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Abstract

Thin structures such as fences, grass and vessels are

common in photography and scientific imaging. They con-

tribute complexity to 3D scenes with sharp depth varia-

tions/discontinuities and mutual occlusions. In this paper,

we develop a method to estimate the occlusion matte and

depths of thin structures from a focal image stack, which

is obtained either by varying the focus/aperture of the lens

or computed from a one-shot light field image. We propose

an image formation model that explicitly describes the spa-

tially varying optical blur and mutual occlusions for struc-

tures located at different depths. Based on the model, we

derive an efficient MCMC inference algorithm that enables

direct and analytical computations of the iterative update

for the model/images without re-rendering images in the

sampling process. Then, the depths of the thin structures

are recovered using gradient descent with the differential

terms computed using the image formation model. We ap-

ply the proposed method to scenes at both macro and micro

scales. For macro-scale, we evaluate our method on scenes

with complex 3D thin structures such as tree branches and

grass. For micro-scale, we apply our method to in-vivo mi-

croscopic images of micro-vessels with diameters less than

50 µm. To our knowledge, the proposed method is the first

approach to reconstruct the 3D structures of micro-vessels

from non-invasive in-vivo image measurements.

1. Introduction

Thin structures such as meshes, grass or tree branches

are common in photography. Similarly, in medical and mi-

croscopic imaging, thin curvilinear structures such as ves-

sels and neurons appear very often. Recovering the 3D

information for such structures with non-invasive imaging

modalities is useful for study of plants [5, 25], blood ves-

sels [20, 21], and neurons [2, 12].

Segmenting thin structures from the background and re-

covering their depths is a challenging task for multiple rea-

sons. First, thin structures located in close range might oc-

clude more distant objects. So the ray corresponding to a

pixel may encounter multiple occluders at different depths

due to the partial occlusion. Second, the 3D structures of

curvilinear objects in nature such as vessels and grass are

often complex and non-planar, thus the methods based on

Figure 1: Example scenes with thin structures: mesh, grass,

tree branches, and micro-vessels. Such structures are of-

ten non-planar, located at multiple depths, and occluding

one another. The goal of this paper is to matte and recover

depths of these thin structures from a single-view focal im-

age stack.

planarity assumption [9, 7, 29] fail in those cases. Third, be-

cause of the small widths of the thin structures, the high spa-

tial frequency depth discontinuities are likely to be recov-

ered coarsely using patch-based depth-from-focus/defocus

methods [22, 11, 10, 3].

In this work, we present a method for matting and depth

recovery of 3D thin structures with self-occlusions using

single-view focal stack images. To this end, we first pro-

pose a general image formation model that explicitly de-

scribes the spatially varying blur and multiple partial occlu-

sions along a line of sight. Jointly optimizing the occlu-

sion mattes and depths in the model is computationally in-

tractable. We derive a Markov Chain Monte Carlo (MCMC)

inference algorithm for the thin structure matting where the

image/model update is directly and analytically computed.

The analytic computation enables efficient updates of the

model without re-rendering new images during the MCMC

process, which makes the algorithm practical. The depths

of thin structures are then recovered using gradient descent

with the differential terms calculated from the model.

We evaluate the performance of the proposed method us-

ing images of scenes at both macro and micro scales. For

macro-scale, we evaluate our method on scenes with com-

plex 3D thin structures such as meshes, tree branches and
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grass. For micro-scale, we apply our method to in-vivo

microscopic images of micro-vessels with diameters less

than 50 µm. We reconstruct the 3D structure of the micro-

vessels despite spatially varying blur and occlusions. To

our knowledge, this is the first method to reconstruct the

3D structures of micro-vessels from a non-invasive in-vivo

imaging system.

2. Related Work

Occlusion estimation and removal: Learning-based

and physics-based methods have been used to remove oc-

cluders or recover the depths and patterns of the occlusions.

