
Learning Multifunctional Binary Codes for

Both Category and Attribute Oriented Retrieval Tasks

Haomiao Liu1,2, Ruiping Wang1,2,3, Shiguang Shan1,2,3, Xilin Chen1,2,3

1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing, 100190, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

3Cooperative Medianet Innovation Center, China

haomiao.liu@vipl.ict.ac.cn, {wangruiping, sgshan, xlchen}@ict.ac.cn

Abstract

In this paper we propose a unified framework to address

multiple realistic image retrieval tasks concerning both cat-

egory and attributes. Considering the scale of modern

datasets, hashing is favorable for its low complexity. How-

ever, most existing hashing methods are designed to pre-

serve one single kind of similarity, thus incapable of deal-

ing with the different tasks simultaneously. To overcome this

limitation, we propose a new hashing method, named Dual

Purpose Hashing (DPH), which jointly preserves the cat-

egory and attribute similarities by exploiting the convolu-

tional networks (CNN) to hierarchically capture the corre-

lations between category and attributes. Since images with

both category and attribute labels are scarce, our method is

designed to take the abundant partially labelled images on

the Internet as training inputs. With such a framework, the

binary codes of new-coming images can be readily obtained

by quantizing the network outputs of a binary-like layer, and

the attributes can be recovered from the codes easily. Ex-

periments on two large-scale datasets show that our dual

purpose hash codes can achieve comparable or even better

performance than those state-of-the-art methods specifical-

ly designed for each individual retrieval task, while being

more compact than the compared methods.

1. Introduction

In recent years, more and more images are available on

the Internet, posing great challenges to retrieving images

relevant to a given query image. At the meantime, the re-

trieval tasks have also become more diverse. In real-life

scenarios, three common retrieval tasks are: I. retrieving

images from the same category as the query image [5]; II.

retrieving images with specified attributes [29]; and III. the

combination of the above tasks, e.g. looking for clothing of

Category
Similarity
Preserving

Attribute
Similarity

Preserving

111011

010

110

101

001

000 100

111

011

010
110

101
001

000 100

111011

010
110

101

001

000
100

Dual Purpose
Hashing (Ours)

Chestnut Chestnut

Breast-
plate

(a)
Same gender,

race & age

Same

+ Smile

+ Neutral

Identity

S
a

m
e

0 1

Id
e

n
tity

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 10 10 10 10 10 10 10 10 10 1

(b)

Figure 1. (a) Illustration of the idea of our Dual Purpose Hashing

method. (b) A real example showing the three retrieval tasks on

a face dataset. The top ranked feedbacks of each task are shown

here. In the first two rows, exactly matched images are bounded by

green boxes, and red otherwise. In the last two rows, images of the

same/different identity are bounded by green/red boxes respective-

ly, and the blue bars indicate the confidence of the corresponding

attribute. Best viewed on a computer screen.

the same style but with a different color. Existing algorithm-

s [5, 29, 1, 39] can be adopted to tackle the above tasks,

and have achieved certain degree of successes. However,

3901

the high complexities of indexing and retrieving with real-

valued image representations limit the scalability of such

methods. To deal with this problem, hashing is often adopt-

ed for its high efficiency in both time and storage.

A major issue concerning most existing hashing meth-

ods is that they are designed to preserve one single kind

of similarity, e.g. semantic similarity defined by categories.

Due to the difference between attributes and category, mul-

tiple models would be needed to preserve both category and

attribute similarities. However, such scheme is suboptimal

since training multiple models is time-consuming, and the

redundancies between the models might harm the storage

efficiency. To tackle this issue, we propose a unified frame-

work to jointly preserve both similarities, named Dual Pur-

pose Hashing (DPH), as illustrated in Figure 1(a). In our

DPH method, only a single model is learned to produce bi-

nary codes that can be used to simultaneously deal with the

three tasks above, thus reducing the training time and re-

dundancies in storage. Figure 1(b) shows a real face image

retrieval case of our method on a challenging face dataset.

Our basic idea comes from a very natural intuition that

category and attributes, as objects’ descriptions at differ-

ent semantic levels, should share some common low-level

visual features. This can be partly confirmed from the ex-

perimental studies in some recent works [2, 44], where it is

shown that some nodes in the top layers of CNNs trained

for classification tasks are highly correlated with visual at-

tributes. Such observations also suggest that deep CNN

model is a good choice to hierarchically capture the cor-

relations between category and attributes. This motivates

us to adopt CNN models to learn unified binary codes that

can preserve both similarities simultaneously.

The framework of our DPH method is illustrated in Fig-

ure 2. To be specific, our network contains a binary-like

layer, which is used to approximate the binary code. By

jointly optimizing a classification loss and an attribute pre-

diction loss, our method can encode both similarities into

the binary codes. Since most images available on the In-

ternet do not have complete category and attribute labels,

our loss function is properly designed to take into accoun-

t such practical scenarios, namely, even images with only

one label can contribute to the model learning. By doing so,

an additional benefit is that the network has the capacity to

see a large amount of partially labelled data in the training

stage, and thus greatly reduces the risk of overfitting.

