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Abstract

This paper targets on the problem of set to set recogni-

tion, which learns the metric between two image sets. Im-

ages in each set belong to the same identity. Since images

in a set can be complementary, they hopefully lead to high-

er accuracy in practical applications. However, the quali-

ty of each sample cannot be guaranteed, and samples with

poor quality will hurt the metric. In this paper, the quali-

ty aware network (QAN) is proposed to confront this prob-

lem, where the quality of each sample can be automatically

learned although such information is not explicitly provided

in the training stage. The network has two branches, where

the first branch extracts appearance feature embedding for

each sample and the other branch predicts quality score for

each sample. Features and quality scores of all samples in

a set are then aggregated to generate the final feature em-

bedding. We show that the two branches can be trained in

an end-to-end manner given only the set-level identity an-

notation. Analysis on gradient spread of this mechanism

indicates that the quality learned by the network is benefi-

cial to set-to-set recognition and simplifies the distribution

that the network needs to fit. Experiments on both face veri-

fication and person re-identification show advantages of the

proposed QAN. The source code and network structure can

be downloaded at GitHub1

1. Introduction

Face verification [12, 26, 27, 28, 30] and person re-

identification [5,6,20,42] have been well studied and wide-

ly used in computer vision applications such as financial

identity authentication and video surveillance. Both the t-

wo tasks need to measure the distance between two face or

person images. Such tasks can be naturally formalized as a

metric learning problem, where the distance of images from

the same identity should be smaller than that from different

1github.com/sciencefans/Quality-Aware-Network

Note that we are developing P-QAN (a fine-grained version of QAN, see

Sec.5) in this repository so the performance of the code may be higher

than that we report in this paper.
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Figure 1. Illustration of our motivation, best viewed in color.

Left column: A classical puzzle in set-to-set recognition. Both

set A (upper) and B (lower) contain noisy image samples caused

by shake and blur. Their features (shown by histograms in middle

row) are more similar to samples in other class than the inner class.

Right column: Distributions and samples of two identities in hy-

perspace. Top: Due to the noisy, variances of two identities are

large and they both have hard negative samples. Bottom: Quality

aware network (QAN) weaken the noisy samples and narrow down

identities’ variances, which makes them more discriminative.

identities. Built on large scale training data, convolutional

neural networks and carefully designed optimization criteri-

on, current methods can achieve promising performance on

standard benchmarks, but may still fail due to appearance

variations caused by large pose or illumination.

In practical applications, instead of one single image, a

set of images for each identity can always be collected. For

example, the image set of one identity can be sampled from

the trajectory of the face or person in videos. Images in a

set can be complementary to each other, so that they provide

more information than a single image, such as images from

different poses. The direct way to aggregate identity infor-
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mation from all images in a set can be simply max/average

pooling appearance features of all images. However, one

problem in this pooling is that some images in the set may

be not suitable for recognition. As shown in Figure 1, both

sets from left-top and left-bottom hold noisy images caused

by shake or blur. If the noisy images are treated equally

and max/average pooling is used to aggregate all images’

features, the noisy images will mislead the final representa-

tion.

In this paper, in order to be robust to images with poor

quality as described above and simultaneously use the rich

information provided by the other images, our basic idea is

that each image can have a quality score in aggregation. For

that, we propose a quality aware network (QAN), which has

two branches and then aggregated together. The first branch

named feature generation part extracts the feature embed-

ding for each image, and the other branch named quality

generation part predicts quality score for each image. Fea-

tures of images in the whole set are then aggregated by the

final set pooling unit according to their quality.

A good property of our approach is that we do not su-

pervise the model by any explicit annotations of the quality.

The network can automatically assign low quality scores to

images with poor quality in order to keep the final feature

embedding useful in set-to-set recognition. To implemen-

t that, an elaborate model is designed in which embedding

branch and score generation branch can be jointly trained

through optimization of the final embedding. Specially in

this paper, we use the joint triplet and softmax loss on top

of image sets. The designed gradient of image set pooling

unit ensures the correctness of this automatic process.

Experiments indicate that the predicted quality score is

correlated with the quality annotated by human, and the pre-

dicted quality score performs better than human in recogni-

tion. In this paper, we show the applications of the proposed

method on both person re-identification and face verifica-

tion. For person re-identification task, the proposed quality

aware network improves top-1 matching rates over the base-

line by 14.6% on iLIDS-VID and 9.0% on PRID2011. For

face verification, the proposed method reduces 15.6% and

29.32% miss ratio when the false positive rate is 0.001 on

YouTube Face and IJB-A benchmarks.