In [4], a neural network was trained to detect and remove the

dirt of rain drops. In [16] the translational symmetry pat-

tern of the foreground has been exploited. Other methods

estimate and remove the occlusion by using an image for-

mation model that takes into account occlusions. [6, 9, 17].

In [6], an inverse projection model is used to recover the

geometry and radiance of the scene following a variational

framework. Gu et.al [9] model the captured radiance as

a superposition of the foreground then recover the occlu-

sion pattern and the occluded background from images cap-

tured with different focus settings by assuming that the fore-

ground is fronto-parallel and dark. In [26], the occlusions

are removed using large synthetic aperture images captured

with an array of cameras.

Scene matting with obstructions: Xue et.al [29] ex-

ploit the difference between the edge flows of the obstruc-

tion surface and the background in a video to separate and

recover the foreground and background radiances. In [7],

light field matting is used to recover both the foreground

and background layers. In [11, 10], the simplified multi-

layer scene model, where the radiance is assumed to come

from an all-in focus scene layer, is solved in order to per-

form post-capture image refocus. The radiance for all lay-

ers are approximated by a single all-in-focus radiance map.

For thin structure occlusions in [7], the multilayer model is

simplified to consist of a single pair of fronto-parallel fore-

ground and background layers. Rather than first simplify

the multilayer model and then solve the more constrained

problem like in [10] and [7], we will directly solve the full

multilayer model with multiple non-fronto-parallel occlu-

sion layers.

Reconstruction and depth estimation with occlusions:

Due to lack of correspondences, traditional 3D reconstruc-

tion methods such depth from defocus and stereo match-

ing fail to work well on scenes with occlusions. Yamazaki

et.al in [30] use shadows cast from a point light source to

reconstruct intricate objects that are difficult for traditional

shape-from-silhouettes methods.

In [28], the occlusions have been modeled in the 4D light

field and the occlusions are explicitly handled to get better

depth estimation near depth disparities. Photo-consistency

D

MN-1LN-1

occluder 1 occluder N-1

       occluder N 
     (background)

Aperture

M1 L1
 Focal plane 

occluder k

Mk Lk

Near field of occluder k Far field of occluder k

Figure 2: Viewing geometry of a single pixel in a camera

with finite aperture. The camera is focused between oc-

cluder k and occluder N − 1. The pixel receives radiance

contributions from rays within the double-sided cone deter-

mined by the focal plane and aperture size. The occlud-

ers are represented with the occlusion map M and radiance

map L. Occluder k is partially occluded by the occluders in

its near field and occludes the occluders/background in its

far field.

is extended to points at the depth disparity edges to handle

occlusions more explicitly. The partial occlusion is mod-

eled in the angular space of the input 4D light field. In

our method, the occlusions are modeled using the multi-

layer matting function based on 2D spatially varying defo-

cus kernels. In addition, we also demonstrate our approach

in cases where occluders block each other.

In [9], a single fronto-parallel layer of occlusions is re-

moved using two or three images captured with different

aperture sizes. The occlusions are assumed to be dark with-

out contributing any radiance. In [7], the occlusion is also

assumed to be in single fronto-parallel layer. In contrast,

we address occlusions that are located in different depths

and may occlude one another.

3. Image Formation Model

For a camera with finite aperture, one pixel at the im-

age plane receives radiance contributions from multiple rays

from the points within a double-sided cone determined by

the focal plane and aperture size, as shown in Figure 2. With

the image coordinate denoted as v, we represent the oc-

cluder with occlusion matte M(v) ∈ {0, 1} and radiance

L(v) ∈ R+. If there is only one opaque occluder in the

scene, the image intensity at v in the m-th image Rm in the

focal stack is

Rm(v) =

∫

u

L(u)M(u)Bm (v − u; d(v)) du

where Bm (v − u; d(v)) is the spatially varying blur kernel

dependent on the scene point depth d(v).
For scenes with opaque occluders located at multiple

depths, the image intensity for one pixel is contributed by
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multiple points at different depths, with possible attenua-

tions due to occlusions as shown in Figure 2. We denote the

occlusion index k ∈ {1, 2, · · · , N} to be the order in which

the double-sided cone from the camera encounters the scene

points. The image Rm is the superposition of contributions

from scene points across all occlusion indexes:

