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Abstract

Although the recent success of convolutional neural net-

work (CNN) advances state-of-the-art saliency prediction in

static images, few work has addressed the problem of pre-

dicting attention in videos. On the other hand, we find that

the attention of different subjects consistently focuses on a

single face in each frame of videos involving multiple faces.

Therefore, we propose in this paper a novel deep learning

(DL) based method to predict salient face in multiple-face

videos, which is capable of learning features and transition

of salient faces across video frames. In particular, we first

learn a CNN for each frame to locate salient face. Taking

CNN features as input, we develop a multiple-stream long

short-term memory (M-LSTM) network to predict the tem-

poral transition of salient faces in video sequences. To e-

valuate our DL-based method, we build a new eye-tracking

database of multiple-face videos. The experimental results

show that our method outperforms the prior state-of-the-art

methods in predicting visual attention on faces in multiple-

face videos.

1. Introduction
Saliency prediction [1] models the deployment of atten-

tion on visual inputs in biological vision systems, and has
potential application in many computer vision tasks, such as
object detection [3] and event detection [36]. Particularly,
detecting salient objects, such as faces, plays an importan-
t role in video analytics, human-computer interface design
and event understanding. As a matter of fact, a mass of
videos, including movie, interview and variety show, con-
tain multiple faces.

Existing literature on saliency prediction typically focus-
es on finding salient face in static images [21]. Howev-
er, few prior work has addressed the problem of predicting
saliency in multiple-face videos. While the human subjects
generally pay attention to only a single face [21], we find
that attention of different subjects consistently transits from
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one face to another in videos, as shown in Figure 1. Our
goal in this work is to capture both static and dynamic prop-
erties of the attention on faces in multiple-face videos.

Early work on image saliency prediction uses hand-craft
features to predict visual attention for images [2, 10, 20, 26,
35, 42], based on understanding of the human visual sys-
tem (HVS) [29]. The representative method on predicting
image saliency is Itti’s model [20], which combines center-
surround features of color, intensity and orientation togeth-
er. In contrast, recent methods [4,14,21,22,24,25,28,32,40,
41, 43] propose a learning-based strategy to predict salien-
cy. For example, Judd et al. combined high-level features
(e.g., face and text), middle-level features (e.g., gist) and
low-level features together, via learning their corresponding
weights with the support vector machine (SVM). To predict
visual attention in face images, Xu et al. [41] proposed to
precisely model saliency of face region, via learning the fix-
ation distributions of face and facial features. Besides, Jiang
et al. [21] explored several face-related features to predict
saliency in a scene with multiple faces. Most recently, sev-
eral deep learning (DL) methods [14, 24, 25, 28, 32] have
been proposed to automatically learn features for saliency
prediction, instead of relying on handcrafted features. For
example, Huang et al. [14] proposed saliency in contex-
t (SALICON) method to learn features for image saliency
prediction by incorporating convolutional neural network
(CNN).

For video saliency prediction, earlier methods [6, 8, 12,
17–19] have investigated several dynamic features to mod-
el visual attention on videos, in light of the HVS. For ex-
ample, the Itti’s image model was extended in [17] for
video saliency prediction, by integrating with two dynam-
ic features: motion and flicker contrast. Later, sever-
al advanced video saliency prediction methods have been
proposed, which exploits other dynamic features, such as
Bayesian surprise in [18] and motion vector in [6]. Re-
cently, learning-based video saliency prediction methods
have also emerged [13, 31, 33, 37]. For example, Pang et
al. [33] proposed a learning-based video saliency predic-
tion method, which explores the top-down information of
eye movement patterns, i.e., passive and active states [34],
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Figure 1. Example of visual attention (viewed by 39 subjects) on a multiple-face video sequence. Each image shows a selected frame with
its attention heat map. This figure mainly demonstrates transition of salient faces and characters of long/short-term correlation between
salient faces across frames. Note that the video is chosen from our database, to be discussed in Section 2.1.