The main contributions of the paper are summarized as

follows.

• The proposed quality aware network automatically

generates quality scores for each image in a set and

leads to better representation for set-to-set recognition.

• We design an end-to-end training strategy and demon-

strate that the quality generation part and feature gen-

eration part benefit from each other during back prop-

agation.

• Quality learnt by QAN is better than quality estimated

by human and we achieves new state-of-the-art perfor-

mance on four benchmarks for person re-identification

and face verification.

2. Related work

Our work is build upon recent advances in deep learn-

ing based person re-identification and unconstrained face

recognition. In person re-identification, [20, 37, 41] use

features generated by deep convolutional network and ob-

tain state-of-the-art performance. To learn face representa-

tions in unconstrained face recognition, Huang et al. [11]

uses convolutional Restricted Boltzmann Machine while

deep convolutional neural network is used in [28, 30]. Fur-

thermore, [26, 29] use deeper convolutional network and

achieved accuracy that even surpasses human performance.

The accuracy achieved by deep learning on image-based

face verification benchmark LFW [12] has been promot-

ed to 99.78%. Although deep neural network has achieved

such great performance on these two problems, in present

world, unconstrained set-to-set recognition is more chal-

lenging and useful.

Looking backward, there are two different approaches

handling set-to-set recognition. The first approach takes im-

age set as a convex hull [2], affine hull [10] or subspace

[1,13]. Under these settings, samples in a set distribute in a

Hilbert space or Grassmann mainfold so that this issue can

be formulated as a metric learning problem [23, 39].

Some other works degrade set-to-set recognition to

point-to-point recognition through aggregating images in

a set to a single representation in hyperspace. The most

famous approach in this kind is the Bag of features [17],

which uses histogram to represent the whole set for fea-

ture aggregation. Another classical work is vector of locally

aggregated descriptors (VLAD) [14], which aggregates all

local descriptors from all samples. Temporal max/average

pooling is used in [36] to integrate all frames’ features gen-

erated by recurrent convolutional network. This method us-

es the 1st order statistics to aggregate the set. The 2nd or-

der statistics is used in [32, 43] in assuming that samples

follow Gaussian distribution. In [8], original faces in a set

are classified into 20 bins based on their pose and quality.

Then faces in each bin are pooled to generate features and

finally feature vectors in all bins are merged to be the final

representation. [38] uses attention mechanism to summarize

several sample points to a single aggregated point.

The proposed QAN belongs to the second approach. It

discards the dross and selects the essential information in

all images. Different from recent works which learn ag-

gregation based on fixed feature [38] or image [8], the

QAN learns feature representation and aggregation simulta-

neously. [7] proposed a similar quality aware module named

“memorability based frame selection” which takes “visual

entropy” to be the score of a frame. But the score of a frame
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Figure 2. The end-to-end learning structure of quality aware net. The input of this structure is three image sets Sanchor , Spos and Sneg

belong to class A, A and B. Each of them pass through the fully convolutional network (FCN) to generate the middle representations,

which will be fed to quality generation part and feature generation part. The former generates quality score for each image and the latter

generates final representation for each image. Then the scores and representations of all image will be aggregated by set pooling unit and

the final representation of the image set will be produced. We use softmax-loss and triplet-loss to be the supervised ID signal.

is defined by human and independent with feature genera-

tion unit. In QAN, score is automatically learned and qual-

ity generation unit is joint trained with feature generation

unit. Due to mutual benefit between the two parts during

training, performance is improved significantly by jointly

optimizing images aggregation parameter and images’ fea-

ture generator.