Rm(v) =

N
∑

k=1

αm
k (v)

∫

u

Lk(u)Mk(u)B
m
k (v − u; dk(v)) du

(1)

with Bm
k (v − u; dk(v)) denoting the spatially varying blur

kernel for the scene point with occlusion index k. The atten-

uation term αm
k (v) describes the attenuation of the radiance

from occluder k due to occlusions. As shown in Figure 2,

the occluder with occlusion index k > 1 is only obstructed

by points in the near field with occlusion index smaller than

k, thus the attenuation term can be written as:

αm
k (v) =















1, if k = 1

k−1
∏

j=1

1−

∫

u

Mj(u)B
m
j (v − u; dj(u)), otherwise

(2)

Eq. 1 and Eq. 2 describes the general case shown in Figure 2

where the defocus blur is spatially-variant and the occluders

in the scene may partially occlude one another.

Because the blur kernels in Eq. 1 and Eq. 2 are compact

in space, the range of u in the integral is within a local patch

N (v). So we can write the discretized image formation

model as:

Rm(v) =

N
∑

k=1

αm
k (v)

∑

u∈N (v)

Lk(u)Mk(u)B
m
k (dk(v)) (3)

with the discretized attenuation term:

αm
k (v) =















1, if k = 1

k−1
∏

j=1

1−
∑

u∈N (v)

Mj(u)B
m
j (dj(u)), otherwise

(4)

with B(d(u)) = B(v − u; d(u)) for notation simplicity.

The image formation model in Eq. 3 and Eq. 4 gener-

alizes the models used in previous works. When occlud-

ers are fronto-parallel, the blur kernel for each occluder is

spatially-invariant. In this case the integrals in Eq. 3 and

Eq. 4 become convolutions with blur kernels Bm
j (v − u).

For N = 1, and the image formation model becomes:

Rm(v) = L1M1 ∗B1(v)

which is the scene model used in [11, 10] for depth recovery

and post-capture re-focusing. For N = 2, there is only one

occlusion in front of the background, the image formation

model becomes:

Rm(v) = L1M1 ∗B1(v)+(1−M1 ∗B1(v))(L2 ∗B2(v))

which is the image formation model used in previous works

on image matting [18, 15] and occlusion reasoning [9].

4. Efficient MCMC for Occlusion Matting

In this work, the goal is to estimate the occlusion matte

Mk(v), depth dk(v) and scene radiance Lk(v) for occlu-

sion index k ∈ {1, 2, · · · , N}, given the measured focal

stack images and calibrated defocus blur kernels Bm
k . In the

following, we will first describe our method to estimate the

occlusion mattes from a focal stack, followed by the depth

recovery for the occluders explained in Section 5.

Given the measured focal stack images {Im(v)} cap-

tured with different focal plane distances, the estimated oc-

clusion mattes M(v) are determined by minimizing the en-

ergy function:

E(M(v)) = Edata(M(v)) + λEsmooth(M(v))

with

Edata =
∑

m,v

(Im(v)−Rm(v))2

Esmooth =
∑

(u,v)∈N8

1− δ(M(u)−M(v))

where the smoothness term Esmooth enforces the local spatial

consistency for occlusion matting. Rm(v) is the forward

rendered image using the image formation model in Eq. 3

and Eq. 4. We can see from Eq. 4 that changing the oc-

clusion matte value Mj(v) will effect the attenuation terms

αk for all k > j. The range of the influence is the size of

the blur kernel, which could be large when the occluder is

highly defocused. This influence is propagated to the other

occlusion mattings Mk through Eq. 3. Therefore, there are

high-order relationships among the occlusion mattings val-

ues. So the data term Edata is of high-order w.r.t. Mk(v) for

k ∈ {1, 2, · · · , N}.
Because of these high-order relationships, traditional

graph-based methods dealing with relatively low-order po-

tentials will not apply. Methods that include high-order po-

tentials [23, 8, 13, 14] either require the graph to be in spe-

cific structure [23] or the relationship can be analytically

modeled [8, 13, 14]. Instead, we derive an efficient MCMC

inference method where the image/model updates are di-

rectly and analytically computed based on the image for-

mation model without re-rendering the images. This makes

an otherwise intractable problem practical to solve.