to model attention on videos. Hua et al. [13] proposed to
learn middle-level features, i.e., gists of a scene, as the cue
in video saliency prediction. Rudoy et al. [37] proposed to
predict saliency of a given frame according to its high- and
low-level features, conditioned on the detected saliency of
the previous reference frame. However, to our best knowl-
edge, the existing video saliency prediction methods rely on
the handcrafted features, despite CNN being applied to au-
tomatically learn features for image saliency prediction in
the most recent works of [14, 24, 25, 28, 32]. More impor-
tantly, both long- and short- term correlation of salient faces
across frames, which is critical in modeling attention tran-
sition across frames for multiple-face videos (see Figure 1),
is not taken into account in these methods.

In this paper, we propose a DL-based method to predict
salient face in multiple-face videos, which learns both im-
age features and saliency transition for modeling attention
on multiple faces across frames. To the best of our knowl-
edge, our method is the first aiming at saliency prediction
in multiple-face videos. Specifically, we first apply a CNN
to automatically extract saliency-related features in each s-
ingle frame. Built on the long short-term memory (LSTM)
of recurrent neural network (RNN), we develop a multiple-
stream LSTM (M-LSTM) network for predicting the dy-
namic transitions of salient faces alongside video frames,
taking the extracted CNN features as the input. Finally,
saliency maps of multiple-face videos can be generated up-
on transited face saliency.

To evaluate our method, we create a new eye track-
ing database of multiple-face videos that consists of two
datasets. The first dataset includes fixations of 39 subject-
s on 65 multiple-face videos, used as a baseline for test-
ing saliency prediction performance. The second dataset is
composed of 100 multiple-face videos viewed by 36 sub-
jects, which is utilized for training the saliency prediction
model. We provide a detailed analysis on the collected da-
ta, which shows that typically only one face (among mul-
tiple faces) in a video frame receives attention of viewing
subjects, and that attention shifts across frames consistent-
ly for different subjects. We test our method on the new
database, with comparisons to several state-of-the-art ap-
proaches. Our experimental results demonstrate that our
method achieves significant improvements on saliency pre-
diction in multiple-face videos.

In summary, the main contributions of our work are
three-fold: (1) We introduce an eye tracking database of

multiple-face videos, for facilitating the studies on video
saliency prediction. (2) We find significant consistency in
subjects on viewing multiple-face videos, via analysis on
our eye-tracking databases. (3) We propose a DL-based
method to predict the salient face with transition across
frames, which integrates a CNN and an LSTM-based RNN
model.

2. Database establishment and analysis
2.1. Multiple-face Database

This section describes how we conduced the eye track-
ing experiment to establish our database on MUltiple-Face
Videos with Eye Tracking fixations (MUFVET). To the best
of our knowledge, our eye tracking database is the first one
for multiple-face videos. Note that all videos in MUFVET
are with either indoor or outdoor scenes, selected from Y-
outube and Youku, and they are all encoded by H.264 with
duration varying from 10-20 seconds. Besides, MUFVET
includes two datasets – MUFVET-I andMUFVET-II. These
two datasets are comprised by two non-overlapping groups
of videos, each of which is viewed by totally different sub-
jects. In this paper, MUFVET-I is seen as the benchmark
for test, while MUFVET-II is used for training. MUFVET
is more reasonable than the existing eye tracking databas-
es (e.g., SFU [9] and DIEM [30]), which only contain fix-
ations of videos watched by same subjects. It is because
both training and test utilize the fixations of same subjects
are not rationale in existing saliency prediction works [1],
despite videos being different.

