting with an initial graph in which each node indicates

a data element and every two neighboring nodes are linked

by an edge. To enable learn the interpretable hierarchical

representation, we propose to progressively merge differ-

ent graph nodes guided by the global advantage reward at

each step. The new graph that is composed by the merged

graph nodes and updated graph edges is thus generated by

a stochastic policy that ensures not only the less overhead

graph transition from the previous graph to the new graph

but also the discriminative capability.

Specifically, for two connected nodes, their merging

probability is estimated from the adaptive forget gate out-

puts in the LSTM unit, indicating how likely the two

nodes tend to be merged into a clique (i.e., a node at the

higher level graph). Then the graph structure is gener-

ated by designing a Metropolis-Hasting algorithm [2, 28].

Specifically, this algorithm stochastically merging some

graph nodes by sampling their merging probabilities, and

produces a new graph structure (i.e., a set of partitioned

cliques). This structure is further examined and determined

according to a global reward defined as an acceptance prob-

ability. Under such a stochastic sampling paradigm, the ac-

ceptance probability involves two terms: i) a state transition

probability (i.e., a product of the merging probabilities); ii)

a posterior probability representing the compatibility of the

generated graph structure with task-specific observations.

Intuitively, this global reward thus encourages the structure-

evolving step that better not leads to a hugh graph shift (i.e.,

only very few edges are merges) and also can help boost the

target-specific performance.

Once a new level of graph structure is evolved, the

LSTM layer broadcasts information along the generated

graph topology following a stochastic updating scheme, in

order to enable global reasoning on all nodes. In turn, the

updated LSTM gate outputs induce the merging probability

of graph nodes for the subsequent graph structure evolving.

Instead of being influenced equally by all of its neighbor-

ing nodes in each LSTM unit, our model learns the adaptive

forget gates for each neighboring node when updating the

hidden states of a certain node. Such an adaptive scheme

has advantage in conveying semantically meaningful inter-

actions between two graph nodes. The network parameters

are then updated by back-propagation in an end-to-end way.

We leverage the structure-evolving LSTM model to ad-

dress the fundamental semantic object parsing task and ex-

perimentally show that structure-evolving LSTM outper-

forms other state-of-the-art LSTM structures on three object

parsing datasets.

2. Related Works

Long Short-Term Memory (LSTM) recurrent networks

have been first introduced to address the sequential pre-

diction tasks [11, 25, 33, 14, 8, 16], and then extended to

multi-dimensional image processing tasks [4, 27] such as

image generation [29, 27], person detection [24], scene la-

beling [3] and object parsing [19]. It can keep long-term

memory by training proper gating weights and has practi-

cally showed the effectiveness on a range of problems [4, 3].

For image processing, in each LSTM unit, the prediction

of each pixel is designed to affected by a fixed factoriza-

tion (e.g., 2 or 8 neighboring pixels [15][9][19] or diag-

onal neighborhood [29][27]). Recently, Tree-LSTM [26]

introduces the structure with tree-structured topologies for

1011

0.8

0.7

0.3

0.9

0.7

0.2

0.7

0.2

0.3

0.4

0.3

0.1
0.1

0.1

0.3

0.3

0.3

0.2

0.2 0.2

0.4

0.4

0.3

0.5

0.5

Figure 2. Illustration of the stochastic structure-evolving step for evolving a lower-level graph into a higher-level one. Given the computed

merging probabilities for all nodes, our structure-evolving step takes several trials to evolve a new graph till the new graph is accepted

evaluated by the acceptance probability. A new graph is generated by stochastically merging two nodes with high predicted merging

probabilities and thus the new edges are produced. The acceptance probabilities are computed by considering the graph transition cost and

the advantage discriminative capability brought by the new graph.

predicting semantic representations of sentences. Graph

LSTM [18] has been proposed to propagate information on

a basic pre-defined graph topology to capture diverse nat-

ural visual correlations (e.g., local boundaries and homo-

geneous regions). However, the complex patterns in dif-

ferent modalities often embed hierarchal structures, rep-

resenting different levels of correlations between nodes.

Different from using pre-defined data structures in previ-

ous LSTMs [15, 9, 19, 18, 27], the proposed structure-

evolving LSTM targets on automatically learning the hier-

archical graph representations by evolving from an initial

graph structure. In this way, the intrinsic multi-level se-

mantic abstractions can be learned and then used to boost

the multi-scale reasoning by LSTM units.