We will assume: 1) the radiances of the thin structures

are different from the radiance of background; 2) the maxi-

mal number of occlusions along a line of sight is known or
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pre-set. The first assumption enables us to detect and sep-

arate the occluders from background using the focal stack;

the second assumption simplifies the derivation.

MCMC inference:

Consider a point x on the k-th occluder on the line of

sight, as shown in Figure 2. During the MCMC inference

process, the occlusion matte value Mk(x) ∈ {0, 1} is sam-

pled from the probability distribution:

p (Mk(x) = 1) =
e−E(Mk(x)=1)/T

e−E(Mk(x)=1)/T + e−E(−Mk(x)=0)/T

=
e−∆E(x)/T

1 + e−∆E(x)/T

(5)

where E(Mk(x) = b) for b = {0, 1} are the energy func-

tions for the binary assignments for Mk(x); ∆E(x) =
E(Mk(x) = 1) − E(Mk(x) = 0) = ∆Edata + λ∆Esmooth

represents the increase of the energy function when the sam-

pling in the MCMC process changes the occlusion matte

value at x Mk(x) from 0 to 1. T is the temperature param-

eter controlling the acceptance rate for an update and the

convergence of the MCMC process.

Estimating ∆Edata for MCMC Inference:

By denoting Rm(v; b) to be the forward rendered image

when Mk(v) = b for b = {0, 1}, the data term of ∆E can

be written as:

∆Edata =
∑

m,v

(Im(v)−Rm(v; 1))2 − (Im(v)−Rm(v; 0))2

=
∑

m,v

∆Rm(v) (∆Rm(v) + 2 (Rm(v; 0)− Im(v)))

(6)

where ∆Rm(v) = Rm(v; 1) − Rm(v; 0) is the change of

the rendered image by changing Mk(v) from 0 to 1. Simi-

larly, we can write the change of the data term for switching

Mk(v) from 1 to 0 as:

∆Edata =
∑

m,v

∆Rm(v) (−∆Rm(v) + 2 (Rm(v; 1)− Ii(v)))

(7)

Analytically Computing ∆Rm(v) for ∆Edata:

The naive approach is to render images Rm(v; 0) and

Rm(v; 1) directly and estimate ∆Rm(v) for all pixels and

occlusion indexes. In addition, we need several iterations

since the results from the burn-in period of the MCMC pro-

cess is not reliable. So the computational complexity for the

naive approach is too high for any real world application.

Rather than perform the full forward render process for

each pixel, we propose to directly and analytically com-

pute the ∆Rm(v) and its corresponding energy difference

∆Edata by using the image formation model in Eq. 3 and

Eq. 4. The image intensity change ∆Rm(v) induced by

switching Mk(x) from 0 to 1 is contributed by radiance

change from occluder k and occluders with occlusion index

i > k on the line of sight:

∆Rm(v) = αk(v)B
m
k (dk(x))Lk(x) +

N
∑

i=k+1

∆αi(v)L̃i(v)

(8)

with the defocused image

L̃i(v) =
∑

u∈N (v)

Li(u)Mi(u)B
m
i (di(u)), (9)

where Bk(dk(x)) and Bi(di(u)) are spatially varying blur

kernels; ∆αi(v) is the change of attenuation by switching

the occlusion matte value Mk(x) from 0 to 1. The first term

in Eq. 8 is the radiance change contribution from the k-th

occluder. The second term is the radiance change contri-

butions from the occluders/background in the far field of

occluder k.