3. Quality aware network (QAN)

In our work we focus on improving image set embedding

model, which maps an image set S = {I1, I2, · · · , IN} to

an representation with fixed dimension so that image sets

with different number of images are comparable with each

other. Let Ra(S) and RIi denote representation of S and

Ii. Ra(S) is determined by all elements in S, therefore it

can be denoted as

Ra(S) = F(RI1 , RI2 , · · · , RIN ). (1)

The RIi is produced by a feature extraction process, con-

taining traditional hand-craft feature extractors or convo-

lutional neural network. F(·) is an aggregative function,

which maps a variable-length input set to a representation

of fixed dimension. The challenge is to find an optimized

F(·), which aggregate features from the whole image set

to obtain the most discriminative representation. Based on

notion that images with higher quality are easier for recog-

nition while images with lower quality containing occlusion

and large pose have less effect on set representation, we de-

note F(·) as

F(RI1 , RI2 , · · · , RIN ) =

∑N

i=1
µiRIi∑N

i=1
µi

(2)

µi = Q(Ii), (3)

where Q(Ii) predicts a quality score µi for image Ii. So the

representation of a set is a fusion of each images’ features,

weighted by their quality scores.

3.1. QAN for image set embedding

In this paper, feature generation and aggregation module

is implemented through an end-to-end convolutional neu-

ral network named QAN as shown in Fig. 2. Two branches

are splited from the middle of it. In the first branch, quali-

ty generation part followed by a set pooling unit composes

the aggregation module. And in the second branch, fea-

ture generation part generates images’ representation. Now

we introduce how an image set flows through QAN. At the

beginning of the process, all images are sent into a fully

convolutional network to generate middle representations.

After that, QAN is divided into two branches. The first one

(upper) named quality generation part is a tiny convolution

neural network (see Sec. 3.4 for details) which is employed

to predict quality score µ. The second one (lower), called

feature generation part, generates image representations RI

for all images. µ and RI are aggregated at set pooling unit

F , and then pass through a fully connected layer to get the

final representation Ra(S). To sum up, this structure gen-

erates quality scores for images, uses these quality scores

to weight images’ representations and sums them up to pro-

duce the final set’s representation.

3.2. Training QAN without quality supervision

We train the QAN in an end-to-end manner. The data

flow is shown in Fig. 2. QAN is supposed to generate dis-

criminative representations for images and sets belonging to

different identities. For image level training, a fully connec-

tion layer is established after feature generation part, which

is supervised by Softmax loss Lclass. For set level training,

a set’s representation Ra(S) is supervised by Lveri which

is formulated as:

Lveri = ‖Ra(Sa)  Ra(Sp)‖
2  ‖Ra(Sa)  Ra(Sn)‖

2 + δ

(4)

The loss function above is referred as Triplet Loss in pre-

vious works [26]. We define Sa as anchor set, Sp as pos-

itive set, and Sn as negative set. This function minimizes

variances of intra-class samples while Softmax loss cannot
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guarantee that because softmax-loss directly optimizes the

probability of each class, but not the discrimination of rep-

resentation.

Keeping this in mind, we consider the set pooling opera-

tion F . The gradients back propagated through set pooling

unit can be formulated as follows,

∂F

∂RIi

=
∂Ra(S)

∂RIi

= µi (5)

∂F

∂µi

=
∂Ra(S)

∂µi

= RIi  Ra(S) (6)

So we can formulate propagation process of the final loss as

∂Lveri

∂RIi

=
∂Ra(S)

∂RIi

·
∂Lveri

∂Ra(S)
=

∂Lveri

∂Ra(S)
· µi (7)

∂Lveri

∂µi

=
∂Ra(S)

∂µi

· (
∂Lveri

∂Ra(S)
)T

=

D∑

j=1

(
∂Lveri

∂Ra(S)j
· (xij  Ra(S)j))

(8)

Where D is the dimension of images’ representation. We

discuss how a quality score µ is automatically learned by

this back propagation process.

3.3. Mechanism for learning quality score

Ra(Sanchor)

Ra(Sneg)

Gradient of 
Sanchor

Gradient of Sneg

Figure 3. Two different identities in training, best viewed in color.

Red translucent dots and green translucent dots indicate images in

sets of two different identities. And the two solid dots denote the

weighted centers of the two sets, which are also the representa-

tions of two sets Sanchor and Sneg . The gradients of Sanchor and

Sneg are shown with red arrows. The xni and xai are two image

representations in two sets.