MUFVET-I. Here, 65 multiple-face videos at diverse
scenarios (see Table 1 and Figure 2) are included in
MUFVET-I. Then, 39 subjects (26 males and 13 females,
aging from 20 to 49), with either corrected or uncorrected
normal eye-sight, participated in our eye tracking experi-
ment to watch all 65 videos. Among them, two were ex-
perts working in the field of saliency prediction. Others did
not have any experience on saliency prediction, and mean-
while they were naive to the purpose of our eye tracking
experiment. The eye fixations of 39 subjects on viewing
each video were recorded by a Tobii X2-60 eye tracker at
60Hz. For the eye tracker, a 23-inch LCD screen was used
to display the test videos at their original resolutions. Dur-
ing the eye tracking experiment, all subjects were required
to sit on a comfortable chair with the viewing distance being
∼60 cm from the LCD screen. Before viewing videos, each
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Table 1. Video categories in MUFVET-I and MUFVET-II.
Category TV play/movie interview video conference TV show music/talk show group discussion overall

Number of videos (I) 12 20 6 7 10 10 65
Number of videos (II) 21 13 5 35 18 8 100

Figure 2. One example for each category of videos in MUFVET-I and MUFVET-II. From left to right, the videos belong to TV play/movie,
interview, video conference, TV show, music/talk show, and group discussion.

subject was required to perform a 9-point calibration for the
eye tracker. Afterwards, the subjects were asked to free-
view videos displayed at random order. In order to avoid
eye fatigue, the 65 test videos were divided into 3 sessions,
and there was a 5-minute rest after viewing each session.
Moreover, a 10-second blank period with black screen was
inserted between two successive videos for a short rest. Fi-
nally, 1,252,822 fixations of all 39 subjects on 65 videos
were obtained.

It is worth mentioning that our dataset includes the
salient objects other than faces. Among 65 videos in
MUFVET-I, for instance, 24 videos have salient objects oth-
er than faces, among which 3 videos have new objects ap-
pearing in the scenes. The ratio of frames containing salien-
t objects other than faces is 37.6%. Besides, the average
number of faces per frame is 3.66.

MUFVET-II. For this dataset, 100 multiple-face videos,
which are totally different from MUFVET-I, were used for
the eye-tracking experiment. For more details about these
videos, refer to Table 1 and Figure 2. The overall exper-
iment procedure for MUFVET-II is the same as that for
MUFVET-I. The difference is that other 36 subjects (20
males and 16 females, aging from 20 to 55) were asked
to view all 100 videos in MUFVET-II. Besides, the Tobii
TX300 eye tracker was used to record fixations. During the
experiment, 100 videos were equally divided into 2 sessions
to avoid eye fatigue. At last, there were in total 1,737,826
fixations acquired from all 36 subjects in this dataset, which
is used as the training set for learning attention model of
multiple-face videos. For facilitating the future research,
MUFVET is available online1.

2.2. Data Analysis
In this section, we thoroughly analyze the collected eye

tracking data of MUFVET, in order to further learn the vi-
sual attention model on multiple-face videos. According to

1https://github.com/yufanLIU/salient-face-in-
MUVFET/tree/master/MUVFET.

(a) Fixation proportion (b) Pixel proportion

Figure 3. Proportions of fixations and pixels in face and back-
ground over all videos of MUFVET.

Figure 4. Proportions of fixations falling into one face and other
faces.

the analysis, two findings are investigated as follows.
Finding 1: In multiple-face videos, faces draw a signif-

icant amount of attention. At each video frame, attention

of different subjects consistently focuses on one face among

all faces.

Figure 3 shows the proportions of fixations and pixel-
s belonging to face and background, in MUFVET. We can
see from this figure that despite taking up only 5% pixels,
faces receive 79% fixations. This verifies that faces attract
almost all visual attention in multiple-face videos. Figure
4 further plots the proportions of fixations falling into one
face to those into other faces. We can find from this figure
that visual attention of different subjects is generally consis-
tent in being attracted by one face among all faces. Beside,
the subjective examples of Figure 1 also imply that faces,
normally one face, draw most attention in a video.
Finding 2: Humans probably fixate on the face that is

close to the video center, among all faces at a video frame.
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The center-bias [1] is an obvious cue to predict human
fixations on generic videos. It is also intuitive that people
are likely to pay their attention on the face which is close
to the video center. We hence investigate the correlation of
attention on a face with Euclidean distance of this face to the
video center. To quantify such correlation, we measure the
averaged Spearman rank correlation coefficient [15] (ρ =
−0.22) . This negative value of ρ indicates that humans
probably fixate on the face that is close to the video center.
The small value of ρ also implies that other features need to
be learned for predicting salient face.