Analytically Computing ∆αi(v) for ∆Rm(v):

For notation simplicity, we denote the blurred occlusion

matte in Eq. 4 with:

M̃j(v) =
∑

u∈N (v)

Mj(u)B
m
j (dj(u)) (10)

From Eq.4, the attenuation change ∆αi(v) can be writ-

ten as:

∆αi(v) =
(

1− M̃k(v; 1)
)

i−1
∏

j=1;j 6=k

(

1− M̃j(v)
)

−
(

1− M̃k(v; 0)
)

i−1
∏

j=1;j 6=k

(

1− M̃j(v)
)

= −Bk(dk(x))

i−1
∏

j=1;j 6=k

(1− M̃j(v))

(11)

By combining Eq. 8 and Eq. 11, we see that the image in-

tensity change ∆Rm(v) induced by switching Mk(x) from

0 to 1 is independent from Mk(v) ∀ v. Before the MCMC

process for points at occluders with occlusion index k, we

can pre-compute L̃i in Eq. 9 and blurred occlusion mattes

M̃j in Eq. 10. Then during the MCMC process, the image

update ∆Rm(v) can be directly and analytically estimated

from Eq. 8 and Eq. 11. If the occlusion matte at pixel x

changes after sampling from Eq. 5, the updated image can

be easily computed with Rm(v) ← Rm(v) + ∆Rm(v)
without re-rendering the images. In addition, due to the

limited size of the blur kernel, the spatial range of ∆R(v)
is limited within a small patch N (x) rather than over the

whole image. In our implementation, we choose the size of
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the patch N (x) to be 31-by-31. Therefore, the high-order

data term change ∆Edata can be computed efficiently.

Estimating ∆Esmooth:

For the smoothness term change ∆Esmooth, since it does

not include the forward rendering, it can be simply com-

puted as:

∆Esmooth =
∑

u∈N8(x)

δ(M(u))− δ(M(u)− 1) (12)

when M(x) changes from 0 to 1 and

∆Esmooth =
∑

u∈N8(x)

δ(M(u)− 1)− δ(M(u)) (13)

for M(x) changes from 1 to 0. N8(x) is the 8-connectivity

neighborhood of x. As we can see from Eq. 12 and Eq. 13

the change of the smoothness term is simply the difference

of numbers of occupant and empty pixels around x.

Initialization:

A good initialization of the variables is important given

the huge search space for the occlusion matte. To initial-

ize the occlusion matte, for each pixel v in the measured

image Im(v), we first compute the variance of Laplacian

in the Lab color space of a local 9-by-9 patch around v.

For the occlusion matting Mk with occlusion index k < N ,

we set Mk(v) = 1 if the maximal local variance happens

in a focal depth is smaller than a pre-defined threshold and

0 otherwise. The matting MN (v) = 1 for all pixels for

the background since any line of sight will intersect with

the background. For depth initialization, the initial depth

for the thin structures at one pixel is estimated as the depth

index in the focal stack with the largest variance of Lapla-

cian of a local patch around that pixel. The radiance for the

points on the thin structures is the measured image inten-

sity in the corresponding image in the focal stack. During

the optimization, the radiance values are updated based on

the current depth estimation, which is explained in the next

section. Given the initialization, the steps for the MCMC

inference for Mk(v) are described in Alg. 1.

5. Estimating Depths of Thin Structures

In order to compute the depth, we assume that the ob-

jects are locally planar within a small area. Given the mat-

ting estimation, we first over-segment the matted thin struc-

tures into super-pixels using SLIC [1] implemented in [27].

To get small and thin super-pixels, we set the area of the

super-pixel to be 10 and the regularization factor to be 0.1.