The structure-evolving LSTM (dynamically evolving

multi-level graphs) is superior to the most related Graph

LSTM [18] (a pre-fixed single-level graph) in two aspects:

1) Structure-evolving LSTM learns more powerful repre-

sentations as it progressively exploits hierarchical informa-

tion along stacked LSTM layers; 2) at its later layers, the

structure-evolving LSTM captures the inherent structure of

the desired output benefiting from the higher-level graph

topologies. These superiorities bring significant improve-

ments on several semantic parsing datasets, which gives

apple-to-apple comparison with [18]. Our work aims to de-

velop a new and general principled graph evolving based

learning method to learn more powerful Graph LSTM or

other RNN models. Devising new Graph-LSTM unit is not

within the scope of this paper. We use Graph-LSTM as a

running example which by no means implies our method is

limited to Graph LSTM.

3. Structure-evolving LSTM

Fig. 1 illustrates the proposed structure-evolving LSTM

network architecture. Suppose that the initialized graph for

the data is denoted as G(0) =< V (0), E(0) >, where V (0)

and E(0) are the corresponding graph nodes (e.g., data ele-

ments) and edges. Each node v0i ∈ V (0), {i ∈ 1, · · · , N0}

is represented by the deep features f
(0)
i learned from the

underlying CNN model with D dimensions. Based on the

LSTM gate outputs and the graph G(t) in the previous t-th

LSTM layer, structure-evolving LSTM then learns a higher-

level graph structure G(t+1) =< V (t+1), E(t+1) > for

the information propagation in the (t + 1)-th LSTM layer.

Learning new graph structures and updating LSTM param-

eters are thus alternatively performed and the network pa-

rameters are trained in an end-to-end way.

3.1. Basic LSTM Units

Given the dynamically constructed graph structure G(t),

the t-th structure-evolving LSTM layer determines the

states of each node vti that comprise the hidden states ht
i and

the memory states mt
i of each node, and the edge probabil-

ity ptij of two nodes for evolving a new graph structure. The

state of each node is influenced by its previous states and the

states of connected graph nodes in order to propagate infor-

mation to all nodes. Thus the inputs to LSTM units consist

of the input states f
t
i of the node vti , its previous hidden

states h
(t−1)
i and memory states m

(t−1)
i , and the hidden and

memory states of its neighboring nodes vtj , j ∈ NG(t)(i).
Note that there is a flexibility in the order of node updat-

ing in the structure-evolving LSTM layers. Following [18],

we randomly specify the node updating sequence to propa-

gate information to all nodes in order to increase the model

diversity during learning the LSTM network parameters.

Our structure-evolving LSTM follows the Graph LSTM
units [18] to generate hidden and memory cells, and then
show how to inject the edge merging probabilities of the
nodes into the LSTM units. We thus first introduce the gen-
eration of hidden and memory cells to make this paper more
self-contained. When operating on a specific node vti , some
of its neighboring nodes have already been updated while
others may not. We therefore use a visit flag qtj to indicate

whether the graph node vtj has been updated, where qtj is set
as 1 if updated and otherwise 0. We then use the updated

1012

hidden states ht
j for the visited nodes and the previous states

h
t−1
j for the unvisited nodes. Note that the nodes in the

graph may have an arbitrary number of neighboring nodes.
Let NG(t)(i) denote the number of neighboring graph nodes
for the node i. To obtain a fixed feature dimension for the
inputs of the Graph LSTM unit during network training, the
hidden states h̄

t−1
i used for computing the LSTM gates of

the node vti are obtained by averaging the hidden states of
neighboring nodes, computed as:

h̄
t−1
i =

∑
j∈N

G(t) (i)
(1(qtj = 1)ht

j + 1(qtj = 0)ht−1
j)

|NG(t)(i)|
. (1)

Structure-evolving LSTM. The structure-evolving

LSTM consists of five gates: the input gate gu, the for-

get gate gf , the adaptive forget gate ḡf , the memory gate

gc, the output gate go and the edge gate p. The 1 is

an indicator function. The W e indicates the recurrent

edge gate weight parameters. The Wu,W f ,W c,W o are

the recurrent gate weight matrices specified for input fea-

tures while Uu, Uf , U c, Uo are those for hidden states of

each node. Uun, Ufn, U cn, Uon are the weight parameters

specified for states of neighboring nodes. The structure-

evolving LSTM unit specifies different forget gates for dif-

ferent neighboring nodes by functioning the input states

of the current node with their hidden states, defined as

ḡ
f
ij , j ∈ NG(t)(i). It results in the different influences of

neighboring nodes on the updated memory states mt+1
i and

hidden states h
t+1
i . The merging probability pij of each

pair of graph nodes < i, j >∈ E(t) is calculated by weight-

ing the adaptive forget gates ḡ
f
ij with the weight matrix

W e. Intuitively, adaptive forget gates are to identify the

distinguished correlations of different node pairs, e.g. some

nodes have stronger correlations than others. The merging

probability for each pair is thus estimated from adaptive for-

get gates for graph evolving. The new hidden states, mem-

ory states and edge gates (i.e., merging probabilities of each

connected pair of nodes) in the graph G(t) can be calculated

as follows:

