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Abstract

Long Short-Term Memory (LSTM) networks have shown

superior performance in 3D human action recognition due

to their power in modeling the dynamics and dependencies

in sequential data. Since not all joints are informative for

action analysis and the irrelevant joints often bring a lot

of noise, we need to pay more attention to the informa-

tive ones. However, original LSTM does not have strong

attention capability. Hence we propose a new class of LST-

M network, Global Context-Aware Attention LSTM (GCA-

LSTM), for 3D action recognition, which is able to selec-

tively focus on the informative joints in the action sequence

with the assistance of global contextual information. In or-

der to achieve a reliable attention representation for the

action sequence, we further propose a recurrent attention

mechanism for our GCA-LSTM network, in which the atten-

tion performance is improved iteratively. Experiments show

that our end-to-end network can reliably focus on the most

informative joints in each frame of the skeleton sequence.

Moreover, our network yields state-of-the-art performance

on three challenging datasets for 3D action recognition.

1. Introduction

Human action recognition is a very important research

problem due to its relevance to a wide range of applications.

With the advent of depth sensors, such as Microsoft Kinect,

Asus Xtion, and Intel RealSense, action recognition using

3D skeleton sequences has attracted a lot of research atten-

tion, and lots of advanced approaches have been proposed

[33, 14, 1, 72].

Human actions can be represented by a combination of

the movements of skeletal joints in 3D space [67, 11]. How-

ever, it does not mean all skeletal joints are informative for

action analysis. For example, the movements of the hand

joints are very informative for the action clapping, while the

foot joints’ movements are not. Different action sequences
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Figure 1. 3D action recognition using the Global Context-Aware

Attention LSTM network. The first LSTM layer encodes the

skeleton sequence and generates an initial global context memory

for this sequence. The second layer performs attention over the

inputs with the assistance of global context memory, and further

generates an attention representation for the sequence. The atten-

tion representation is then used back to refine the global contex-

t. Multiple attention iterations are carried out to refine the global

context progressively. Finally, the refined global contextual infor-

mation is used for classification.

often have different informative joints, and in the same se-

quence, the informativeness degree of a joint may also vary

over the frames. Therefore, it is beneficial to selectively fo-

cus on the informative joints in each frame, and try to ignore

the features of the irrelevant ones, since the latter contribute

very little for action recognition, and even bring in noise

that can corrupt the performance of action recognition [20].

This selectively focusing mechanism is also called as at-

tention, which has been demonstrated to be very effective

in various areas, such as speech recognition [7], machine
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translation [3], image caption generation [64], etc.

Recently, Long Short-Term Memory (LSTM) network

[15] has been successfully applied to language modeling

[46], RGB-based activity analysis [17, 68, 69, 61, 10, 21,

43, 30], and also 3D action recognition [11, 73, 27] due to it-

s strong power in modeling sequential data. However, LST-

M does not have strong attention ability for 3D action recog-

nition. This limitation is mainly due to LSTM’s restriction

in perceiving the global contextual information, which is,

however, often important for the global classification prob-

lem – 3D action recognition. To perform reliable attention

over the joints, we need to measure the informativeness s-

core of each joint in each frame with regarding to the global

action sequence. This implies that we need to have global

contextual knowledge first. However, the available contex-

t at each step of LSTM is relatively local. In LSTM, the

sequential data is fed to the network step by step, and the

contextual information (hidden representation) of each step

is fed to the next one. This indicates at each step, the cur-

rent available context is the hidden representation from the

previous step, which is quite local compared to the global

information 1.

In this paper, we extend the original LSTM network and

propose Global Context-Aware Attention LSTM (GCA-

LSTM) which has strong attention ability for 3D action

recognition. In our GCA-LSTM network, the global con-

textual information is fed to all steps, thus the network can

use it to measure the informativeness scores of the new in-

puts at all steps and accordingly adjust the attention weights

for them, i.e., if a new input is informative regarding to the

global action, the network imports more information of it,

however, if it is irrelevant, the network blocks it.

As shown in Figure 1, our proposed GCA-LSTM net-

work for 3D action recognition contains two LSTM layers.