Each super-pixel will be treated as one tiny planar segment

in space. The depth of the occluder is recovered by opti-

mizing the parameters of all the foreground planar segments

Algorithm 1 Efficient MCMC inference for occlusion

matte Mk(v)

Given initialization of M
(0)
k , dk and Lk render R(0)

for each iteration t do

for each occlusion index k ∈ {1, 2, · · · , N−1} do

compute αk(v) and R using Eq.3 and Eq.4

update M̃ and L̃ using Eq.10 and Eq.9

for each pixel x with occlusion indx k do

compute ∆R using Eq. 8 and Eq. 11

compute ∆Edata using Eq. 6 or Eq. 7;

compute ∆Esmooth using Eq. 12 or Eq. 13;

sample Mk(x) using Eq. 5;

R← R+∆R if Mk(x) changes.

end for

end for

end for

such that the synthetic images given the depth are as close

as possible to the measured focal stack.

Given a planar segment i with plane parameters si, the

depth of the point on the segment with pixel coordinate

(x, y) is d = s
T
i (x, y, 1). By concatenating all the plane

parameters for Ns segments into a 3Ns-dimensional vector

s, the optimal parameters for segment planes are found by:

min.
s

∑

n,m,v

(Imn (v)−Rm
n (v; s))2 + λdEs(s), (14)

where Imn (v) is the measured image intensity of segment

n at pixel v. The first term of the energy is the data term

measuring the difference between the synthesized images

and the measured focal stack. The second term Es(s) is the

smoothness term enforcing the depth smoothness for ad-

jacent segments in 3D space. For two adjacent segments

representing by their plan parameters si and sj, the depth

smoothness energy is defined as the depth difference for the

pixels on their shared boundary:

E(i,j)
s = (di − dj)

T (di − dj)

= (si − sj)P
T
b Pb(si − sj)

= (si − sj)A
(i,j)(si − sj),

where the three-column matrix Pb consists of the homoge-

neous coordinates of the pixels on the boundary of segment

i and segment j; A(i,j) = PT
b Pb. The smoothness energy

for all pairs of adjacent segments can be written in a way

such that it is quadratic in terms of the concatenated plan

parameters s:

Es(s) = s
TΛs = s

T
∑

(i,j)∈N

Λ(i,j)
s, (15)

where Λ(i,j) is a 3N -by-3N sparse matrix for the neigh-

borhood segments si and sj with non-zero block entries
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Λ
(i,j)
i,i = Λ

(i,j)
j,j = A(i,j) and Λ

(i,j)
i,j = Λ

(i,j)
j,i = −A(i,j).

To optimize the objective function defined in Eq. 14 us-

ing gradient-based method, we also need to calculate the

gradient of the data term with respect to the plane parame-

ters s, for which we need to estimate:

∂R

∂s
=

∂R

∂d

∂d

∂s
=

∂R

∂d
P (16)

with P the N -by-3 location matrix with each row as the

homogeneous coordinate (x, y, 1) for one pixel.

For a point corresponding to pixel v on the k-th occluder,

the gradient of the rendered image w.r.t. its depth can be

written as :

∂R

∂dk
(v) = αk(v)Lk(v)

∂Bk

∂dk
+

N
∑

i=k+1

∂αi

∂di
(v)L̃i(v)

(17)

with

∂αi

∂di
(v) = −

∂Bi

∂di

i−1
∏

j=1
j 6=k

1−
∑

u∈N (v)

Mj(u)B
m
j (dj(u)) (18)

The derivation is similar as in Section 4. The differential

blur kernel ∂B
∂d is pre-computed during the calibration pro-

cess detailed in the supplementary material. The gradient

of Eq.14 can be evaluated by combing Eq.15, Eq.16 and

Eq.17. We use the conjugate-gradient method for optimiz-

ing the plane parameters s. Given the the optimal s, the

depth of the segments is calculated as d = P s.