Once the model is learned, images can be indexed by

quantizing the outputs of the binary-like layer to compact

hash codes. In the first task relevant to category, retrieval

can be done similarly to existing hashing methods by utiliz-

ing Hamming distance ranking or hash table lookup. For the

last two tasks relevant to attributes, real-valued attribute pre-

dictions (in general, such real-valued predictions are more

powerful than binary-valued alternatives) can be recovered

from the binary codes with a simple matrix multiplication

operation, which can be efficiently done by only a few sum-

mation operations. Compared with directly storing the real-

valued attribute predictions, our method only incurs a lit-

tle increase in computation cost, while dramatically reduces

the storage space.

The main contributions of this work are two-fold: First,

we present a unified framework to learn hash functions that

simultaneously preserve category and attribute similarities

for addressing multiple retrieval tasks. Second, we propose

a new training scheme for the CNN models that can take

partially labelled data as training inputs to improve the per-

formance and alleviate overfitting.

2. Related Works

In this paper, we aim at learning multifunctional bina-

ry codes for multiple image retrieval tasks. Therefore, our

work is naturally related to the multi-task learning problem.

Specifically, some previous works, e.g. [19, 30], have adopt-

ed CNN models to simultaneously deal with multiple differ-

ent tasks, and have achieved some successes. However, our

method differs from existing methods in two aspects. First,

both [19, 30] learn real-valued features, which does not sat-

isfy the specific requirements of large-scale image retrieval

tasks. Second, we elaborately design the loss functions to

exploit the huge amount of partially labelled data, which

has rarely been considered by previous CNN models.

In large-scale retrieval tasks, hashing [3, 12, 35, 4, 20,

18, 37, 14, 42] is favorable for its low time and space com-

plexity. The pioneering data-independent hashing method

Locality Sensitive Hashing (LSH) [3] uses random projec-

tions to produce binary bits, and thus LSH usually requires

long codes to achieve satisfactory retrieval performance.

To reduce the storage cost, data-dependent hashing meth-

ods are proposed to learn more compact binary codes by

utilizing a training set. Such methods can be further di-

vided into unsupervised and (semi-)supervised. Unsuper-

vised methods, e.g. Spectral Hashing (SH) [36] and Iterative

Quantization (ITQ) [4], only make use of unlabelled train-

ing data to learn hash functions, while supervised methods

are proposed to deal with the more complicated semantic

similarities by taking advantage of semantic labels. Some

representative supervised methods are CCA-ITQ [4], Min-

imal Loss Hashing (MLH) [20], Semi-Supervised Hash-

ing (SSH) [35], Binary Reconstructive Embedding (BRE)

[12], and Supervised Hashing with Kernels (KSH) [18]. Al-

though the aforementioned hashing methods have achieved

successes in some applications, they use the readily extract-

ed features, which are not specifically designed for the task

at hand, thus might lose some task-specific information. To

tackle this issue, most recently, several hashing methods

[43, 14, 37, 16, 40, 17, 42] significantly improve the state

of the arts by jointly learning the image representations and

3902

CNN Preceding Layers

Binary-like
Output

k Loss 1:
Softmax Loss

Loss 2:
Cost-sensitive Sigmoid
Cross Entropy Loss

Black Round Stripe Wooden ... Tail Category

√ × √ × ... √
White
Shark

？ ？ ？ ？ ... ？ Balloon

× × × √ ... × ？

？ × √ × ... √ ？

…
...

Sigmoid

…
...

…

Training Data
Query Image

Q
uantization

1, 3
4

3

Binary
Codes

…
…
…
…
…

Category
Classifier

C

Attribute
Predictors

m

2

√: Positive ×: Negative ？ : Unavailable

Figure 2. The framework of our DPH method. To simultaneously encode category and visual attributes of images into binary codes, we

devise a CNN model that can take partially labelled images as training input (step 1), and train the model on classification and attribute

prediction tasks (step 2). The binary-like output layer, which have k (the code length) nodes, is connected to the two task layers as input.

To produce binary codes, images are propagated through the network (step 3), and the binary-like network output is quantized (step 4).

the hash functions using CNN models.

Other than category-oriented image retrieval, attributes

have also been widely adopted in retrieval tasks [25, 10,

26, 13, 32, 33, 22, 39, 29, 7]. Our work is most related to

the works that use nameable attributes [21] as queries. [13]

predicts the probability of attributes with SVM classifiers,

and uses the product of probabilities to rank the database

images. Follow-up works investigate the usage of attribute

correlation [29], fusion strategy [26, 22], relative attributes

[25], natural language [7], and other techniques [10, 33] to

improve the retrieval performance. In this paper, we adopt

the retrieval strategy in [13] for simplicity, while those more

complicated ones [29, 26, 22] are also compatible with our

framework. A major issue of these attributes-oriented im-

age retrieval methods is the usage of real-valued features,

which limits the scalability and efficiency of such methods.

In light of the successes of hashing methods, recent-

ly [23, 15, 8] have made some early attempts to connec-

t attributes with binary codes. [23, 8] discovers attributes

from learned binary codes by visualizing the images with

the highest and lowest scores at each bit. This “post-

processing” manner, however, hinders the method to learn

the desired nameable attributes, thus making [23, 8] unsuit-

able to be used for attribute-oriented retrieval tasks. [15]

improves [23] by explicitly modelling the connection be-

tween hash bits and attributes in the binary code learning

stage. Nevertheless, the simple linear transformation based

on the manually selected image representations in [15] is

inadequate to capture the complex correlation between cat-

egory and attributes. To address the shortcomings of previ-

ous works, we propose to exploit the CNN models to hierar-

chically extract the correlation between these two semantic

descriptions in an end-to-end manner.