Automatic gradient of µ. After back-propagation

through set pooling unit, gradient of µi with regard to Lveri

can be calculated according to the Eq. 8, which is the dot

product of gradient from Ra(S) and RIi . So if angle of

∇Ra(S) and RIi belongs to ( 90◦, 90◦), µi’s gradient will

be positive. For example, as shown in Fig. 3, the angle of

∇Ra(Sneg) and xni  Ra(Sneg) is less than 90◦, so the

x′

nis quality score µni will become larger after this back

propagation process. In contrast, the relative direction of

xai is in the opposite side of the gradient of Ra(Sanchor),
making it obviously a hard sample, so its quality score µai

will tend to be smaller. Obviously, samples in the “correc-

t” directions along with set gradient always score higher in

quality, while those in the “wrong” directions gain lower

weight. For example in Fig. 3, green samples in the upper

area and red samples in the lower area keep improving their

quality consistently while in the middle area, sample’s qual-

ity reduces. To this end, µi represents whether i  th image

is a good sample or a hard sample. This conclusion will be

further demonstrated by experiments.

µ regulates the attention of RIi . The gradient of RIi is

shown in Eq. 7 with a factor µi, together with the gradient

propagated from Softmax loss. Since most of hard sam-

ples with lower µi are always poor images or even full of

background noises, the factor µi in gradient of RIi weak-

en their harmful effect on the whole model. That is, their

impact on parameters in feature generation part is negligi-

ble during back propagation. This mechanism helps feature

generation part to focus on good samples and neglect ones,

which benefits set-to-set recognition.

3.4. Details of quality generation part

ConvNet Sigmoid L1 
Normalization

Middle representation 
of  pool4 layer

N x 512 x 14 x 14

N x 1 x 1 x 1 N x 1 x 1 x 1

Origin scores
Sigmoid and L1 

normalization for all 
scores in set

 Final scores μ for all
images in set

Figure 4. Structure of quality generation unit. The input of this

unit is middle representations of a set which contains N images

and it produces the normalized weights of all N images.

In quality aware network (QAN), quality generation part

is a convolution neural network. We design different s-

core generation parts start at different feature maps. We

use QAN split at Pool4 as an instance. As shown in Fig. 4,

the output spatial of Pool4 layer is 512× 14× 14. In order

to generate a 1 × 1 quality score, the convolution part con-

tains a 2-stride pooling layer and a final pooling layer with

kernel size 7 × 7. A fully connected layer is followed by

the final pooling layer to generate the original quality score.

After that, the origin scores of all images in a set are sent to
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Figure 5. Samples with their qualities predicted by QAN, best viewed in color. Top: Comparison between two images from same person.

From up to down, each column shows the two frames of a same person. The quality of the top one is better than the bottom one. Bottom:

Random selected images in test set sorted by quality scores from left to right, best viewed in color.

sigmoid layer and group L1-normalization layer to generate

the final scores µ. For QAN split at Pool3, we will add

a block containing three 1-stride convolution layer and a 2-

stride pooling layer at the beginning of quality generation

unit.

4. Experiments

In this section, we first explore the meaning of the qual-

ity score learned by QAN. Then QAN’s sensitivity to level

of feature is analysed. Based on above knowledge, we e-

valuate QAN on two human re-identification benchmarks

and two unconstrained face verification benchmarks. Final-

ly, we analyse the concept learned by QAN and compare it

with score labelled by human.

4.1. What is learned in QAN?

Qualitative analysis We visualize images with their µ

generated by QAN to explore the meaning of µ. Instances

of same person with different qualities are shown in the first

two rows in Fig. 5. All images are selected from test set.

The two images in the same column belong to a same per-

son. The upper images are random selected from images

with quality scores higher than 0.8 and the lower images are

selected from images with quality scores lower than the cor-

responding higher one. It is easy to find that images with de-

formity, superposition, blur or extreme light condition tend

to obtain lower quality scores than normal images.

The last two rows in Fig. 5 give some examples of oth-

er images random selected from test set. They are sorted

by their quality scores from left to right. We can observe

that instances with quality scores larger than 0.70 are easy

to recognize by human while the others are hard. Especial-

ly many of hard images include two or more bodies in the

center and we can hardly discriminate which one is the right

target.

Quantitative analysis In order to measure the relation-

ship between the quality labelled by human and µ predicted

by QAN, 1000 images in YouTube Face are selected ran-

domly and the quality of them are rated subjectively by 6

volunteers, where each volunteer estimates a quality score

for each image, ranging from 0 to 1. All the ratings of

each volunteer are aligned by logistic regression. Then the

6 aligned scores of each image are averaged and finally nor-

malized to [0, 1] to get the final quality score from human.