6. Experiments

6.1. Implementation Details

For all experiments, we choose the size of the local patch

for MCMC update to be 31-by-31. We set the maximal oc-

clusion index N = 3. The temperature parameter T in Eq. 5

is set to 5 and the smoothness parameter λ in Eq. 5 is set to

0.8. For depth estimation, we set the depth smoothness fac-

tor λd in Eq. 14 to be 0.5 and the step size of the gradient

descent to be 0.1. The MCMC process converges within 10
iterations and the gradient descent for depth recovery con-

verges within 50 iterations. The running time on a 620x480
focal stack with 26 focal planes is about 20 min using MAT-

LAB implementation on a desktop with Intel Core-i7 5940

CPU and 64 GB RAM memory size.

6.2. Calibrating Blur Kernels

For macro-scale scenes, we use a Lytro ILLUM light

field camera to generate the focal stack with 26 focal planes.

Using a light field camera avoids the magnification varia-

tion due to focal changes and the need for post-processing

to compensate the magnification. The refocused images are

Figure 3: The calibrated blur kernels of refocused image for

a plane placed 520 mm from the light field camera. The

shapes of the blur kernels are not circularly symmetrical

since the blur kernel for a refocused image from light field

camera is related to both the main lens shape and the spatial

arrangement of the secondary lenslets.

estimated from the 4D light field images by shearing the

light field and projecting it into 2D slices as described in

[19].

We calibrate the blur kernels for a set of 21 reference

depths from 200 mm to 1000 mm equally spaced with 40
mm. In the calibration process, we use a planar reference

plane with checkerboard textures and place the plane paral-

lel to the image plane. The optical blur kernel is assumed

to be a separable filter kernel such that it can be written as a

convolution of two 1D functions. Then the 1D functions are

optimized. The details are in the supplementary material.

Examples of the calibrated blur kernels for the focal

stack images generated using the light field are shown in

Figure 3. Note that the shape of the blur kernel is not circu-

larly symmetrical since the blur kernel for a refocused im-

age from light field camera is related to both the main lens

shape and the arrangement of the secondary lenslets array.

For the microscopic camera, we model the blur kernels as

Gaussian functions with σ related to the focal plane distance

and scene depth.

6.3. Aperture Size vs. Depth vs. Occluder Size

We first analyze the performance of our method under

varying camera and scene configurations to evaluate the in-

fluence of aperture size, the depths and widths of the oc-

cluders. We synthesize the focal stack images with differ-

ent camera and scene settings. With larger aperture size,

we are able to collect rays from more angles coming from

a point thus more rays can be imaged from the occluded re-

gions [26]. The benefit of having a finite aperture decreases

as the foreground occlusions are further from the camera.

The synthetic scene includes two foreground occlusion lay-

ers with parts of the second layer being occluded.

The performance is evaluated in terms of the averaged er-

ror ratio of the rendered focal stacks. As shown in Figure 4,

the reconstruction error decreases as the aperture size be-

comes larger since for larger aperture size, more rays from

the partially occluded regions are collected. On the other

hand, more reconstruction error of the background is intro-

duced when the occlusion is closer to the background as re-
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Figure 4: The reconstruction error varies with camera aper-

ture size, the depth and size of occluder. The blue and red

curves in (a) are errors with occlusion distance set to 5 and

6 respectively. The blue and red curves in (b)(c) correspond

to aperture size 5 and 11 respectively.

Table 1: RMSEs of the recovered depth for the slanted plane

placed at different depths.

Distance from the camera (mm)

250 380 510 680

DFF [24] 94.22 61.50 129.1 161.2

Proposed 30.49 34.35 36.13 60.18

gions in the background are completely occluded. Similar

results can be observed for occlusions with different sizes.

6.4. Performance on Real Data

To quantitatively assess the performance of the proposed

matting and depth recovery method, we place slanted pla-

nar mesh at measured distances and evaluate the matting

and depth estimations. The selected set distances are listed

in Table 1. We compare our method with the baseline depth-

from-focus (DFF) method used in [24]. The occlusion matte

is estimated by thresholding the recovered depth map based

on the fact that the mesh plane is located in the near field.