The first layer encodes the skeleton sequence and generates

an initial global context memory for it. Then this global

context is fed to the second LSTM layer to assist the net-

work to selectively focus on the informative joints in each

frame and further produce an attention representation for

the global action. Next, the attention representation is fed-

back to the global context memory to refine it. Specifically,

we propose a recurrent attention mechanism for our GCA-

LSTM network. Since a refined global context memory is

achieved after the attention procedure, we can feed the glob-

al context to the second layer again to perform more reliable

attention. Multiple attention iterations can be carried out to

refine the global context memory progressively. Finally, the

refined global context is fed to the classifier to predict the

class label of the action.

1In LSTM, although the hidden representations of the latter steps con-

tain wider range of contextual information compared to those of the initial

steps, their context is still relatively local since LSTM has trouble in re-

membering information too far in the past [60].

The main contributions of this paper are as follows. (1)

We propose a GCA-LSTM network which retains the se-

quential modeling ability of the original LSTM, meanwhile

promoting its selective attention ability. (2) We propose a

recurrent attention mechanism to improve the network’s at-

tention performance progressively. (3) The visualization re-

sults show that the informative joints in each frame of the

action sequence can be reliably identified with the assis-

tance of global contextual information. (4) Our end-to-end

GCA-LSTM network achieves state-of-the-art performance

on all the evaluated datasets.

To the best of our knowledge, this is the first LSTM ar-

chitecture with explicit attention as its fundamental capabil-

ity for 3D action recognition.

2. Related Work

3D Action Recognition. Various feature extractors and

classifier learning methods for 3D action recognition have

been proposed in the past few years [28, 37, 31, 65, 54, 26,

34, 5, 47, 59, 38, 56, 32, 2].

Wang et al. [52, 53] proposed an actionlet ensemble

model to represent the actions meanwhile capturing the

intra-class variances. Vemulapalli et al. [49] represented

each action as a curve in a Lie group, and adopted a SVM

classifier to recognize the actions. Chaudhry et al. [4] en-

coded the skeleton sequences to spatial-temporal hierarchi-

cal models, and utilized a set of Linear Dynamical Systems

to learn the dynamic structures. Xia et al. [62] used Hidden

Markov models (HMMs) to model the temporal dynamic-

s in action sequences. Zanfir et al. [71] proposed a Mov-

ing Pose framework in conjunction with a modified kNN

classifier for low-latency activity recognition. Chen et al.

[6] proposed a part-based 5D feature vector to explore the

most relevant joints of body parts in the skeleton sequence.

Koniusz et al. [22] explored tensor representations to cap-

ture the high-order relationships between the skeletal joints.

Wang et al. [57] introduced a graph-based skeleton motion

representation together with a SPGK-kernel SVM for 3D

action recognition.

3D Action Recognition Using RNN/LSTM. Besides

the aforementioned methods which mainly focus on extract-

ing hand-crafted features, very recently, deep learning, e-

specially recurrent neural network (RNN), based methods

have shown their great power in tackling 3D action recog-

nition task. Our proposed network is mainly based on the

LSTM network which is an extension of RNN. This part we

review the RNN/LSTM based 3D action recognition meth-

ods as below since they are very relevant to our approach.

Du et al. [11] proposed a hierarchical recurrent neural

network to model the human physical structure and tempo-

ral dynamics of the skeletal joints. Zhu et al. [73] proposed

a mixed-norm regularization for the fully connected layer-

s to drive the model to learn co-occurrence features of the
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joints. They also introduced an in-depth dropout within the

LSTM unit to help train the deep network effectively. Vee-

riah et al. [48] adopted a differential gating mechanism for

the LSTM network to make it emphasize on the change of

information. Shahroudy et al. [35] proposed a Part-aware L-

STM network to push the model towards learning the long-

term contextual representations for different body parts in-

dividually. Liu et al. [27] proposed a 2D Spatio-Temporal

LSTM framework to employ the hidden sources of action-

related information over both spatial and temporal domain-

s concurrently. A trust gate aiming at handling inaccurate

3D coordinates of the skeletal joints was also introduced in

[27].

Besides 3D action recognition, RNN and LSTM have al-

so been applied to 3D action detection [25, 18] and fore-

casting [18].

Unlike the RNN/LSTM based methods mentioned

above, which do not consider the informativeness of each

joint with regarding to the global action sequence, our

GCA-LSTM network performs attention over the evolution

steps of LSTM to selectively emphasize on the more infor-

mative joints in each frame. An attention representation is

generated in our network which can be used to optimize the

classification performance. Moreover, a recurrent attention

mechanism is introduced to improve the attention perfor-

mance iteratively.