3. Proposed Method
In this section, we introduce our DL-based method for

saliency prediction in multiple-face videos, which inte-
grates CNN and LSTM in a uniform framework. The over-
all pipeline of our method is summarized in Figure 5. First,
we detect faces in each frame and feed them into CNNs,
detailed in Section 3.1. Second, we design a CNN to learn
the features related to salient face at each static video frame,
which is discussed in Section 3.2. Section 3.3 presents M-
LSTM that learns to predict salient face, by taking into con-
sideration saliency-related features of CNN and the tempo-
ral transition of salient faces across video frames. In the
end, we adopt a post-processing step to generate saliency
maps of multiple-face videos, discussed in Section 3.4.

3.1. Face Candidate Generation
Base on Finding 1, we first extract faces as our candi-

date regions for visual attention prediction in a multiple-
face video. To this end, we leverage the latest face detec-
tion method, the funnel-structured cascade (FuSt) detection
model [39], to extract candidate faces from an input video.
Moreover, in order to handle challenging cases, such as par-
tial occlusion and poor light conditions, we explore tempo-
ral information to improve face detection performance in
multiple-face videos.

More specifically, we first match the faces across frames,
by searching the face with nearest Euclidean distance. We
then identify the nearest faces of two consecutive frames as
the matched face of a same person, provided their distance
is less than a threshold:

thE = γ ×
√

w2 + h2, (1)

where w and h are width and height of the detected face.
Otherwise, we regard them as non-matching faces, belong-
ing to different persons. In (1), γ is a parameter to control
the sensitivity of face matching, and it is simply set to 0.5
in this paper. On one hand, a smooth filter is leveraged to
improve precision rate, via eliminating some false alarms
of wrongly detected faces. On the other hand, we apply a
linear interpolation to extend face detections to neighboring

Figure 6. Architecture of our CNN for the task of predicting salient
face.

frames within a sliding window, such that the missing faces
can be recovered. In this paper, the length of sliding win-
dow is empirically chosen to be 17, to achieve sufficiently
high recall rate on the face detection results.

3.2. CNN for Feature Extraction
We now design a CNN to automatically learn features

from the detected faces, for the task of predicting whether
the detected face is salient. The detected face regions are
resized to be 256× 256 before being sent to the CNN. Our
CNN is based on the GoogleNet [38], with an additional
batch normalization layer [16] after each convolution layer
to avoid over-fitting. We also use the pre-trainedGoogleNet
and then fine-tune the network using MUFVET-II. Figure 6
shows the architecture of our CNN. After the convolutional
feature extraction in GoogleNet, we use two fully connect-
ed (FC) layers, with softmax activation function, to decide
whether the face is salient or not. The first FC layer has 128
units, whose outputs are used as the features for predicting
the salient face. The second FC layer has 2 units, indicating
the salient or non-salient face.

For training CNN, we automatically label each detected
face to be salient or non-salient, according to the fixations
falling into the face region. Our Finding 1 indicates that the
salient face in each video frame averagely draw more than
60% fixations of all faces. Hence, the faces that take up
above 60% fixations are annotated as salient faces, and other
faces are seen as non-salient ones. We then train our CNN
by the backpropagation (BP) algorithm using MUFVET-II
of our eye tracking database as the training data. Given the
trained CNN, 128-dimension features of the first FC layer
can be extracted from each detected face, which are fed into
our recurrent network as input.