Because the degree of in-focus is measured from the image

intensities within a local patch, the DFF method tends to

generate an over-smoothed depth map where the depth es-

timations near the occlusion boundaries are inaccurate. In

our method, since the defocus and occlusion are modeled

explicitly for each pixel, we are able to recover the high fre-

quency depth discontinuities for thin structures. Therefore,

as shown in Table 1, the RMSEs of estimated depths for our

method are lower than the ones for the DFF approach.

We also compare with the approach [28] using light field

inputs with the occlusion boundaries explicitly modeled. As

shown in Figure 5, the DFF method in [24] fails to recover

high frequency depth changes in regions such as the edges

of the grass where multiple depth discontinuities are close.

This is because the patch-based estimation of the degree of

in-focus will include the edges of the depth boundary even

if the center of the patch is not aligned on the boundary. As

a result, the degree of in-focus is inaccurate near the depth

boundary. The method in [28] is able to estimate the depths

at places where the occlusion boundaries are close because

in this method the occlusion boundaries are modeled and

processed explicitly. However, the approach in [28] is un-

reliable for textures regions in the background. In addition,

some sharp intensity edges in the background, such as the

shadow boundaries, are estimated as occlusion boundaries

and the recovered depths around those edges are inaccurate.

In comparison, our method estimate the occlusion matting

and depths pixelwisely , so it can handle sharp edges in the

background and high spatial frequency depth changes for

thin structures like mesh, grass and bush branches.

We apply our method to in-vivo micro-scale images of

capillaries with diameter less than 50 µm. We use the

Braedius CytoCam Camera to capture focal stacks of micro-

vessels on the tongue of pigs. The focal planes distance

range from 20 µm to 240 µm with step size of 20µm.

As shown in Figure 6, the occlusion matting and depths

of micro-vessels are estimated in the presence of spatially

varying defocus blur and occlusions. Then we reconstruct

the 3D structure of the micro-vessels based on the depth

map. To our knowledge, our method is the first approach

to reconstruct the 3D structures of capillaries using non-

invasive image measurements.

7. Conclusions

We presented a method for matting and depth recovery

for thin structures from a focal stack. We proposed a gen-

eral image formation model with the spatially varying blur

and mutual occlusions explicitly accounted for. Based on

the model, for matting, we design an efficient MCMC in-

ference method where the image/model update is computed

analytically without explicitly rendering new images. The

depth of thin structures is then recovered using gradient de-

scent with the differential terms calculated from the image

formation model. We evaluated the proposed method on

images of scenes at both macro and micro scales.

We assume that the sizes/widths of objects are small

compared to the aperture. In addition, if the foreground

objects are far away from the camera, the camera model

degrades to a pinhole camera model and the image forma-

tion model in Section 3 is invalid. To handle larger/distant

occlusions, we can extend the method to include multiple

cameras such that a large synthetic aperture [26] can be ob-

tained. Another future direction is to extend the approach

to scenes with transparent or semi-transparent occlusions,

such as smoke, glass, and water droplets.
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Foreground in focus Background in focus DFF    Wang et.al [28] Proposed Method

Figure 5: The depth recovery for the thin structures. Note that the depth estimations using the DFF method for points close

to the occlusion boundaries are inaccurate due to high frequency depth discontinuity. The light field method in [28] does not

perform well on the textureless regions and sharp edges in the background. Our method recovers the sharp depth discontinuity

on the boundaries of the thin structures such as the grass and bush in the presence of spatially varying defocus blur.

Focused at 40 μm Focused at 160 μm
0

220

Estimated Depth Map 3D reconstruction of micro-vessels

Figure 6: The depth map and 3D reconstruction of micro-vessels. From left to right: 2 of 12 images in the focal stack; the

estimated depth map, and two views of the reconstructed 3D structure. The 3D reconstruction is color coded to visualize the

depth variations. To our knowledge, our method is the first approach to reconstruct the 3D structures of micro-vessels using

non-invasive in-vivo image measurements.
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