Attention Mechanism. Our method is also related to the

attention mechanism [7, 3, 63, 39, 23, 29, 45] which allows

the networks to selectively focus on specific information.

Xu et al. [64] incorporated soft attention and hard attention

for image caption generation. Yao et al. [66] introduced a

temporal attention mechanism for video caption generation.

Luong et al. [29] proposed to fuse global attention and lo-

cal attention for neural machine translation. Stollenga et al.

[44] proposed a deep attention selective network for image

classification.

Although deep learning based methods [40, 36, 55] have

been used for action recognition in existing works, most of

them do not focus on attention. There are several work-

s which explored attention, such as [39, 58], however, our

method is significantly different from them in the following

aspects: They all use the state of the previous time step of

LSTM, whose contextual information is quite local, to pro-

vide the attention scores for the next time step. For global

classification problem - action recognition, the global infor-

mation is necessary for reliably evaluating the importance

of each input to achieve reliable attention, thus we propose

a global context memory for LSTM, which is used to as-

sess the informativeness score of each input. To the best of

our knowledge, we are the first to introduce a global memo-

ry cell to LSTM network for global classification problems.

Furthermore, we introduce an iterative attention mechanis-

m to promote the attention ability for action recognition,
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Figure 2. Illustration of the ST-LSTM units [27]. In the spatial

direction, the body joints in a frame are arranged as a chain and

fed to the network as a sequence. In the temporal direction, body

joints are fed over the frames.

while [39] and [58] use attention only once. Due to our new

contributions, our method achieves state-of-the-art perfor-

mance on all the evaluated datasets.

3. Global Context-Aware Attention LSTM Net-

works

In this section, we first briefly review the 2D Spatio-

Temporal LSTM (ST-LSTM) as our base network. Then

we describe our proposed Global Context-Aware Attention

LSTM network in detail, which is capable of selectively fo-

cusing on the informative joints in the skeleton sequence

with the assistance of global contextual information.

3.1. Spatio­Temporal LSTM

In skeleton-based action recognition, the 3D coordinates

of the body joints in each frame are provided. The temporal

dependence of the same joint among different frames and

the spatial dependence of different joints in the same frame

are both important cues for skeleton-based action analysis.

Recently, Liu et al. [27] proposed a 2D ST-LSTM network

for 3D action recognition to model the dependence and con-

textual information over spatial and temporal domains si-

multaneously.

In ST-LSTM, the body joints in a frame are arranged

and fed as a chain (spatial direction), and the corresponding

joints in different frames are also fed in a sequence (tempo-

ral direction), as shown in Figure 2. Each ST-LSTM unit is

fed with a new input (xj,t, 3D location of joint j in frame t),

the hidden representation of the same joint at the previous

time step (hj,t−1), and the hidden representation of the pre-

vious joint in the same frame (hj−1,t), where j ∈ {1, ..., J}
and t ∈ {1, ..., T} denote the indices of joints and frames

respectively.

The ST-LSTM unit is equipped with an input gate (ij,t),
two forget gates corresponding to the two sources of con-

textual information (f
(S)
j,t for the spatial domain, and f

(T )
j,t
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for the temporal dimension), and an output gate (oj,t). The

ST-LSTM is formulated as presented in [27]:















ij,t

f
(S)
j,t

f
(T )
j,t

oj,t
uj,t















=













σ

σ

σ

σ

tanh















W





xj,t

hj,t−1

hj−1,t







 (1)

cj,t = ij,t ⊙ uj,t

+ f
(S)
j,t ⊙ cj−1,t (2)

+ f
(T )
j,t ⊙ cj,t−1

hj,t = oj,t ⊙ tanh(cj,t) (3)

where cj,t and hj,t denote the cell state and hidden repre-

sentation of the unit at the spatio-temporal step (j, t), re-

spectively. W is an affine transformation consisting of the

model parameters, uj,t is the modulated input, and ⊙ indi-

cates element-wise product.