g
u
i =δ(Wu

f
t
i + U

u
h
t−1
i + U

un
h̄
t−1
i + b

u),

ḡ
f
ij =δ(W f

f
t
i + U

fn
h
t−1
j + b

f),

g
f
i =δ(W f

f
t
i + U

f
h
t−1
i + b

f),

g
o
i =δ(W o

f
t
i + U

o
h
t−1
i + U

on
h̄
t−1
i + b

o),

g
c
i =tanh(W c

f
t
i + U

c
h
t−1
i + U

cn
h̄
t−1
i + b

c),

mi,t =

∑
j∈NG(i)(1(qj = 1)ḡfij ⊙m

t
j + 1(qj = 0)ḡfij ⊙m

t−1
j)

|NG(t)(i)|

+ g
f
i ⊙m

t−1
i + g

u
i ⊙ g

c
i ,

h
t
i =tanh(goi ⊙m

t
i)

p
t
ij =δ(W e

ḡ
f
ij).

(2)

Here δ is a logistic sigmoid function, and ⊙ indicates a

point-wise product. Let W,U denote the concatenation of

all weight matrices and {Zj,t}j∈NG(i) represent all the re-

lated information of neighboring nodes. This mechanism

acts as a memory system, where the information can be

written into the memory states and sequentially recorded

by each graph node, which is then used to communicate

with the hidden states of subsequent graph nodes and pre-

vious LSTM layer. And the merging probabilities {pij}, <
i, j >∈ E(t) can be conveniently learned and used for gen-

erating the new higher-level graph structure G(t+1) in the

(t+1)-th layer, detailed in Section 3.2. During training, the

merging probabilities of graph edges are supervised by ap-

proximating to the final graph structure for a specific task,

such as the connections of final semantic regions for image

parsing. The back propagation is used to train all the weight

metrics.

3.2. Interpretable Structure Evolving

Given the graph structure G(t) =< V (t), E(t) > and all

merging probabilities {pij}, < i, j >∈ E(t), the higher-

level graph structure G(t+1) can be evolved by stochasti-

cally merging some graph nodes and examined with an ac-

ceptance probability, as shown in Fig. 2. Specifically, a new

graph node G(t+1) is constructed by merging some graph

nodes with the merging probability. As there is no deter-

ministic graph transition path from an initial graph to the

final one, it is intractable to enumerate all possible G(t+1)

for evaluation within the large search space. We thus use a

stochastic mechanism rather than a deterministic one to find

a good graph transition. Such a stochastic searching scheme

is also effective in alleviating the risk of getting trapped in

a bad local optimum. To find a better graph transition be-

tween two graphs G(t) and G(t+1), the acceptance rate of

the transition from the graph from G(t) to graph G(t+1) is

defined by a Metropolis-Hastings method [2, 28]:

α(G(t) → G(t+1)) =min(1,

q(G(t+1)→G(t)

)

q(G(t)→G(t+1))

P (G(t+1)|I;W,U)

P (G(t)|I;W,U)
).

(3)

where q(G(t+1)→G(t)

) and q(G(t)→G(t+1)

) de-

note the graph state transition probability from

one graph to another, and P (G(t+1)|I;W,U) and

P (G(t)|I;W,U) denote the posterior probability of the

graph structure G(t+1) and G(t), respectively. Typically,

P (G(t)|I;W,U) is assumed to follow a Gibbs distribution
1
Z
exp(−L(F (I,G(t),W,U), Y)), where Z is the parti-

tion function, F (I,G(t),W,U) is the network prediction,

Y is the task-specific target and L(·) is the corresponding

loss function. For example, Y can be the segmentation

1013

Figure 3. Overview of the segmentation network architecture that employs the structure-evolving LSTM layer for semantic object parsing

in image domain. Based on the basic convolutional feature maps, five structure-evolving LSTM layers are stacked to propagate information

on the stochastically generated multi-level graph structures (i.e., G(0), G(1), G(2), G(3), G(4)) where G(0) is constructed as the superpixel

neighborhood graph. The convolutional layers are appended on all LSTM layers to produce the multi-scale predictions, which are then

combined to generate the final result.