3. Approach

Our goal is to learn compact binary codes such that: a)

images from the same category are encoded to similar bi-

nary codes; b) images with similar attributes should have

similar binary codes; c) the learned model should general-

ize well to new-coming images.

To achieve this goal, we present a hash learning frame-

work as illustrated in Figure 2. The preceding layers of the

network consists of several convolution-pooling layers, and

optionally followed by several fully connected layers. The

structure of these layers is very flexible, thus various suc-

cessful models [11, 31, 6] can be adopted in our method. S-

ince directly optimizing binary codes is difficult, the penul-

timate layer in our network is designed to give binary-like

outputs (a fully connected layer with sigmoid activation)

to approximate the binary codes. During the training stage,

the whole network is jointly trained on classification and

attribute prediction tasks to encode both kinds of semantic

information into binary codes. Moreover, the loss functions

are specifically designed to make use of the abundant par-

tially labelled data on the Internet, which can meanwhile

improve the generalization ability of the models, as shown

in Section 4.2.

3.1. Problem Setup

Let Ω be the space of RGB images, we want to train

an end-to-end model that maps images from Ω to k-bit bi-

nary codes F : Ω → {0, 1}k. Suppose that the training

images are from C known categories, and annotated with

a set of m visual attributes. Let Str = {(Xtr
i , yi,ai)|i =

1, · · · , N} denote the training set consisting of N images,

where Xtr
i ∈ Ω, yi ∈ {1, · · · , C, C + 1} is the category

label of the i-th image, and ai ∈ {0, 1, 2}m are the visu-

al attribute labels. More specifically, yi = C + 1 means

the category label of the i-th image is missing. aij = 1
and 0 indicates the j-th attribute is present/absent in the i-

th image. Besides, we use aij = 2 to denote that the j-th

attribute label of the i-th image is missing. Each training

image is required to have at least one available label.

3903

3.2. Category Information Encoding

To preserve category similarity, our basic idea is that if a

simple transformation (e.g. softmax classifier) can recover

the category label from the binary codes, the category in-

formation would have been encoded into the binary codes.

Note that the category labels of some training images might

be missing, to avoid the risk of misclassification of such im-

ages, we choose to simply ignore them in the classification

task. Thus we define the classification loss of a single train-

ing image Xtr
i as:

Lcls
i = −

C∑

c=1

I{yi = c}log
sc∑C

l=1
sl

(1)

where the superscript cls indicates classification, I{cond.}
is 1 when the condition is true and 0 otherwise, sl denotes

the l-th output of the softmax classifier. For the case when

yi = C + 1, namely, the category label of the i-th image is

missing, for all c ∈ {1, · · · , C} we have I{yi = c} = 0,

thus the loss and gradient are both zeros, and those images

without category labels will not contribute to the classifica-

tion loss.

3.3. Attributes Encoding

To preserve attribute similarity, the similar idea to Sec-

tion 3.2 is exploited, i.e. the attributes of images are encoded

into the binary codes by applying a transformation that can

recover the visual attributes from binary codes. Since the at-

tributes are binary in this work, for each of the m attributes,

we define the loss as a logistic regression problem. To han-

dle the missing label case, the standard formulation of lo-

gistic regression is modified to suit in our problem. Specif-

ically, the j-th (j ∈ {1, 2, · · · ,m}) attribute prediction loss

of a single training image Xtr
i is defined as a modified cross

entropy loss:

Lattr
ij = −I{aij 6= 2}[aij log(pij) + (1− aij)log(1− pij)]

(2)

where the superscript attr denotes attribute, pij is the es-

timated probability that the i-th image possesses the j-th

attribute.

Directly optimizing Eqn.(2) might lead to collapsed so-

lution, since the distribution of some attributes are highly

imbalanced (i.e. only a tiny portion of images have/do not

have these attributes), even predicting all images as nega-

tive/positive would result in a relatively low loss. To alle-

viate the impact of sample imbalance, we propose a cost-

sensitive version of Eqn.(2) instead:

Lattr
ij (w) = −I{aij 6= 2}[

wj

wj + 1
aij log(pij)+

1

wj + 1
(1− aij)log(1− pij)]

(3)

where wj is a weighting parameter controlling the relative

strength of the positive and negative samples. In practice,

we set wj according to the ratio of the negative sample size

to the positive sample size on the training set.

3.4. Joint Optimization

With the loss functions defined above, the CNN mod-

el can be trained with standard back propagation algorithm

with mini-batches. However, directly adding up Eqn.(1) and

Eqn.(3) as the overall loss function may be problematic. To

be specific, the values of Eqn.(1) and Eqn.(3) might be in

different orders of magnitudes. Moreover, due to missing

labels, the loss corresponding to different attributes might

also be in different orders of magnitudes. As a consequence,

some parts of the loss might dominate and thus prevent the

others from functioning. To tackle this problem, different

parts of the loss function need to be scaled before added up.

Suppose that in each iteration, the mini-batch consists of n

images, the overall loss function on a mini-batch is defined

as follows:

L =

∑n

i=1
Lcls
i∑n

t=1
I{yt ≤ C}

+α

m∑

j=1

n∑

i=1

Lattr
ij (w)

∑n

t=1
I{atj 6= 2}

(4)

where α is an extra weighting parameter to control the

relative strength of the classification loss and the attribute

prediction loss. In case of
∑n

t=1
I{yt ≤ C} = 0 or∑n

t=1
I{atj 6= 2} = 0, the corresponding loss term is set to

zero.