3.3. M-LSTM for Salient Face Prediction
The CNN defined above mainly extract spatial informa-

tion of each face at a single frame. To model temporal dy-
namics of attention transition in videos, we now develop a
novel M-LSTM to predict salient face in the video setting.
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Figure 5. Overview pipeline for our DL-based method.

We formulate the multiple-face saliency prediction as
a regression problem, and build an M-LSTM network to
generate the continuous saliency weights of multiple faces.
This differentiates our approach from the conventional L-
STM [11] for classification. Formally, we aim to predict
saliency weight of each face defined by wn,t, which is the
ground truth (GT) attention proportion of the n-th face to
all faces in frame t. For such prediction, M-LSTM network
generates an estimated saliency weight ŵn,t, which can be
further regarded as the optimization formulation:

min
∑T

t=1

∑N

n=1
||ŵn,t − wn,t||

2

2

s.t.
∑N

n=1
ŵn,t =

∑N

n=1
wn,t = 1, t = 1, 2, ..., T, (2)

Our M-LSTM takes the CNN features {fn,t}N,T
n=1,t=1

as
input, where fn,t stand for feature vector of the n-th face at
frame t. We assume an upper limit of N faces per video.
When fewer faces (< N ) are detected in a video frame, the
corresponding input to M-LSTM is zero vectors. Note that
once the face of a person disappears after a few frames in
a video sequence, the corresponding feature vector fn,t is
set to zero vector. On the other hand, if a new face appears
after a few frames of a video sequence for one more person,
its extracted input features fn,t replace the zero vector. Giv-
en fn,t, a single LSTM chunk is applied to obtain hidden
variable vector hn,t, as follows,

hn,t = LSTM(fn,t,hn,t−1), (3)

where LSTM(·) represents an LSTM chunk. For the LST-
M chunk, we use the standard LSTM which includes input,
forget and output gates. It is worth mentioning that the LST-
M chunk is capable of learning long/short-term dependency
of salient face transition as well as overcoming the problem
of vanishing gradient.

The hidden featurehn,t is then passed through a FC layer
followed by Rectified Linear Units (ReLU) as follows,

sn,t = max(0,V · hn,t), (4)

where V is the parameter matrix for the FC layer. To cap-
ture the correlation between faces in one video frame, we
build a second FC layer that takes {sn,t}Nn=1

of different
faces at the t-th frame as input, and then generates N out-
puts. These outputs are then passed through a softmax layer
to produce the final saliency weight predictions:

ŵn,t =
exp{θn ·

∑N

n=1
(Un,t · sn,t + bn,t)}

∑N

n=1
exp{θn ·

∑N

n=1
(Un,t · sn,t + bn,t)}

, (5)

where Un,t and bn,t are parameters of the FC layer, while
θn is parameter of softmax layer.

Finally, ŵn,t can be obtained by our M-LSTM denoted
as ML(P, fn,t), where P is the parameter set of M-LSTM
to be learned. For P, beyond parameter sharing across time
in one conventional LSTM , our multiple LSTMs in one
frame also share parameters for different faces. It is because
the saliency changing mode in different faces is similar. As
such, parameters from different LSTMs are updated at the
same time. To learn all parameters P, the loss function of
our M-LSTM derived from (2) is

Loss =
T
∑

t=1

N
∑

n=1

||ML(P, fn,t)− wn,t||
2

2
. (6)

When training our M-LSTM with loss function (6), back
propagation through time (BPTT) is utilized to learn pa-
rameters P with adaptive moment estimation (Adam) gra-
dient descent optimization algorithm [23]. After training
M-LSTM, ŵn,t can be achieved for predicting salient face.