groundtruth and L(·) is the pixel-wise cross-entropy loss

for the image parsing task. The model is more likely

to accept a new graph structure G(t+1) that can bring

more significant performance improvement indicated by
P (G(t+1)|I;W,U)
P (G(t)|I;W,U)

. The graph state transition probability

ratio is computed by:

q(G(t+1)→G(t)

)

q(G(t)→G(t+1))
∝

∏
<i,j>∈E(t+1)(1− (1− ptij))∏
<i,j>∈E(t)(1− (1− ptij))

=
∏

<i,j>∈E(t)\E(t+1)

ptij .
(4)

The state transition probability is thus calculated by mul-

tiplying all merging probabilities of eliminated edges in

G(t). It implies that the graph nodes with larger merg-

ing probabilities {ptij} of G(t) are more encouraged to be

merged in G(t+1). During testing, the acceptance rate is

only determined by the graph state transition probability in

Eqn. 4. To enable finish the graph structure exploration

within a specified time schedule in each step, we can em-

pirically set the upper bound for the sampling trials, say 50

in our experiments.

In the (t + 1)-th structure-evolving LSTM layer, the in-

formation propagation is performed on all nodes with a

stochastic node updating sequence along the new graph

topology G(t+1) =< V (t+1), E(t+1) >. The input states

f t+1
i for each node vt+1

i ∈ V t+1 are produced by averaging

those of all corresponding merged nodes in G(t). Similarly,

the hidden and memory states of vt+1
i are averaged and used

for further updating. The weight matrices of the structure-

evolving LSTM units are shared for all stacked layers with

generated hierarchical graph representations, which helps

improve the capability of the network parameters in sensing

multi-level semantic abstractions. The final loss for train-

ing structure-evolving LSTM includes the final task-related

prediction loss and the loss on the predicted merging prob-

abilities for all layers. To ensure a good learned structure,

we employ the global advantage reward to guide the node

merging operation for evolving a new graph from the pre-

vious one. The global advantage reward ensures not only

the less overhead graph transition from the previous graph

to the new graph and the advantage discriminative capabil-

ity brought by the new graph. During testing, the quality

of the learned structures can be thus ensured by the learned

reasonable edge probabilities.

4. Experiments

The proposed structure-evolving LSTM aims to pro-

vide a principled framework to dynamically learn the hi-

erarchal data structures, which is applicable for kinds of

tasks (e.g., nature language understanding and image con-

tent understanding). However, among all these applications,

the semantic object parsing task that requires to produce

the pixel-wise labeling by considering the complex inter-

actions between different pixels, superpixels or parts, is a

perfect match to better evaluate the structure generation ca-

pability of our structure-evolving LSTM. Our dynamically

evolved hierarchical graph structures can effectively capture

the multi-level and diverse contextual dependencies. We

thus evaluate the effectiveness of the proposed structure-

evolving LSTM model on the semantic object parsing task

(i.e., segmenting an object in the image into its seman-

tic parts) where exploiting multi-level graph representations

for the image content is very natural and useful for the final

parsing result.

4.1. Semantic Object Parsing Task

We take the object parsing task as our application sce-

nario, which aims to generate pixel-wise semantic part seg-

mentation for each image, as shown in Fig. 3. The ini-

1014

Table 1. Comparison of semantic object parsing performance with several state-of-the-art methods on the PASCAL-Person-Part dataset [7]

and with other variants of the structure-evolving LSTM model, including using different LSTM structures, the extracted multi-scale super-

pixel maps and a deterministic policy with different thresholds for the graph transition, respectively.

Method head torso u-arms l-arms u-legs l-legs Bkg Avg

DeepLab-LargeFOV [5] 78.09 54.02 37.29 36.85 33.73 29.61 92.85 51.78

DeepLab-LargeFOV-CRF [5] 80.13 55.56 36.43 38.72 35.50 30.82 93.52 52.95

HAZN [32] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11

Attention [6] - - - - - - - 56.39

Grid LSTM [15] 81.85 58.85 43.10 46.87 40.07 34.59 85.97 55.90

Row LSTM [29] 82.60 60.13 44.29 47.22 40.83 35.51 87.07 56.80

Diagonal BiLSTM [29] 82.67 60.64 45.02 47.59 41.95 37.32 88.16 57.62

LG-LSTM [19] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Graph LSTM [18] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16

Graph LSTM (multi-scale superpixel maps) [18] 83.93 64.67 48.79 49.44 46.57 41.38 92.36 61.02