The gradients of Eqn.(4) can be easily computed analogi-

cally to the standard softmax classifier, except for multiply-

ing the weighting and scaling parameters, thus we do not

bother to discuss them in detail. For the training images,

their binary codes can be easily obtained by quantizing the

corresponding binary-like network outputs.

3.5. Retrieval

After the model is learned, the binary codes of new-

coming images can be similarly obtained as above by prop-

agating through the network and then quantizing the out-

puts of the binary-like layer. To accomplish the three re-

trieval tasks, we need to further recover the attribute predic-

tions from the binary codes, which can be done by multi-

plying the binary codes with the attribute classifier weight-

s. Note that the recovery of attribute prediction scores can

be efficiently fulfilled by only a few summation operations,

and only one more matrix (holding the attribute classifier

weights) of size k ×m (where k is the code length, and m

is the number of attributes) needs to be stored compared to

other hashing methods. Therefore, our method is efficient

in both time and storage.

3904

4. Experiments

In this section, we extensively evaluate our method on t-

wo large-scale datasets. First we evaluated the impact of ad-

ditional partially labelled data on the retrieval and attribute

prediction tasks. Then the proposed DPH method was com-

pared with the state-of-the-art retrieval methods on each of

the three tasks to validate the advantages of our method.

4.1. Experimental Settings

Datasets: We evaluated our DPH method on two large-

scale partially labelled datasets: (1) ImageNet-150K is a

subset of ILSVRC2012 dataset [24] with 150,000 images.

For each of the 1,000 categories, we selected 148 images

from the training set and 2 images from the validation set.

After that, 48 out of the 148 selected training images for

each category and all the 2,000 selected validation images

are manually annotated with 25 attributes (including col-

or, texture, shape, material, and structure). We partitioned

the dataset into 4 parts (Train-Category, Train-Both, Train-

Attribute, and Test) as illustrated in Figure 3(a). Please re-

fer to the supplementary materials for more details about

this dataset. (2) CFW-60K [15] is a subset of the CFW

dataset [41] and contains 60,000 images of 500 subjects, a-

mong which 20 images of each subject are annotated with

14 attributes. For the images with attribute annotations, 10

images of each subject were used as Test set, and the rest

were further divided into two parts (Train-Both and Train-

Attribute). The details of partitioning is illustrated in Figure

3(b). Please refer to the original publications [41, 15] for

more details about this dataset. On both datasets, the cate-

gory labels of the Train-Attribute set were made unavailable

in the training stage.

Evaluation protocol: All the evaluations are carried out

solely on the Test set in a leave-one-out manner, namely,

each time we select one image from the Test set as query im-

age, and the rest as database. We report the average results

of all images. Since the three retrieval tasks are very differ-

ent from each other, the details of the evaluation metrics for

each task will be defined in their corresponding subsections

(Section 4.3-4.5) respectively.

Implementation details: Our datasets are still relatively

small in terms of training a deep CNN model from scratch.

In consideration of generalization ability, the model pa-

rameters were initialized using pre-trained models. For

ImageNet-150K, we used the publicly available CaffeNet

model provided in the model zoo of Caffe [9]. The mod-

el parameters from the conv1 layer to the fc7 layer were

used to initialize our models. For CFW-60K, we adopted

the CNN structure of [38] (from conv1 to pool5). Since the

pre-trained model is not available, we followed the original

publication [38] to train the model, except for removing the

contrastive loss for simplicity.

For ImageNet-150K, the model was trained for 40 e-

Set Category Attribute

√

√ √

√

√ √

100,000

(100)

5,000 (5)

43,000 (43)

2,000 (2)

Data Partition (ImageNet-150K)

50,000

(9~164)

1,000 (2)4,000 (8)

5,000 (10)

Data Partition (CFW-60K)

Train-Category

Train-Both

Train-Attribute

Test

Label Information

(a) (b) (c)

Figure 3. Illustration of data partition in our experiments. (a)

ImageNet-150K with 1,000 categories, (b) CFW-60K with 500

categories. The sizes of each set are presented in the figure, and the

numbers in the brackets indicate the number of images from each

category. (c) The label information of the corresponding sets. Best

viewed in color.

pochs, and for CFW-60K, since the pre-trained model was

obtained from a different dataset, the model was trained for

100 epochs. We set the learning rate to 10−3 for the pre-

ceding layers, and 10−2 for the newly added layers with a

batch size of 200. The momentum and weight decay param-

eters were set according to the original publications [38, 9].

Besides, on both datasets, we empirically set the weighting

parameter α = 0.1 in Eqn.(4). All the comparison CNN

methods were implemented with Caffe [9] 1.

4.2. Evaluation of Partially Labelled Data

We first evaluate the impact of utilizing partially labelled

data on both datasets by using 128-bit binary codes as ex-

ample. For this purpose, 4 models were trained with differ-

ent training sets: we name these models as Both (B), Both

+ Attribute (B + A), Both + Category (B + C), and Both +

Attribute + Category (B + A + C) according to the train-

ing sets (please refer to Section 4.1 and Figure 3 for details)

used to train the specific model. In this subsection, the en-

coding of category and attributes are evaluated separately.