We divide the images into ten partitions based on hu-

man’s score as shown in Fig. 6. In which we show the cor-

responding quality statistics generated by QAN. It is obvi-

ous that the scores given by the QAN are strongly corre-

lated with human-defined quality. We further analyse the

499,500 image pairs from these 1000 images and ask hu-
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Figure 6. Comparison of qualities estimated by human and predicted

by QAN.

man and QAN to select the better one in each pair. Result

shows that the decision made by QAN has 78.1% in com-

mon with human decision.

4.2. Person re­identification

Datasets. For person re-identification, we collec-

t 134,942 frames with 16,133 people and 212,726 bound-

ing boxes as the training data. Experiments are conducted

on PRID2011 [9] and iLiDS-VID [33] datasets. PRID2011

contains frames in two views captured at different positions

of a street. CameraA has 385 identities while CameraB

has 749 identities, and the two videos have a overlap of 200

people. Each person has 5 to 675 images, and the average

number is 100. iLIDS-VID dataset has 300 people, and each

person has two sets also captured from different positions.

Each person has 23 to 192 images.

Evaluation procedure. The results are reported in terms

of Cumulative Matching Characteristics (CMC) table, each

column in which represents matching rate in a certain top-

N matching. Two settings are used for comprehensive e-

valuation. In the first setting, we follow the state-of-the-art

method described in [40] and [34]. The sets whose frame

number is larger than 21 are used in PRID2011, and all the

sets in iLIDS-VID are used. Each dataset is divided into

two parts for fine-tuning and testing, respectively. For the

testing set, sets form CameraA are taken as probe set while

sets from CameraB are taken as the gallery. The final num-

ber is reported as the average of “10-fold cross validation”.

In the second setting, we conduct cross-dataset testing. Dif-

ferent from the first setting, we ignore the finetuning process

and use all data to test our model. That is, in PRID2011, the

first 200 people from CameraA serve as probes, and all sets

from CameraB are used as the gallery set. In iLIDS-VID,

CameraA are used as the probe set, and Camera B serve as

gallery set.

Baseline. We implement two baseline approaches. In

the first baseline, we use average pooling to aggregate all

images’ representations. In the second baseline, a minimal

cosine distance between two closures is used to be their sim-

ilarity.

4.2.1 Evaluation on common setting

Results of evaluation obeying “10-fold cross validation” on

PRID2011 and iLIDS-VID are shown in Table 1 and Ta-

ble 2. Benefiting from the large scale training dataset, our

CNN+AvePool and CNN+Min(cos) baselines are close to

or even better than the state-of-the-art. Notice that most of

the leading methods listed in table consider both appearance

and spatio-temporal information while our method only

considers appearance information. On PRID2011 dataset,

QAN increase top-1 matching rate by 11.1% and 29.4%

compared with CNN+AvePool and CNN+Min(cos). On

iLIDS-VID dataset, inherent noise is much more than that

in PRID2011, which significantly influence the accuracy of

CNN+Min(cos) since operator “Min(cos)” is more sensitive

than “AvePool” to noisy samples . However, QAN achieves

more gain on this noisy dataset. It increase top-1 matching

rate by 12.21% and 37.9%.

PRID2011

Methods CMC1 CMC5 CMC10 CMC20

QAN 90.3 98.2 99.32 100.0

CNN+AvePool 81.3 96.6 98.5 99.6

CNN+Min(cos) 69.8 91.3 97.1 99.8

CNN+RNN [36] 70 90 95 97

STFV3D [22] 42.1 71.9 84.4 91.6

TDL [40] 56.7 80.0 87.6 93.6

eSDC [34] 48.3 74.9 87.3 94.4

DVR [34] 40.0 71.7 84.5 92.2

LFDA [25] 43.7 72.8 81.7 90.9

KISSME [16] 34.4 61.7 72.1 81.0

LADF [21] 47.3 75.5 82.7 91.1

TopRank [19] 31.7 62.2 75.3 89.4

Table 1. Comparison of QAN, AvePool, Min(cos) and other

state-of-the-art methods on PRID2011, where the number repre-

sents the cumulative matching rate in CMC curve.

Based on these two experiments, QAN significantly out-

performs two baselines on both datasets. It also perform-

s better than many state-of-the-art approaches and pushes

top-1 matching rate 20.3% higher than previous best CN-

N+RNN [36] on PRID2011 and 10% on iLIDS-VID. The

performance gain is more significant on noisy iLIDS-VID

dataset, which meets the expectation and proves QAN’s a-

bility to deal with images of poor quality.