Structure-evolving LSTM (deterministic 0.5) 82.93 62.59 46.91 48.06 44.73 40.39 91.77 59.63

Structure-evolving LSTM (deterministic 0.7) 84.16 66.16 49.90 48.24 48.29 44.13 94.53 62.20

Structure-evolving LSTM (deterministic 0.9) 83.52 64.17 48.39 49.02 46.26 42.20 93.36 60.99

Structure-evolving LSTM 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57

tial graph G(0) is constructed on superpixels that are ob-

tained through image over-segmentation using SLIC [1] fol-

lowing [18]. Each superpixel indicates one graph node

and each graph edge connects two spatially neighboring

superpixel nodes. The input image first passes through a

stack of convolutional layers to generatt convolutional fea-

ture maps. The input features f0
i of each graph node vi

are computed by averaging the convolutional features of all

the pixels belonging to the same superpixel node vi. Five

structure-evolving LSTM layers are then stacked to learn

multi-level graph representations by stochastically group-

ing some nodes into a large node with the coherent semantic

meanings through a bottom-up process.

To make sure that the number of the input states for the

first LSTM layer is compatible with that of the following

layers, the dimensions of hidden and memory states in all

LSTM layers are set the same as the feature dimension of

the last convolutional layer before the LSTM stack. After

that, one prediction layer with several 1× 1 convolution fil-

ters produces confidence maps for all labels. During train-

ing, we use the groundtruth semantic edge map defined over

all the superpixels to supervise the prediction of merging

probabilities of all the edges in each LSTM layer. Specif-

ically, the ground-truth merging probability of two graph

nodes is set as 1 only if they belong to the same semantic

label. L2-norm loss is employed for the back-propagation.

The cross-entropy loss is employed on all the predictions

layers to produce the final parsing result.

4.2. Datasets and Implementation Details

Dataset: We validate the effectiveness of the structure-

evolving LSTM on three challenging image parsing

datasets. The PASCAL-Person-part dataset [7] concentrates

on the human part segmentation on images from PASCAL

VOC 2010. Its semantic labels consist of Head, Torso, Up-

per/Lower Arms, Upper/Lower Legs, and one background

class. 1,716 images are used for training and 1,817 for test-

ing. The Horse-Cow parsing dataset is a part segmentation

benchmark introduced in [30]. It includes 294 training im-

ages and 227 testing images and each pixel is labeled as

head, leg, tail or body. The third task, human parsing aims

to predict every pixel with 18 labels: face, sunglass, hat,

scarf, hair, upper-clothes, left-arm, right-arm, belt, pants,

left-leg, right-leg, skirt, left-shoe, right-shoe, bag, dress and

null. Originally, 7,700 images are included in the ATR

dataset [17], with 6,000 for training, 1,000 for testing and

700 for validation. 10,000 images are further collected

by [20] to cover images with more challenging poses and

clothes variations.

Evaluation metric: The standard intersection over

union (IOU) criterion and pixel-wise accuracy are adopted

for evaluation on PASCAL-Person-Part dataset and Horse-

Cow parsing dataset, following [7]. We use the same eval-

uation metrics as in [17, 20] for evaluation on the human

parsing dataset, including accuracy, average precision, av-

erage recall, and average F-1 score.

Network architecture: For fair comparison with [5, 32,

6], our network is based on the publicly available model,

DeepLab-CRF-LargeFOV” [5] for the PASCAL-Person-

Part and Horse-Cow parsing dataset, which slightly modi-

fies VGG-16 net [23] to FCN [22]. Co-CNN” structure [20]

is used to compare with [17, 20] on one human parsing

datasets for fair comparison.
Training: The SLIC over-segmentation method [1] gen-

erates 1,000 superpixels on average for each image. The

1015

Table 2. Performance comparison with using different numbers of structure-evolving LSTM layers.

Settings 1-layer 2-layer 3-layer 4-layer Structure-evolving LSTM (full)

Average IoU 58.19 60.23 62.59 63.18 63.57

Table 3. Performance comparison for the predictions by using different levels of graph structures.

Settings 1st level 2nd level 3rd level 4th level 5th level Structure-evolving LSTM (full)

Average IoU 57.19 61.29 60.13 59.87 59.23 63.57

Table 4. Comparison of object parsing performance with five state-

of-the-art methods over the Horse-Cow object parsing dataset [30].