3.2. Global Context­Aware Attention LSTM

Previous works [20, 6] have already shown that in each

action sequence, there is often a subset of informative joints

which are important as they contribute much more to ac-

tion analysis, while the other ones can be irrelevant (or even

noisy) to this action. Consequently, to achieve a high accu-

racy for 3D action recognition, we need to identify the infor-

mative joints and concentrate more on their features, mean-

while trying to ignore the features of the irrelevant ones, i.e.,

selectively focusing (attention) on the informative joints is

beneficial for reliable 3D action recognition.

An action can be represented by a combination of the

skeletal joints’ movements. To reliably identify the infor-

mative joints in an action, we can assess the informative-

ness score of each joint in each frame with regarding to the

global action sequence. For this purpose, we need to have

global contextual information first. However, the available

context at each evolution step of LSTM is the hidden rep-

resentation from the previous step, which is relatively local

compared to the global action. Hence we propose to intro-

duce a global context memory to the LSTM network, which

holds the global contextual information for the action se-

quence and can be fed to each step of LSTM to assist the

attention procedure, as shown in Figure 3. We call this L-

STM architecture as Global Context-Aware Attention LST-

M (GCA-LSTM).

Overview: Our proposed GCA-LSTM network for 3D

action recognition is illustrated in Figure 3. It contains

three major modules. The global context memory maintain-

s an overall representation for the whole action sequence.

The first ST-LSTM layer encodes the skeleton sequence

and initializes the global context memory. The second ST-

LSTM layer performs attention over the inputs at all spatio-
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Figure 3. Illustration of the proposed GCA-LSTM network. Some

arrows are omitted for clarity.

temporal steps to produce an attention representation of the

action, which is then used to refine the global context mem-

ory. In the first layer, the new input at each spatio-temporal

step (j, t) is the 3D coordinates of the joint j in frame t.

The inputs of the second layer are the hidden representa-

tions from the first layer. Multiple attention iterations (re-

current attention) are carried out in our network to optimize

the global context memory iteratively. Finally, the refined

global context memory is utilized for classification.

To facilitate our explanation, in this paper, we use ❤j,t

instead of hj,t to denote the hidden representation at the

step (j, t) in the first layer, and the symbols, such as hj,t,

cj,t, ij,t, and oj,t, which are defined in Section 3.1, are only

used to denote the components in the second layer .

Initializing the Global Context Memory: As our

GCA-LSTM network performs attention based on the glob-

al contextual information, we need to obtain an initial glob-

al context memory first. A feasible scheme is to use the

output of the first layer to generate a global context repre-

sentation. We average the hidden representations from all

steps in the first ST-LSTM layer to achieve an initial global

context memory as:

IF(0) =
1

JT

J
∑

j=1

T
∑

t=1

❤j,t (4)

We may also feed all hidden representations of the first lay-

er to a feed-forward neural network, and then use the re-

sultant activation as IF(0). In our experiment, we observe

these two initialization choices perform similarly. Howev-

er, averaging does not involve new parameters, while using

a feed-forward network brings considerable amount of pa-

rameters.

Attention in the Second ST-LSTM Layer: We assess

the informativeness degree of the input at every spatio-

temporal step in the second layer. In the n-th attention it-
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eration, our network learns an informativeness gate r
(n)
j,t for

each input (❤j,t) by feeding the input itself and the global

context memory (IF(n−1)) produced by the previous atten-

tion iteration to a network as:

e
(n)
j,t = We1

(

tanh

(

We2

(

❤j,t

IF(n−1)

)))

(5)

r
(n)
j,t =

exp(e
(n)
j,t )

J
∑

p=1

T
∑

q=1
exp(e

(n)
p,q )

(6)

where r
(n)
j,t is the normalized informativeness gate (score)

for the input at the step (j, t) in the n-th iteration.

With the learnt informativeness gate r
(n)
j,t , the cell state

of the ST-LSTM unit in the second layer can be updated as:

cj,t = r
(n)
j,t ⊙ ij,t ⊙ uj,t

+ (1− r
(n)
j,t )⊙ f

(S)
j,t ⊙ cj−1,t (7)

+ (1− r
(n)
j,t )⊙ f

(T )
j,t ⊙ cj,t−1

This cell state updating scheme can be explained as: if the

input (❤j,t) is informative (important) regarding to the glob-

al context, then we let the learning algorithm update the

memory cell of the second ST-LSTM layer by importing

more information from it; whereas, if the input is irrelevant,

then we need to suppress its effect on the memory and take

advantage of more history information.