For the category part, we rank the database images accord-

ing to their Hamming distances to the query image, and the

performance is measured by mAP of retrieval, where im-

ages from the same category are deemed as relevant. For

the attribute part, we report the mean F1-score [34] over

all attributes. Note that since some attributes are highly

unbalanced, e.g. most images do not possess the attribute

“orange” in ImageNet-150K, F1-score can more faithfully

reflect the real performance than accuracy.

The comparison results are given in Table 1. We can in-

fer that: First, compared with the “Both” model, exploiting

extra training data (B + A and B + C) significantly improves

the performance of the corresponding task. This observa-

tion can be explained by model overfitting, to be specific, in

our experiments, in the training stage of the “Both” model,

the training loss approached zero while the test loss only de-

creased slightly. In contrast, when additional training data

was introduced, the training loss and test loss of the corre-

sponding tasks were always on the same scale as normally

1The source code of DPH and the ImageNet-150K dataset are available

at http://vipl.ict.ac.cn/resources/codes.

3905

http://vipl.ict.ac.cn/resources/codes

expected. This justifies our motivation of using partially la-

belled data to train the CNN models to alleviate overfitting.

Second, compared with training solely on “Train-Both” set,

using all training data can improve the performance on both

tasks by a large margin (the row “B + A + C” in Table 1),

and the performance of this dual-purpose model is compa-

rable with or even better than the performances of the “B +

A” and “B + C” models, confirming that it is feasible to si-

multaneously embed category and visual attributes into the

binary codes by exploiting partially labelled data. In the fol-

lowing experiments, all our models are trained with the “B

+ A + C” setting.

4.3. Evaluation of Category Retrieval

In this subsection, we test the effectiveness of our DPH

method on the first task in Section 1, i.e. given a query im-

age, retrieving images of the same category. The retrieval

is done by ranking the database images according to their

Hamming distances to the query image.

Comparative methods: We compare with eight hashing

methods: LSH [3], ITQ [4], CCA-ITQ [4], DBC [23], KSH

[18], SDH [27], DNNH [14], and DLBHC [16], including

representative conventional methods as well as state-of-the-

art CNN-based methods.

For fair comparison, the conventional methods were

trained using L2-normalized CNN features extracted from

the pre-trained models (described in Section 4.1). The com-

parative methods were implemented using the source codes

provided by the authors. As for the CNN-based method-

s, DLBHC and DNNH exploited the same preceding layers

as our DPH method, and were initialized with the identical

pre-trained models as ours. Specifically, to make DNNH

converge, we randomly sample 10 categories and 20 im-

ages per category in each iteration, as in [28], to increase

the number of valid triplets in each mini-batch.

All the comparative methods were trained using the com-

bination of “Train-Both” and “Train-Category” sets. Since

KSH demands large amount of memory to store the kernel

matrix (O(N2), where N is the number of training images),

we used 20,000 images randomly selected from the train-

ing set for this method, which has already consumed more

than 16GB of memory in the training stage. All the hyper-

parameters of the comparative methods were tuned careful-

ly according to the original publications. The experiments

were carried on {16, 32, 64, 128, 256}-bit binary codes.

Evaluation metric: For evaluation, we use mean Aver-

age Precision (mAP) of retrieval as metric, where images

with the same category label are considered as relevant.

Results: The results are shown in Table 2. We can see

that: First, when equipped with CNN features, the con-

ventional non-linear method KSH can hardly improve over

linear methods. One possible explanation is that the CNN

has mapped the images to a feature space where differen-

t categories are roughly linearly separable, thus KSH can

hardly benefit from the non-linearity of kernel space. Sec-

ond, CNN-based methods significantly improve over con-

ventional methods on CFW-60K, yet have marginal im-

provement on ImageNet-150K. Note that the pre-trained

model on CFW-60K was obtained from a different dataset,

while on ImageNet-150K from the same one, validating the

advantage of CNN-based methods in learning more suit-

able representations for the data at hand. Third, DNNH

performs relatively worse than the other two CNN-based

methods 2. This might be attributed to the batch sampling

strategy we used. Thus it seems that the training data should

be carefully organized for DNNH when the number of cat-

egories is large. Fourth, the performance of DPH is among

the top of all methods, even though the binary codes were

learned for jointly tackling two kinds of different tasks, in-

dicating that our dual purpose hash codes is competent to

fulfil the first individual task, i.e. category retrieval.

4.4. Evaluation of Attribute Retrieval

Here we test on the second task in Section 1. The at-

tribute prediction scores of DPH can be obtained from the

binary codes as described in Section 3.5. In this experiment,

given an query image, we randomly select at most three at-

tributes, whose values are specified by the image (thus can

be either positive or negative). The system is required to re-

trieve images that match the selected attributes. To be spe-

cific, the database images were ranked in descending order

by the products of attribute prediction scores.

Comparative methods: We compare with three base-

line methods for the attribute prediction part of retrieval: 1)

Similar to [13], we train linear SVMs to predict attributes

(we found that the performance of linear and kernel SVMs

are almost the same, thus we used linear SVMs for effi-

ciency), using the same CNN features as described in Sec-

tion 4.3. Then the prediction scores are normalized using

sigmoid function. We denote this method as SVM-real,

where “real” indicates that the models were trained on real-

valued features. 2) We replace the CNN features in SVM-

real with the 256-bit binary codes produced by DLBHC in

Section 4.3. This baseline is used to evaluate the necessity

of jointly encoding the category and attributes. We denote

this method as SVM-binary. 3) We finetune the pretrained

CNN models to predict the attributes. For this purpose,

we modified our network structure by replacing both the

binary-like layer and the classification loss with an attribute

prediction loss. We denote this method as CNN-attribute.