Horse

Method Bkg head body leg tail Fg IOU Pix.Acc

SPS [30] 79.14 47.64 69.74 38.85 - 68.63 - 81.45

HC [12] 85.71 57.30 77.88 51.93 37.10 78.84 61.98 87.18

Joint [31] 87.34 60.02 77.52 58.35 51.88 80.70 65.02 88.49

LG-LSTM [19] 89.64 66.89 84.20 60.88 42.06 82.50 68.73 90.92

HAZN [32] 90.87 70.73 84.45 63.59 51.16 - 72.16 -

Graph LSTM [18] 91.73 72.89 86.34 69.04 53.76 87.51 74.75 92.76

Ours 92.51 74.89 87.55 71.93 57.45 88.76 76.87 93.45

Cow

Method Bkg head body leg tail Fg IOU Pix.Acc

SPS [30] 78.00 40.55 61.65 36.32 - 71.98 - 78.97

HC [12] 81.86 55.18 72.75 42.03 11.04 77.04 52.57 84.43

Joint [31] 85.68 58.04 76.04 51.12 15.00 82.63 57.18 87.00

LG-LSTM [19] 89.71 68.43 82.47 53.93 19.41 85.41 62.79 90.43

HAZN [32] 90.66 75.10 83.30 57.17 28.46 - 66.94 -

Graph LSTM [18] 91.54 73.88 85.92 63.67 35.22 88.42 70.05 92.43

Ours 92.88 77.75 87.91 67.60 42.86 90.71 73.80 93.57

learning rate of the newly added layers over pre-trained

models is initialized as 0.001 and that of other previously

learned layers is initialized as 0.0001. All weight ma-

trices used in the structure-evolving LSTM units are ran-

domly initialized from a uniform distribution of [-0.1, 0.1].

We only use five LSTM layers for all models since only

slight improvements are observed by using more LSTM

layers, which also consumes more computation resources.

The weights of all convolutional layers are initialized with

Gaussian distribution with standard deviation 0.001. We

train all the models using stochastic gradient descent with

a batch size of 1 image, momentum of 0.9, and weight de-

cay of 0.0005. We fine-tune the networks on DeepLab-

CRF-LargeFOV” and train the networks based on Co-

CNN” from scratch for roughly 60 epochs. The structure-

evolving LSTM is implemented by extending the Caffe

framework [13]. All networks are trained on a single

NVIDIA GeForce GTX TITAN X GPU with 12GB mem-

ory. In the testing stage, extracting superpixels takes 0.5s

and our method takes 1.3s per image in total.

4.3. Results and Comparisons

Comparisons with State-of-the-art Methods. We re-

port the result comparisons with recent state-of-the-art

methods on PASCAL-Person-part dataset, Horse-Cow pars-

ing dataset and ATR dataset in Table 1, Table 4, Ta-

ble 5, respectively. The proposed structure-evolving LSTM

Table 5. Performance comparison with state-of-the-art methods

when evaluating on ATR dataset [17]. Following [20], we also

take the additional 10,000 images in [20] as extra training images,

denoted as “Ours (more data)”. Comparison of human parsing per-

formance with seven state-of-the-art methods when evaluating on

ATR dataset.

Method Acc. F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

Yamaguchi et al. [35] 84.38 55.59 37.54 51.05 41.80

PaperDoll [34] 88.96 62.18 52.75 49.43 44.76

M-CNN [21] 89.57 73.98 64.56 65.17 62.81

ATR [17] 91.11 71.04 71.69 60.25 64.38

Co-CNN [20] 95.23 80.90 81.55 74.42 76.95

Co-CNN (more) [20] 96.02 83.57 84.95 77.66 80.14

LG-LSTM [19] 96.18 84.79 84.64 79.43 80.97

LG-LSTM (more) [19] 96.85 87.35 85.94 82.79 84.12

CRFasRNN (more) [36] 96.34 85.10 84.00 80.70 82.08

Graph LSTM 97.60 91.42 84.74 83.28 83.76

Graph LSTM (more) 97.99 93.06 88.81 87.80 88.20

Ours 97.71 91.76 89.37 86.84 87.88

Ours (more) 98.30 95.12 90.08 91.97 90.85

structure substantially outperforms these baselines in terms

of most of the metrics, especially for small semantic

parts. This superior performance achieved by the structure-

evolving LSTM demonstrates the effectiveness of capturing

multi-scale context by propagating information on the gen-

erated graph structures.