4.2.2 Dataset cross evaluation

To prevent our model from over-fitting the quality distribu-

tion of test set, we conduct dataset cross evaluation. We
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iLIDS-VID

Methods CMC1 CMC5 CMC10 CMC20

QAN 68.0 86.8 95.4 97.4

CNN+AvePool 60.6 84.9 89.8 93.6

CNN+Min(cos) 49.3 79.4 88.2 91.9

CNN+RNN [36] 58 84 91 96

STFV3D [22] 37.0 64.3 77.0 86.9

TDL [40] 56.3 87.6 95.6 98.3

eSDC [34] 41.3 63.5 72.7 83.1

DVR [34] 39.5 61.1 71.7 81.0

LFDA [25] 32.9 68.5 82.2 92.6

KISSME [16] 36.5 67.8 78.8 87.1

LADF [21] 39.0 76.8 89.0 96.8

TopRank [19] 22.5 56.1 72.7 85.9

Table 2. Comparison of QAN, AvePool, Min(cos) and other

human re-identification methods on iLIDS-VID, where the num-

ber represents the cumulative matching rate on CMC curve.

PRID2011

Methods CMC1 CMC5 CMC10 CMC20

QAN 34.0 61.3 74.0 83.1

CNN+AvePool 29.4 57.5 68.8 80.2

CNN+Min(L2) 28.5 57.1 67.1 78.6

CNN+RNN [36] 28 57 69 81

Table 3. Cross-dataset performance of QAN on PRID2011, where

the number represents the cumulative accuracy on CMC curve.

iLIDS-VID

Methods CMC1 CMC5 CMC10 CMC20

QAN 47.7 70.4 83.9 91.3

CNN+AvePool 44.1 65.8 78.5 88.9

CNN+Min(L2) 41.9 61.7 75.5 79.5

Table 4. Cross-dataset performance of QAN on iLIDS-VID,

where the number represents the cumulative accuracy on CMC

curve.

extract set representation of iLIDS-VID and PRID2011 di-

rectly using trained QAN without fine-tuning. The QAN

representation is then evaluated for CMC scores. Table 3

and 4 shows the results of QAN and the two baselines. It

can be found that the QAN is robust even in cross-dataset

setting. It improves top-1 matching by 15.6% and 8.2%

compared to the baselines. This result shows that the qual-

ity distribution learned from different datasets by QAN is

able to generalize to other datasets.

4.3. Unconstrained face verification

Datasets. For face verification, we train our base mod-

el on extended version of VGG Face dataset [24], in which

we extend the identity number from 2.6K to 90K and image

number from 2.6M to 5M. The model is evaluated on Y-

ouTube Face Database [35] and IARPA Janus Benchmark

A (IJB-A) dataset. YouTube Face contains 3425 videos

of 1595 identities. It is challenging in that most faces are

blurred or has low resolution. IJB-A dataset contains 2042

videos of 500 people. Faces in IJB-A have large pose vari-

ance.

Evaluation procedure. We follow the 1:1 protocol

in both two benchmarks and evaluate results using re-

ceiver operating characteristic (ROC) curves. Area under

curve (AUC) and accuracy are two important indicators of

the ROC. The datasets are evaluated using 10-fold cross-

validation.

Training details. All faces in training and testing set-

s are detected and aligned by a multi-task region proposal

network as described in [3]. Then we crop the face regions

and resize them to 256 × 224. After that, a convolution-

al neural networks with 256 × 224 inputs are used for face

verification. It begins with a 2-stride convolution layer, fol-

lowed by 4 basic blocks, while each block has three 1-stride

convolution layers and one 2-stride pooling layers. After

that, a fully connected layer is used to get the final feature.

Quality generation branch is built on top of the third pool-

ing layer, where the spatial size of middle representation

response is 256× 16× 14. We pre-train the network super-

vised by classification signal and then train the whole QAN.

4.3.1 Results on YouTube Face and IJB-A benchmark

Method Accuracy(%) AUC

QAN 96.17± 0.09% 99.14± 0.12%

CNN+AvePool 95.46± 0.07% 98.66± 0.04%

CNN+Min(cos) 94.87± 0.10% 98.37± 0.06%

NAN [38] 95.52±0.06% 98.7%

FaceNet [26] 95.12±0.39% -

DeepID2+ [29] 93.2±0.2% -

DeepFace-single [30] 91.4±1.1% 96.3%

EigenPEP [18] 84.8±1.4% 92.6%

Table 5. Average accuracy and AUC of QAN on YouTube Face

dataset, compared with baselines and other state-of-the-arts.