Refining the Global Context Memory: By adopting

the cell state updating scheme in Eq. (7) and then feeding

the cell state to Eq. (3), we can obtain the hidden represen-

tation hj,t at each step in the second layer, in which joint

selection (attention) is involved. The output of the last step

in the second layer can be used as an attention representa-

tion F (n) for the action. Finally, the attention representa-

tion F (n) is fed to the global context memory to refine it, as

shown in Figure 3. The refinement is formulated as:

IF(n) = ReLu

(

WF

(

F (n)

IF(n−1)

))

(8)

where IF(n) is the refined version of IF(n−1).

We perform multiple attention iterations (recurrent atten-

tion) in our network. The motivation is that after we obtain a

refined global context memory, we can carry out the atten-

tion again to more reliably identify the informative joints,

which can then be used to further refine the global contex-

t. After multiple iterations, the global context can be more

discriminative for classification.

Learning the Classier: The last refined global context

memory IF(N) is fed to a softmax classifier to produce the

predicted class label vector ŷ as:

ŷ = softmax
(

Wc

(

IF(N)
))

(9)

The negative log-likelihood loss function [13] is used to

measure the difference between the true label y and the pre-

dicted result ŷ. We use the back-propagation through time

(BPTT) algorithm to minimize the loss function.

4. Experiments

We validate the proposed approach on the NTU RGB+D

dataset [35], UT-Kinect dataset [62], and SBU-Kinect Inter-

action dataset [70]. To investigate the effectiveness of our

network, we conduct extensive experiments with the follow-

ing three different architectures:

(1) ‘ST-LSTM ⊕ feed-forward network’. This network

structure is similar to the ST-LSTM network in [27]. How-

ever, the hidden representations at all spatio-temporal step-

s of the second layer are concatenated and fed to a one-

layer feed-forward network to generate a global represen-

tation for the skeleton sequence, and the classification is

performed on the global representation; while in [27], the

classification is performed on single hidden representation

at each step (local representation), and the prediction scores

at all steps are averaged for final classification.

(2) ‘GCA-LSTM network’. This is the proposed GCA-

LSTM network. The classification is performed on the

global context memory.

(3) ‘GCA-LSTM network ⊖ attention’. This network

structure is similar to the above ‘GCA-LSTM network’, but

the attention modules are removed. ‘GCA-LSTM network

⊖ attention’ also has global context representation, which

is obtained by averaging the hidden representations at all

spatio-temporal steps. Concretely, ‘GCA-LSTM network’

uses Eq. (7) to update the cell state, while ‘GCA-LSTM

network ⊖ attention’ uses the original cell state updating

function (Eq. (2)). In ‘GCA-LSTM network ⊖ attention’,

the final classification is also performed on the global con-

text representation.

Our experiments are performed based on the Torch7

framework [8]. Stochastic gradient descent (SGD) algorith-

m is used to train our end-to-end network. We set the learn-

ing rate, decay rate, and momentum to 1.5×10−3, 0.95, and

0.9, respectively. The applied dropout probability [42] in

our network is 0.5. The dimensions of the cell state of ST-

LSTM and the global context memory are both 128. Two

attention iterations are performed in our experiment. The

first layer is a bi-directional ST-LSTM with trust gates [27].

For a fair comparison, we use the same frame sampling pro-

cedure as [27], in which T = 20 frames are sampled for

each action sequence.

4.1. Experiments on NTU RGB+D Dataset

The NTU RGB+D dataset [35] was recorded with Mi-

crosoft Kinect (V2). It contains more than 56 thousand

video samples. This dataset includes 60 different action

classes. To the best of our knowledge, this is the largest
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publicly available dataset for RGB+D based human activi-

ty analysis. The large amount of variations in subjects and

views make this dataset very challenging.

There are two standard evaluation protocols for this

dataset: (1) X-subject: 20 subjects are used for training,

and the remaining 20 subjects are for testing; (2) X-view:

two view-points are used for training, and one is for testing.

To evaluate the proposed approach more extensively, both

protocols are tested in our experiment.

We compare our ‘GCA-LSTM network’ with state-of-

the-art methods, as shown in Table 1. We can find that

our proposed ‘GCA-LSTM network’ outperforms the other

skeleton-based methods by a large margin. Specifically, the

‘GCA-LSTM network’ outperforms the ‘GCA-LSTM net-

work ⊖ attention’ and ‘ST-LSTM ⊕ feed-forward network’

on both protocols. This indicates the attention mechanism

in our network brings significant performance improvemen-

t.