All comparative methods were trained using the combina-

tion of “Train-Both” and “Train-Attribute” sets.

2The source code of DNNH was provided by the original authors, and

our re-implementation on NUS-WIDE achieved similar result as reported

in [14].

3906

Model Dataset mAP mean F1-score Dataset mAP mean F1-score

B

B + A

B + C

B + A + C

ImageNet-

150K

0.248

0.239

0.336

0.343

0.753

0.856

0.828

0.879

CFW-

60K

0.095

0.088

0.233

0.241

0.817

0.867

0.814

0.877

Table 1. Comparison of the 128-bit models trained with different combinations of training data. The retrieval mAP and mean F1-score over

all attributes are shown in the last two columns respectively. B: Both, A: Attribute, C: Category.

ImageNet-150K CFW-60K

16-bit 32-bit 64-bit 128-bit 256-bit 16-bit 32-bit 64-bit 128-bit 256-bit

LSH [3] 0.032 0.070 0.134 0.215 0.269 0.080 0.110 0.117 0.118 0.118

ITQ [4] 0.102 0.167 0.235 0.284 0.310 0.039 0.058 0.079 0.112 0.135

CCA-ITQ [4] 0.090 0.157 0.223 0.294 0.341 0.048 0.069 0.090 0.113 0.140

DBC [23] 0.207 0.264 0.308 0.344 0.369 0.045 0.060 0.072 0.099 0.129

KSH [18] 0.110 0.181 0.253 0.293 0.320 0.046 0.063 0.086 0.111 0.117

SDH [27] 0.082 0.143 0.222 0.288 0.322 0.026 0.049 0.095 0.140 0.183

DNNH [14] 0.102 0.147 0.213 0.267 0.298 0.035 0.058 0.100 0.148 0.185

DLBHC [16] 0.197 0.263 0.310 0.339 0.357 0.068 0.109 0.173 0.235 0.279

DPH 0.212 0.274 0.322 0.343 0.353 0.064 0.112 0.186 0.241 0.274

Table 2. Comparison of category retrieval performance (mAP) of our method and other comparative hashing methods on ImageNet-150K

and CFW-60K. The best performance of each code length is highlighted in boldface.

Evaluation metric: In this task, we report the average

retrieval mAP over all valid queries to measure the retrieval

performance. Images that match with the query image at all

selected attributes are considered as relevant. Note that in

this experiment, we use the predicted attributes of all images

(both query and database) for ranking, while evaluate by

the ground-truth annotations. As a result, both wrong pre-

dictions of the query image and the database images would

hurt the performance.

Results: The results are given in Table 3. On both

datasets, the performances of our 256-bit binary codes are

comparable to or even better than the baseline method-

s. However, our method does not need to store the real-

valued prediction scores, thus more storage-efficient than

SVM-real and CNN-attribute. On the other hand, SVM-

binary is as compact as our method, and achieves simi-

lar performance with our method on ImageNet-150K, but

much worse on CFW-60K. This might be explained by the

fact that ImageNet-150K contains more categories and at-

tributes, and the variation is thus more complex. As a re-

sult, the 256-bit code might be too short for this task. From

the tendency in Table 3(a), we can expect that longer codes

of DPH could achieve better performance. A real retrieval

result on this task is provided in Figure 4(a). Please refer to

the supplementary materials for more examples.

4.5. Evaluation of Combined Retrieval

In this subsection, we evaluate on the third retrieval task

in Section 1. Here the system is required to retrieve images

belonging to the same category as the query image, while

possessing a selected attribute that is absent in the query

Round

Metal

(a)

+ White

(b)

Figure 4. Some real retrieval cases of the two attribute-oriented

tasks on ImageNet-150K. Here the “Test” set were used as queries,

and the “Train-Both” set and “Train-Attribute” set were used to-

gether as database, which is a little different from the evaluation

metrics. (a) Results from task II, and the interested attributes are

listed below the query image. Top-5 and Bottom-5 feedbacks are

shown in the first and second row respectively. (b) Top-10 feed-

backs from task III. The notations here are consistent with Figure

1(b). Best viewed in color.

image. To accomplish this task, we use the attribute predic-

tions to filter out the images that do not match in terms of

the specified attribute, and then rank the remaining images

using the Hamming distances. We compare the results of

DPH with 256-bit binary codes.

3907

ImageNet-150K CFW-60K

16-bit 32-bit 64-bit 128-bit 256-bit 16-bit 32-bit 64-bit 128-bit 256-bit

SVM-real 0.903 0.765

CNN-attribute 0.902 0.771

SVM-binary 0.805 0.823 0.844 0.861 0.871 0.661 0.680 0.693 0.711 0.729

DPH 0.806 0.828 0.842 0.859 0.868 0.695 0.726 0.758 0.785 0.804

Table 3. Comparison of attribute retrieval performance (average mAP) of our method and other comparative methods on (a) ImageNet-

150K and (b) CFW-60K. Note that SVM-real and CNN-attribute do not use binary code as features, thus their performance do not vary

with code lengths.