TPR@FPR 1e-3 1e-2 1e-1

QAN 89.31±3.92% 94.20±1.53% 98.02±0.55%

CNN+AvePool 85.30±3.48% 93.81±1.44 97.85±0.61%

CNN+Min(cos) 82.74±3.61% 92.06±1.98 97.29±0.67%

NAN [38] 78.5±2.8% 89.7±1.0% 95.9±0.5%

DCNN+metric [4] - 78.7±4.3% 94.7±1.1%

LSFS [31] 51.4±6.0% 73.3±3.4% 89.5±1.3%

OpenBR [15] 10.4±1.4% 23.6±0.9% 43.3±0.6%

Table 6. TPRs of QAN at specific FPRs on IJB-A dataset, com-

pared with baselines and other state-of-the-arts.
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Figure 7. Average ROC curves of different

methods on YouTube Face Dataset
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Figure 8. ROC results for score generation part

learned by different level of feature.
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Figure 9. QAN with human score performs

better than the two baseline but worse than

that scored by network.

On YouTube Face dataset, it can be observed in Fig. 7

and Table 5 that the accuracy and AUC of our baselines are

similar with the state-of-the-art methods such as FaceNet

and NAN. Based on this baseline, QAN further reduces

15.6% error ratio. Under ROC evaluation metric, QAN sur-

passes NAN by 8% and DeepFace by 80% at 0.001 FPR

(false positive rate), which ensembles 25 models.

On IJB-A dataset, QAN significantly outperforms the

state-of-the-art algorithm NAN by 10.81% at 0.001 FPR,

4.5% at 0.01 FPR and 2.12% at FPR=0.1, as shown in Ta-

ble 6. Compared with average pooling baseline, QAN re-

duces false negative rate at above three FPRs by 29.32%,

6.45% and 7.91%.

Our experiments on the two tasks show that QAN is ro-

bust for set-to-set recognition. Especially on the point of

low FPR, QAN can recall more matched samples with less

errors.

4.4. Quality by QAN VS. quality by human

There is no explicit supervision signals for the cascade

score generation unit in training. So another problem arises:

is it better to use human-defined scores instead of letting

the network learn itself? In YouTube Face experiment, we

replace the quality score Q(I) with volunteer-rated scores

and got the following result in Fig.9, which is better than

the two baselines but inferior to the result of original QAN.

It shows that Q is similar with human thoughts, but more

suitable for recognition. Quality score by human can also

enhance the accuracy but is still worse than QAN’s.

4.5. Diagnosis experiments

Level of middle representation may affect the perfor-

mance of QAN. We use YouTube face to analyse this factor

by comparing different configurations.

In the first configuration, the weight generation part is

connected to the image. In the second to fifth configura-

tions, weight generation part is set after four pooling layers

in each block, respectively. In the sixth configuration, we

connect weight generation part to a fully connected layer.

For the final configuration, we fix all parameters before the

final fully connection layer in the sixth configuration and

only update parameters in weight generation part, which is

taken as the seventh structure. To minimize the influence

by parameters’ number, the total size of different models is

restricted to the same by changing the channel number.

Results are shown in Fig. 8. It can be found that the per-

formance of QAN improves at the beginning and reaches

the top accuracy at Pool3. The end-to-end training version

of feature generation part with quality generation part per-

forms better than that of fixed. So we can make the con-

clusion that 1) the middle level feature is better for QAN

to learn and 2) significant improvement can be achieved by

jointly training feature generation part and quality genera-

tion part.

5. Conclusion and future work

In this paper we proposes a Quality Aware Network

(QAN) for set-to-set recognition. It automatically learns the

concept of quality for each sample in a set without super-

vised signal and aggregates the most discriminative samples

to generate set representation. We theoretically and experi-

mentally demonstrate that the quality predicted by network

is beneficial to set representation and better than human la-

belled.

QAN can be seen as an attention model that pay attention

to high quality elements in a image set. However, an image

with poor quality may still has some discriminative regions.

Considering this, our future work will explore a fine-grained

quality aware network that pay attention to high quality re-

gions instead of high quality images in a image set.
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