Comparisons with Existing LSTM Structures. Ta-

ble 1 gives the performance comparison among different

LSTM structures, including Row LSTM [29], Diagonal

BiLSTM [29], LG-LSTM [19], Grid LSTM [15] and Graph

LSTM [18], which use the same network architecture and

number of LSTM layers. In particular, Row LSTM, Diag-

onal BiLSTM, LG-LSTM, Grid LSTM and LG-LSTM use

the fixed locally factorized topology for all images while

Graph LSTM propagates information on the fixed super-

pixel graph. It can be seen that exploiting the multi-level

graph representations for different LSTM layers leads to

over 3.41% improvement than the pre-defined LSTM struc-

tures on average IoU.

Discussion on Using Stochastic Policy. Note that the

structure-evolving LSTM stochastically merges some graph

nodes and employs an acceptance rate to determine whether

a new graph structure should be accepted. An alternative

way is deterministically merging some graph nodes by hard-

thresholding, that is, two nodes are merged only if their

merging probability is larger than a fixed threshold T . In

our experiment, three thresholds (i.e., 0.5, 0.7,0.9) are tested

1016

Structure-evolving

LSTM

Figure 4. Comparison of parsing results of our structure-evolving LSTM and Graph LSTM on ATR dataset and the visualization of the

corresponding generated multi-level graph structures. Better viewed in zoomed-in color pdf.

in Table 1. Using a smaller threshold (e.g., 0.5) is more

likely to obtain more aggressive graph transitions by merg-

ing more nodes while a larger threshold would prevent the

graph from changing its structure. It is shown that using 0.7

threshold in the deterministic policy obtains the best perfor-

mance, which is still inferior to the proposed stochastic pol-

icy. Additionally, we find that only slight performance dif-

ferences are obtained after running the feed-forward predic-

tion using the structure-evolving LSTM for ten times, which

verifies the robustness of the structure-evolving LSTM.

Comparisons with Using All Pre-defined Graph

Structures. An optional strategy to capture multi-scale

context is to utilize pre-computed multi-scale superpixel

maps as the intermediate graph structures, reported as

Graph LSTM (multi-scale superpixel maps)” in Table 1.

Five predefined graph structures in LSTM layers can be

constructed by five superpixel maps with 1000, 800, 600,

256 400, 200 superpixels, respectively. These superpixel

numbers are consistent with the averaged node number of

our learned graph structures for all training images. The su-

periority of “Structure-evolving LSTM” demonstrates that

exploiting adaptive graph structures makes the structure

more consistent with the high-level semantic representation

instead of just relying on the bottom-up oversegmentation.

Discussion on Predictions with Different Levels of

Graphs. The performance of using different numbers of

the structure-evolving LSTM layers is reported in Table 2.

It demonstrates that exploiting more levels of graph struc-

tures makes the network parameters learn different levels

of semantic abstraction, leading to better parsing results,

whereas the previous LSTM model [18] reported that no

performance gain is achieved with more than two LSTM

layers. Note that the parsing prediction is produced by

each LSTM layer and these predictions are element-wisely

summed to generate the final result. The individual parsing

performance by using each graph structure is reported in Ta-

ble 3. The higher-level graph structure may wrongly merge

bottom-up graph nodes, which thus may lead to the deteri-

orated performance. However, combining all predictions

from all the structure-evolving LSTM layers can largely

boost the prediction benefited from incorporating the multi-

scale semantical context.

Visualization. The qualitative comparisons of pars-

ing results on ATR dataset and the graph structures ex-

ploited by structure-evolving LSTM layers are visualized

in Fig. 4. The structure-evolving LSTM outputs more rea-

sonable results for confusing labels (e.g., skirt and dress) by

effectively exploiting multi-scale context with the generated

multi-level graph structures.

5. Conclusion

We presented a novel interpretable structure-evolving
Graph LSTM which simultaneously learns multi-level
graph representations for the data and LSTM network
parameters in an end-to-end way. Our work significantly
improves the way of network learning by allowing the
underlying multi-level graph structures to evolve along with
the parameter learning. Moreover, we propose a principled
approach to evolve graph structures stochastically, which is
not straightforward and could have potential impact on the
application of graph-based RNNs in multiple domains. We
have demonstrated its effectiveness on the object parsing
task for an image. In future, the structure-evolving LSTM
can be extended to enable the reversible graph transition
(e.g., splitting some merged nodes) during the LSTM net-
work optimization. We will also evaluate its performance
on the tasks of other modalities, such as the social networks.