Comparative methods: Since this is a relatively unex-

plored task, we compare our DPH with two baselines: 1)

JLBC [15], which is trained on the fully annotated “Train-

Both” set with the same CNN features as described above.

2) Multiple-model. Here we use CNN-attribute in Section

4.4 for attribute prediction and DLBHC [16] for Hamming

distance ranking. The DLBHC model was trained to pro-

duce (256−m)-bit binary codes, where m is the number of

attributes, and the predictions of CNN-attribute were quan-

tized to binary, thus the storage cost of this baseline is the

same as our DPH method.

Evaluation metric: Only images that match the

query image in terms of category and possess the s-

elected attribute are considered as relevant. We use

recall@{5, 10, 20, 50, 75, 100} to evaluate the comparison

methods. In case that the database does not contain any true

matches, the recall of such query is simply ignored. We

report the average recall over all valid queries.

Results: The results are shown in Figure 5. Our method

consistently outperforms the comparative methods. The

performance of JLBC on CFW-60K is very unsatisfacto-

ry, even though CNN features was used to train this model,

which confirms that our end-to-end framework is necessary

for learning dual purpose hash codes. Although each mod-

el of the ”Multiple-model” method performs quite well on

its own task, their combination is clearly outperformed by

our method. A possible explanation is that the codes learned

by these two models are redundant, while our DPH can sup-

press the redundancy between category and attributes by ex-

ploiting the correlation between them, thus the total amount

of information they actually carry is less than our dual pur-

pose codes. Moreover, the Multiple-model method needs

two networks to produce the binary codes, thus the compu-

tation cost is twice as much as our method. We provide a

real retrieval result on this task in Figure 4(b). Please refer

to the supplementary materials for more results.

4.6. Discussion

To sum up, our DPH method utilized more supervised

information than those state-of-the-art methods specifical-

ly designed for each individual task (i.e. category retrieval

and attribute retrieval), one thus expects that DPH should

naturally yield better performances. Indeed, since some at-

tributes often vary significantly even within a single class

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

ImageNet−150K

Number of Top Returned Images

A
v
e

ra
g

e
 R

e
c
a

ll

JLBC

Multiple−model

DPH

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

CFW−60K

Number of Top Returned Images

A
v
e

ra
g

e
 R

e
c
a

ll

JLBC

Multiple−model

DPH

(a) (b)
Figure 5. Comparison of combined retrieval performance (aver-

age recall) of our method and other comparative methods on (a)

ImageNet-150K and (b) CFW-60K. The results were obtained by

256-bit binary code.

(e.g. color attributes of towels), the additional attribute in-

formation might even make the learning of category more d-

ifficult. Even though, the performances of our binary codes

on the three retrieval tasks are still satisfactory, while the

computation cost of our method is much lower than train-

ing multiple models, indicating that jointly preserving both

category and attribute similarities for the three tasks is ad-

vantageous.

5. Conclusions

In this paper we propose a method to learn hash function-

s that simultaneously preserve category and attribute simi-

larities for multiple retrieval tasks. Our DPH method has

achieved very competitive retrieval performances against

state-of-the-art methods specifically designed for each in-

dividual task. The promising performance of our method

can be attributed to: a) The utilization of CNN models for

hierarchically capturing correlation between category and

attributes in an end-to-end manner. b) The loss functions

specifically designed for the partially labelled training data,

which can significantly improve the generalization ability of

the models. Note that our framework is quite general, thus

more powerful network structures and loss functions can be

easily incorporated to further improve the performance of

our method.

Acknowledgements. This work is partially supported by 973 Pro-

gram under contract No. 2015CB351802, Natural Science Foun-

dation of China under contracts Nos. 61390511, 61379083, and

Youth Innovation Promotion Association CAS No. 2015085.

3908

References

[1] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky.

Neural codes for image retrieval. In European Conference

on Computer Vision (ECCV), 2014, pages 584–599. 2014. 1

[2] V. Escorcia, J. C. Niebles, and B. Ghanem. On the relation-

ship between visual attributes and convolutional networks.

In Computer Vision and Pattern Recognition (CVPR), 2015,

pages 1256–1264, 2015. 2

[3] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Very Large Data Base (VLD-

B), 1999, volume 99, pages 518–529, 1999. 2, 6, 7

[4] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In Computer

Vision and Pattern Recognition (CVPR), 2011, pages 817–

824, 2011. 2, 6, 7

[5] M. Hadi Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L.

Berg. Where to buy it: Matching street clothing photos in on-

line shops. In International Conference on Computer Vision

(ICCV), 2015, pages 3343–3351, 2015. 1

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. 3

[7] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Dar-

rell. Natural language object retrieval. In Computer Vision

and Pattern Recognition (CVPR), 2016, pages 4555–4564,

2016. 3

[8] C. Huang, C. C. Loy, and X. Tang. Unsupervised learning of

discriminative attributes and visual representations. In Com-

puter Vision and Pattern Recognition (CVPR), 2016, pages

5175–5184, 2016. 3

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolution-

al architecture for fast feature embedding. In Internation-

al Conference on Multimedia (MM), 2014, pages 675–678,

2014. 5

[10] A. Kovashka and K. Grauman. Attribute adaptation for per-

sonalized image search. In International Conference on

Computer Vision (ICCV), 2013, pages 3432–3439, 2013. 3

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

2012, pages 1097–1105, 2012. 3

[12] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In Advances in Neural Information

Processing Systems (NIPS), 2009, pages 1042–1050, 2009.