3.4. Postprocessing
After obtaining saliency weight of each face from M-

LSTM, postprocessing is required to generate final salien-
cy map. More specifically, we first make use of predicted
saliency weights {ŵn,t}

N
n=1

to generate conspicuity map2
of face channel, denoted asMF

t . It can be computed by

M
F
t =

N
∑

n=1

ŵn,t · cn,t ·M
Fn

t , (7)

where M
Fn

t denotes the conspicuity of the n-th face, and
cn,t is the center-bias weight of each face. In our method,
M

Fn

t is calculated by the latest work [41], which model-
s the conspicuity map of a face with the Gaussian mixture
model (GMM). In addition, Finding 2 has revealed that vi-
sual attention is also correlated with the center-bias feature

2Note that saliency produced by the channel of single feature is defined
as the conspicuity map, in order to make difference from the saliency map
which is generated by all channels.
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Figure 7. Structure of M-LSTM.

of faces in multiple-face videos. Therefore, we apply the
following way for taking into account the face center-bias
by weighting Gaussian model cn,t in (7). Assuming that
dn,t is the Euclidean distance of the n-th face to the video
center at the t-th video frame, cn,t of (7) can be calculated
by the following Gaussian model:

cn,t = exp

(

−
(dn,t −minn dn,t)

2

σ2

)

. (8)

In (8), σ is the standard deviation of the Gaussian model,
which encodes the impact of center-bias on face saliency.
Obviously, we have cn,t = 1 for the face that is closest to
the video center, and other faces have smaller cn,t. Note
that Gaussian center-bias weights of (8) are only imposed
on conspicuity of each face in our method, rather than all
pixels of the conventional center-bias in [5].

In order to consider background in saliency prediction,
our method combines face consipicuity mapMF

t with con-
sipicuity maps of three saliency-related feature channels of
GBVS [10] (i.e., MI

t for intensity, MC
t for color and M

O
t

for orientation). Let St be the final saliency map of the t-th
video frame. It can be computed by the linear combination:

St = β1 ·M
F
t + β2 ·M

I
t + β3 ·M

C
t + β4 ·M

O
t , (9)

where {βk}
4

k=1
are the channel weights of the k-th con-

spicuity map.
Next, we can compute (9) to predict saliency maps

of multiple-face videos, once the values of {βk}
4

k=1
are

known. In fact, channel weights of βk can be learnt from
training data via solving the following optimization formu-
lation:

argmin
{βk}4

k=1

L
∑

l=1

||

4
∑

k=1

βkM
k
l − S

∗
l ||2, s.t.

4
∑

k=1

βk=1,βk>0,

(10)

where {Mk
l }

L
l=1

and {S∗
l }

L
l=1

are the conspicuity maps and
GT fixation maps, for allL training video frames. In this pa-
per, we apply the disciplined convex programming (CVX)
[7] to solve the above optimization formulation. Finally,
saliency map St of each multiple-face video frame can be
yielded via postprocessing on the prediction of M-LSTM.

4. Experiment
4.1. Settings

In our experiments, we tested all 65 videos from
MUFVET-I (mentioned in Section 2.1). In this paper,
the saliency prediction results are reported by averaging
over those 65 videos. For training set, all 100 videos
from MUFVET-II are selected and segmented into 3,443
4-second-clips. Note that overlap is applied in the clip seg-
mentation for the purpose of data augmentation. For tun-
ing hyperparameters, 5-fold cross validation is implement-
ed on the training set. As a result, 32-dimension is applied
for all hidden states {hn,t}

N,T
n=1,t=1

of LSTM. Besides, the
batch size is set to be 128. Learning rate is 0.0001, and
it is reduced by a factor of 0.01 every 500 iterations with
Adam [23].

For postprocessing, a 2-dimension Gaussian filter, with
the cut-off frequency being 6 dB, is applied to smooth
the fixations of face regions in the training frames. Then,
{S∗

l }
L
l=1

can be obtained for calculating the weight of each
feature channel by (10). Moveover, σ of (8) is set to 10−0.2

for imposing center-bias on saliency of each face, in order
to make saliency prediction appropriate. The impact of dif-
ferent σ on saliency prediction results is to be discussed in
Section 4.3.