1017

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels. Technical report, 2010. 6

[2] A. Barbu and S. Zhu. Graph partition by swendsen-wang

cuts. In Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on, pages 320–327, 2003. 2, 4

[3] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene

Labeling with LSTM Recurrent Neural Networks. In CVPR,

pages 3547–3555, 2015. 2

[4] W. Byeon, M. Liwicki, and T. M. Breuel. Texture classifi-

cation using 2d lstm networks. In ICPR, pages 1144–1149,

2014. 2

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic Image Segmentation with Deep Con-

volutional Nets and Fully Connected CRFs. In ICLR, 2015.

6

[6] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

CVPR, 2016. 6

[7] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, et al. De-

tect what you can: Detecting and representing objects using

holistic models and body parts. In CVPR, pages 1979–1986,

2014. 6

[8] Z. Deng, A. Vahdat, H. Hu, and G. Mori. Structure infer-

ence machines: Recurrent neural networks for analyzing re-

lations in group activity recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4772–4781, 2016. 2

[9] A. Graves, S. Fernandez, and J. Schmidhuber. Multi-

dimensional recurrent neural networks. In ICANN, 2007. 2,

3

[10] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recogni-

tion with deep recurrent neural networks. In ICASSP, pages

6645–6649, 2013. 1, 2

[11] A. Graves and J. Schmidhuber. Offline handwriting recog-

nition with multidimensional recurrent neural networks. In

NIPS, pages 545–552, 2009. 2

[12] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, pages 447–456. 7

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM Multimedia,

2014. 7

[14] R. Józefowicz, W. Zaremba, and I. Sutskever. An empiri-

cal exploration of recurrent network architectures. In ICML,

pages 2342–2350, 2015. 2

[15] N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long

short-term memory. arXiv preprint arXiv:1507.01526, 2015.

1, 2, 3, 6, 7

[16] X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing. Recurrent

topic-transition gan for visual paragraph generation. arXiv

preprint arXiv:1703.07022, 2017. 2

[17] X. Liang, S. Liu, X. Shen, J. Yang, L. Liu, J. Dong, L. Lin,

and S. Yan. Deep human parsing with active template regres-

sion. TPAMI, 2015. 6, 7

[18] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan. Semantic

object parsing with graph lstm. ECCV, 2016. 1, 2, 3, 6, 7, 8

[19] X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan.

Semantic object parsing with local-global long short-term

memory. CVPR, 2016. 2, 3, 6, 7

[20] X. Liang, C. Xu, X. Shen, J. Yang, S. Liu, J. Tang, L. Lin, and

S. Yan. Human parsing with contextualized convolutional

neural network. In ICCV, 2015. 6, 7

[21] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, L. Lin,

X. Cao, and S. Yan. Matching-CNN Meets KNN: Quasi-

Parametric Human Parsing. In CVPR, 2015. 7

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-

tional networks for semantic segmentation. arXiv preprint

arXiv:1411.4038, 2014. 6

[23] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 6

[24] R. Stewart and M. Andriluka. End-to-end people detection

in crowded scenes. In NIPS, 2015. 2

[25] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In NIPS, pages 3104–3112,

2014. 2

[26] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic

representations from tree-structured long short-term memory

networks. arXiv preprint arXiv:1503.00075, 2015. 1, 2

[27] L. Theis and M. Bethge. Generative image modeling using

spatial lstms. arXiv preprint arXiv:1506.03478, 2015. 2, 3

[28] Z. Tu and S.-C. Zhu. Image segmentation by data-driven

markov chain monte carlo. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 24(5):657–673, 2002. 2,

4

[29] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu.

Pixel recurrent neural networks. ICML, 2016. 1, 2, 6, 7

[30] J. Wang and A. Yuille. Semantic part segmentation using

compositional model combining shape and appearance. In

CVPR, 2015. 6, 7

[31] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille.

Joint object and part segmentation using deep learned poten-

tials. In ICCV, 2015. 7

[32] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille. Zoom better

to see clearer: Huamn part segmentation with auto zoom net.

arXiv preprint arXiv:1511.06881, 2015. 6, 7

[33] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-

dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:

Neural image caption generation with visual attention. In

ICML, pages 2048–2057, 2015. 1, 2

[34] K. Yamaguchi, M. Kiapour, and T. Berg. Paper doll parsing:

Retrieving similar styles to parse clothing items. In ICCV,

2013. 7

[35] K. Yamaguchi, M. Kiapour, L. Ortiz, and T. Berg. Parsing

clothing in fashion photographs. In CVPR, 2012. 7

[36] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional random

fields as recurrent neural networks. In ICCV, 2015. 7

1018

[37] X. Zhu, P. Sobhani, and H. Guo. Long short-term memory

over tree structures. arXiv preprint arXiv:1503.04881, 2015.

1, 2

1019