Table 1. Results (accuracies) on the NTU RGB+D dataset.

Method X-subject X-view

Skeletal Quads [12] 38.6% 41.4%

Lie Group [49] 50.1% 52.8%

Dynamic Skeletons [16] 60.2% 65.2%

HBRNN [11] 59.1% 64.0%

Deep RNN [35] 56.3% 64.1%

Deep LSTM [35] 60.7% 67.3%

Part-aware LSTM [35] 62.9% 70.3%

ST-LSTM [27] 69.2% 77.7%

‘ST-LSTM ⊕ feed-forward network’ 70.5% 79.5%

‘GCA-LSTM network ⊖ attention’ 70.7% 79.4%

‘GCA-LSTM network’ 74.4% 82.8%

As ‘ST-LSTM ⊕ feed-forward network’ and ‘GCA-

LSTM network ⊖ attention’ perform classification on the

global representations, they both achieve slightly better per-

formance than the original ‘ST-LSTM’ [27] which per-

formed classification mainly on the local representations.

We can also find‘ST-LSTM ⊕ feed-forward network’ and

‘GCA-LSTM network ⊖ attention’ perform similarly. This

can be explained as: although their structures seem to be

a little different, their fundamental designs are the same.

They both use ST-LSTM to model the spatio-temporal de-

pendencies, and perform classification using global infor-

mation. Moreover, neither of them has explicit attention

capability.

Using the NTU RGB+D dataset, we also test the effect of

different number of attention iterations on our ‘GCA-LSTM

network’, and show the results in Table 2. We can observe

that increasing the iteration number can help to strength the

classification performance of our network (using 2 and 3 it-

erations can obtain higher accuracies compared to using on-

ly 1 iteration). However, too many iterations bring perfor-

mance degradation (the performance of using 3 iterations is

slightly worse than that of using 2 iterations). In our exper-

iment, we observe the performance degradation is caused

by over-fitting (increasing iteration number introduces new

parameters). It is worth noting that the classification results

yielded by using the different tested iteration numbers (1, 2,

and 3) all outperform the state-of-the-art significantly. We

do not try more iterations due to the GPU’s memory limita-

tion.

Table 2. Performance (accuracy) comparison for different attention

iteration numbers (N) on the NTU RGB+D dataset.

#Iteration X-subject X-view

1 71.9% 81.1%

2 74.4% 82.8%

3 72.7% 81.2%

In our method, the informativeness score r
(n)
j,t is used

as a gate within LSTM neuron, as formulated in Eq. (7).

We also explore to replace this scheme with soft attention

[64, 29], i.e., the attention representation F (n) is calculated

as
∑J

j=1

∑T

t=1 r
(n)
j,t ❤j,t. Using the soft attention, the accu-

racy drops about one percentage point on the NTU RGB+D

dataset. This can be explained as equipping LSTM neuron

with gate r
(n)
j,t provides LSTM better insight about when to

update, forget or remember. Besides, it can keep the se-

quential ordering information of the inputs ❤j,t, while soft

attention loses ordering and positional information.

4.2. Experiments on UT­Kinect Dataset

The UT-Kinect dataset [62] was collected with a single

stationary Kinect. The skeleton sequences in this dataset

are very noisy. A total of 10 action classes were performed

by 10 subjects, and every action was performed by the same

subject twice.

We follow the standard leave-one-out-cross-validation

(LOOCV) protocol in [62] to evaluate our network.

Our method achieves state-of-the-art performance on this

dataset, as shown in Table 3.

Table 3. Results on the UT-Kinect dataset.

Method Accuracy

Histogram of 3D Joints [62] 90.9%

Riemannian Manifold [9] 91.5%

Grassmann Manifold [41] 88.5%

Action-Snippets and Activated Simplices [50] 96.5%

Key-Pose-Motifs Mining [51] 93.5%

ST-LSTM [27] 97.0%

‘ST-LSTM ⊕ feed-forward network’ 97.0%

‘GCA-LSTM network ⊖ attention’ 97.5%

‘GCA-LSTM network’ 98.5%
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Figure 4. Examples of qualitative results on the NTU RGB+D dataset. Three actions (pointing to something, taking a selfie, and kicking

other person) are illustrated. The informativeness gates for two attention iterations are visualized. Four frames are shown for each iteration.