4.2. Evaluation on saliency prediction
In this section, we compare our method with 8 con-

ventional saliency prediction methods3, including Xu et al.
[41], Salicon [14], Jiang et al. [21], GBVS [10], Rudoy et
al. [37], PQFT [8], Surprise [18] and OBDL [12]. Among
them, [37], [8], [18] and [12] are the latest video saliency
prediction methods. Besides, [41], [14], [21] and [10] are
recent image saliency prediction methods. To be more spe-
cific, [41] and [21] work on saliency prediction of single-
face and multiple-face images, respectively. We compare
our method to these two top-down methods, as there is no
multiple-face saliency prediction method for videos. Note
that we use our multiple-face detection technique of Sec-
tion 3.1 to detect faces for [41], as its face detection only
handles the single-face scenario. On the contrary, [10] is a
bottom-upmethod, which provides background saliency for
our method. Therefore, [10] is also included in our compar-
ison. In addition, [14] is another latest DL-based method

3In our experiments, we run the codes provided by the authors with
default parameters, to obtain saliency prediction results.
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Figure 8. Saliency maps for different frames of a video sequence
selected from MUFVET-I. These maps are generated by GT hu-
man fixations, our method, Xu et al. [41], Salicon [14], Jiang et
al. [21], OBDL [12], Rudoy et al. [37], PQFT [8], Surprise [18]
and GBVS [10].

for saliency detection, which is also compared with our DL-
based method.

The most recent work of [27] has reported that normal-
ized scanpath saliency (NSS) and correlation coefficient (C-
C) perform the best among all metrics in evaluating salien-
cy prediction accuracy4. Thereby, we compare our method
with other 8 methods in terms of NSS and CC. Table 2 re-
ports the comparison results of saliency prediction, aver-
aged over all 65 test videos of MUFVET-I. We can see from
this table that our method is much better than all other meth-
ods in predicting saliency of multiple-face videos. Specifi-
cally, our method has 0.98 NSS and 0.13 CC improvement
over [41], the performance of which ranks second. Such an
improvement is mainly due to the following reason: Salien-
cy of all faces is with equal importance in [41], while the
consideration of temporal transition enables our method to
accurately predict salient face across frames. Moreover, it is
worth pointing out that both our method and [41] are supe-
rior to [21] which imposes unequal importance on different
faces in an image. The main reason is that the utilization of
only static features in [21] may predict wrong salient face in
a video. On the other hand, long short-term temporal tran-
sition of our method is really effective in finding the salient

4 [27] has also shown that area under ROC (AUC) is the worst metric
in measuring accuracy of saliency prediction.

Figure 9. Saliency maps for several frames selected from different
video sequences of MUFVET-I. These maps are generated by GT
human fixations, our method, Xu et al. [41], Salicon [14], Jiang et
al. [21], OBDL [12], Rudoy et al. [37], PQFT [8], Surprise [18]
and GBVS [10].

face in multiple-face videos.
Next, we move to the comparison of subjective results.

We show in Figure 8 the saliency maps of several frames
in a video, generated by our and other 8 methods. From
this figure, one may observe that our method is capable of
finding the salient face. As a result, the saliency maps of
our method are more accurate than those of other methods.
For example, we can see from Figure 8 that the salient face
is changed from the girl to the man and then back to the girl,
which is extremely consistent with our prediction. On the
contrary, [41] finds all three faces as salient ones, and [21]
misses the salient face of the speaking man. In addition,
Figure 9 provides the saliency maps of the frames selected
from 5 videos. Again, this figure verifies that our method is
able to precisely locate salient face by considering temporal
saliency transition in M-LSTM.