2

[13] N. Kumar, P. Belhumeur, and S. Nayar. Facetracer: A search

engine for large collections of images with faces. In Euro-

pean Conference on Computer Vision (ECCV), 2008, pages

340–353. 2008. 3, 6

[14] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In

Computer Vision and Pattern Recognition (CVPR), 2015,

pages 3270–3278, 2015. 2, 6, 7

[15] Y. Li, R. Wang, H. Liu, H. Jiang, S. Shan, and X. Chen. Two

birds, one stone: Jointly learning binary code for large-scale

face image retrieval and attributes prediction. In Interna-

tional Conference on Computer Vision (ICCV), 2015, pages

3819–3827, 2015. 3, 5, 8

[16] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep learn-

ing of binary hash codes for fast image retrieval. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2015,

pages 27–35, 2015. 2, 6, 7, 8

[17] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised

hashing for fast image retrieval. In Computer Vision and

Pattern Recognition (CVPR), 2016, pages 2064–2072, 2016.

2

[18] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Super-

vised hashing with kernels. In Computer Vision and Pattern

Recognition (CVPR), 2012, pages 2074–2081, 2012. 2, 6, 7

[19] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion:

Powering robust clothes recognition and retrieval with rich

annotations. In CVPR, 2016. 2

[20] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-

pact binary codes. In International Conference on Machine

Learning (ICML), 2011, pages 353–360, 2011. 2

[21] D. Parikh and K. Grauman. Interactively building a discrimi-

native vocabulary of nameable attributes. In Computer Vision

and Pattern Recognition (CVPR), 2011, pages 1681–1688,

2011. 3

[22] M. Rastegari, A. Diba, D. Parikh, and A. Farhadi. Multi-

attribute queries: To merge or not to merge? In Computer

Vision and Pattern Recognition (CVPR), 2013, pages 3310–

3317, 2013. 3

[23] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discov-

ery via predictable discriminative binary codes. In European

Conference on Computer Vision (ECCV), 2012, pages 876–

889, 2012. 3, 6, 7

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision

(IJCV), pages 211–252, 2015. 5

[25] A. Sadovnik, A. Gallagher, D. Parikh, and T. Chen. Spoken

attributes: Mixing binary and relative attributes to say the

right thing. In International Conference on Computer Vision

(ICCV), 2013, pages 2160–2167, 2013. 3

[26] W. J. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult.

Multi-attribute spaces: Calibration for attribute fusion and

similarity search. In Computer Vision and Pattern Recogni-

tion (CVPR), 2012, pages 2933–2940, 2012. 3

[27] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-

crete hashing. In Computer Vision and Pattern Recognition

(CVPR), 2015, pages 37–45, 2015. 6, 7

[28] L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for

effective learning of deep convolutional neural networks. In

European Conference on Computer Vision (ECCV), 2016,

pages 467–482, 2016. 6

[29] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking

and retrieval based on multi-attribute queries. In Computer

Vision and Pattern Recognition (CVPR), 2011, pages 801–

808, 2011. 1, 3

[30] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In NIPS,

2014. 2

3909

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Computer Vision and

Pattern Recognition (CVPR), 2015, pages 1–9, 2015. 3

[32] R. Tao, A. W. M. Smeulders, and S.-F. Chang. Attributes

and categories for generic instance search from one example.

In Computer Vision and Pattern Recognition (CVPR), 2015,

pages 177–186, 2015. 3

[33] N. Turakhia and D. Parikh. Attribute dominance: What pops

out? In International Conference on Computer Vision (IC-

CV), 2013, pages 1225–1232, 2013. 3

[34] https://en.wikipedia.org/wiki/F1_score. 5

[35] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised

hashing for large-scale search. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 34(12):2393–2406,

2012. 2

[36] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Advances in Neural Information Processing Systems (NIPS),

2008, pages 1753–1760, 2008. 2

[37] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-

ing for image retrieval via image representation learning. In

Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014. 2

[38] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

5

[39] F. X. Yu, R. Ji, M.-H. Tsai, G. Ye, and S.-F. Chang. Weak

attributes for large-scale image retrieval. In Computer Vision

and Pattern Recognition (CVPR), 2012, pages 2949–2956,

2012. 1, 3

[40] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-

scalable deep hashing with regularized similarity learning for

image retrieval and person re-identification. IEEE Transac-

tions on Image Processing (TIP), 24(12):4766–4779, 2015.

2

[41] X. Zhang, L. Zhang, X.-J. Wang, and H.-Y. Shum. Finding

celebrities in billions of web images. IEEE Transactions on

Multimedia, 14(4):995–1007, 2012. 5

[42] Z. Zhang, Y. Chen, and V. Saligrama. Efficient training of

very deep neural networks for supervised hashing. In Com-

puter Vision and Pattern Recognition (CVPR), 2016, pages

1487–1495, 2016. 2

[43] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic rank-

ing based hashing for multi-label image retrieval. In Com-

puter Vision and Pattern Recognition (CVPR), 2015, pages

1556–1564, 2015. 2

[44] Y. Zhong, J. Sullivan, and H. Li. Face attribute prediction

with classification cnn. arXiv preprint arXiv:1602.01827,

2016. 2

3910

https://en.wikipedia.org/wiki/F1_score