The circle size indicates the magnitude of the informativeness gate for the corresponding joint in a frame. For clarity, the joints with tiny

informativeness gates are not shown.

4.3. Experiments on SBU­Kinect Interaction
Dataset

The SBU-Kinect Interaction dataset [70] contains 8

classes for the purpose of two-person interaction recogni-

tion. This dataset includes 282 skeleton sequences corre-

sponding to 6822 frames. This dataset is challenging due to

(1) the relatively low accuracy of the joint locations provid-

ed by Kinect, and (2) complicated interactions between the

two persons in many sequences.

We perform 5-fold cross validation on this dataset by fol-

lowing the standard evaluation protocol in [70]. The exper-

imental results are shown in Table 4. In this table, HBRNN

[11], Co-occurrence LSTM [73], Deep LSTM [73], and ST-

LSTM [27] are all RNN/LSTM based models for 3D action

recognition, and are highly relevant to our method. We can

see that our ‘GCA-LSTM network’ yields the best perfor-

mance among all of these methods.

4.4. Visualization and Discussion

In order to better understand our network, we analyze

and visualize the informativeness score (r
(n)
j,t ) learnt by us-

ing the global contextual information on the NTU RGB+D

dataset in this section.

We analyze the variations of the informativeness scores

over the two iterations to verify the effectiveness of the re-

current attention mechanism in our network, and show the

Table 4. Results on the SBU-Kinect Interaction dataset.

Method Accuracy

Yun et al. [70] 80.3%

CHARM [24] 83.9%

Ji et al. [19] 86.9%

HBRNN [11] 80.4%

Co-occurrence LSTM [73] 90.4%

Deep LSTM (reported by [73]) 86.0%

ST-LSTM [27] 93.3%

‘GCA-LSTM network’ 94.1%
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Right hand Left hand

Figure 5. Visualization of the average informativeness gates for all

testing samples. The size of the circle around each joint indicates

the magnitude of the corresponding informativeness gate.

qualitative results of three actions (pointing to something,

taking a selfie, and kicking other person) in Figure 4. The

informativeness scores are normalized with soft attention

for visualization. In this figure, we can see that the attention

performance increases between the two attention iterations.

In the first iteration, the network tries to find the potential

informative joints over the frames. After this attention, the

network achieves a good understanding of the global action.

Then in the second iteration, the network can more accu-

rately focus on the informative joints in each frame of the

skeleton sequence. We can also find that the informative-

ness score of the same joint can vary in different frames.

This implies our network performs attention not only in s-

patial domain, but also in temporal domain.

To further quantitatively evaluate the effectiveness of the

attention mechanism in our network, we analyze the clas-

sification accuracies of the three action classes in Figure 4

among all actions. We find if the attention mechanism is not

involved, the accuracies of these three classes are 71.7%,

67.7%, and 81.5%, respectively. However, if we use one

attention iteration, the accuracies rise to 72.4%, 67.8%, and

83.4%, respectively. If two attention iterations are per-

formed, the accuracies become 73.6%, 67.9%, and 86.6%,

respectively.

To roughly explore which joints are more informative for

the activities in the NTU RGB+D dataset, we also try to av-

erage the informativeness scores for the same joint in all

testing sequences, and visualize it in Figure 5. We can find

that averagely, more attention is assigned to the hand and

foot joints. This is because in the NTU RGB+D dataset,

most of the actions are related to the hand and foot postures

and motions. We can also observe that the average infor-

mativeness score of the right hand joint is higher than that

of left hand joint. This indicates most of the subjects are

right-handed.

5. Conclusion

In this paper, we extend the LSTM network to achieve

a Global Context-Aware Attention LSTM (GCA-LSTM)

network for 3D action recognition, which has strong ca-

pability in selectively focusing on the informative joints in

each frame of the skeleton sequence with the assistance of

global contextual information. We further propose a recur-

rent attention mechanism for our GCA-LSTM network, in

which the selectively focusing ability is strengthened iter-

atively. The experimental results validate the contributions

by achieving state-of-the-art performance on all the evalu-

ated benchmark datasets.
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