4.3. Performance analysis of saliency prediction
Since our M-LSTM presented in Section 3.3 aims at pre-

dicting saliency weights of faces across video frames, it is
worth evaluating the prediction error of M-LSTM. To this
end, Figure 10 plots saliency weights of faces by CNN, M-
LSTM and GT, for the video sequence of Figure 8. In this
figure, the curves of CNN refer to the output of CNN (ei-
ther 0 or 1), and the curves of M-LSTM are obtained upon
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Table 2. Accuracy of saliency prediction by our and other 8 methods, averaged over all test videos of MUFVET-I.
Our GT Xu et al. [41] Salicon [14] Jiang et al. [21] GBVS [10] Rudoy et al. [37] PQFT [8] Surprise [18] OBDL [12]

NSS 4.12 4.21 3.14 2.96 0.97 1.23 1.42 0.88 0.88 1.62
CC 0.74 0.77 0.61 0.52 0.29 0.33 0.36 0.22 0.21 0.30

Figure 10. Saliency weights of faces along with processed frames
for the video in Figure 10, predicted by our CNN (green line), M-
LSTM (blue line) and GT (red line). Note that the GT in this curve
is plotted with proportion of human fixations in each face to those
in all faces. In this figure, the mean squared error (MSE) between
M-LSTM and GT averaged over 3 faces is 0.0081.

the predicted face saliency weights output byM-LSTM. Be-
sides, the curves for GT are the target output of M-LSTM.
We can see from Figure 10 that the predicted face saliency
weights of M-LSTM approach to the target, with significan-
t improvement and smooth over the curves of CNN. More
importantly, similar results can be found for other videos in
our database. Here, we calculate quantify mean squared er-
ror (MSE) of face saliency weights between M-LSTM and
GT, averaged over all faces in MUVFET-I. The averaged
MSE is 0.0081, the same as the result of the video sequence
in Figure 10. This also implies the small gap of M-LSTM
in predicting saliency weights of faces.

Next, it is interesting to see how the gap between our pre-
dicted and GT face saliency weights influences saliency pre-
diction performance. To this end, we use GT face saliency
weights {wn,t}

N,T
n=1,t=1

as the input to (7) for generalizing
the final saliency maps of multiple-face videos. The aver-
aged results are reported in the second column of Table 2. It
can be found that saliency prediction performance of using
estimated (M-LSTM) and target (GT) saliency weights of
faces is close, implying that our method is approaching to
the “upper bound” performance.

At last, it is necessary to investigate the effectiveness of
face center-bias introduced in our method. To this end, s-
tandard deviation σ in (8) is traversed, imposing different
impact of face center-bias on saliency prediction. Figure
11 plots the NSS and CC results at different σ, averaged
over all videos. It is obvious that the best performance is
achieved once σ = 10−0.2, and thus σ was set to 10−0.2 in
our above experiments. Note that center-bias is not the most
important factor influencing performance improvement of
our approach. We test the baseline that places all the weight

(a) NSS (b) CC

Figure 11. Saliency prediction performance versus differen-
t center-bias parameter σ of (8).

to the face closest to the center, and the average NSS of this
baseline is 2.57, which is much lower than 4.12 of our ap-
proach. In addition, we conduct an experiment for the base-
line relying on [41] with the center prior. The results show
an improvement of 0.03 in NSS and 0.007 in CC over [41],
which is still much inferior to our method.

5. Conclusion

Interestingly, we found that when viewing multiple-face
videos, humans are consistently attracted by one face in
each single frame. Such a finding was verified by the s-
tatistical analysis on the eye tracking database of MUFVET
established in this paper, in which MUFVET-I is set for test
and MUFVET-II is for training. To predict the salient face
in multiple-face videos, we proposed in this paper a DL-
based method, in which both CNN and RNN are combined
in a framework and then trained over MUFVET-II. Specifi-
cally, CNN, fined-tuned on Google Net, was adopted in our
DL-based method, for automatically learning the features
relevant to locating the salient face. After observing CN-
N features in each video frame, M-LSTM, as a deep RN-
N proposed in this paper, was utilized to take into account
the transition of face saliency from previous frames, either
in short-term or long-term. As a result, saliency maps of
multiple-face videos can be generated upon the predicted
salient face. Finally, the experimental results illustrated that
our method is able to significantly advance state-of-the-art
saliency prediction on multiple-face videos.
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