
Richer Convolutional Features for Edge Detection

Yun Liu1 Ming-Ming Cheng1 Xiaowei Hu1 Kai Wang1 Xiang Bai2

1Nankai University 2HUST

https://mmcheng.net/rcfEdge/

Abstract

In this paper, we propose an accurate edge detector us-

ing richer convolutional features (RCF). Since objects in

natural images possess various scales and aspect ratios,

learning the rich hierarchical representations is very crit-

ical for edge detection. CNNs have been proved to be effec-

tive for this task. In addition, the convolutional features in

CNNs gradually become coarser with the increase of the re-

ceptive fields. According to these observations, we attempt

to adopt richer convolutional features in such a challeng-

ing vision task. The proposed network fully exploits multi-

scale and multilevel information of objects to perform the

image-to-image prediction by combining all the meaningful

convolutional features in a holistic manner. Using VGG16

network, we achieve state-of-the-art performance on sev-

eral available datasets. When evaluating on the well-known

BSDS500 benchmark, we achieve ODS F-measure of 0.811

while retaining a fast speed (8 FPS). Besides, our fast ver-

sion of RCF achieves ODS F-measure of 0.806 with 30 FPS.

1. Introduction

Edge detection, which aims to extract visually salient

edges and object boundaries from natural images, has re-

mained as one of the main challenges in computer vision for

several decades. It is usually considered as a low-level tech-

nique, and varieties of high-level tasks have greatly bene-

fited from the development of edge detection, such as object

detection [17, 55], object proposal [9, 54, 60–62] and image

segmentation [1, 3, 8, 56].

Typically, traditional methods first extract local cues of

brightness, colors, gradients and textures, or other manu-

ally designed features like Pb [40], gPb [2], and Sketch to-

kens [36], then sophisticated learning paradigms [14,57] are

used to classify edge and non-edge pixels. Although edge

detection approaches using low-level features have made

great improvement in these years [33], their limitations are

M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.

(a) original image (b) ground truth (c) conv3 1 (d) conv3 2

(e) conv3 3 (f) conv4 1 (g) conv4 2 (h) conv4 3

Figure 1: We build a simple network based on VGG16

[50] to produce side outputs of conv3 1, conv3 2, conv3 3,

conv4 1, conv4 2 and conv4 3. One can clearly see that

convolutional features become coarser gradually, and the

intermediate layers conv3 1, conv3 2, conv4 1, and conv4 2

contain lots of useful fine details that do not appear in other

layers.

also obvious. For example, edges and boundaries are often

defined to be semantically meaningful, however, it is dif-

ficult to use low-level cues to represent object-level infor-

mation. Under these circumstances, gPb [2] and Structured

Edges [14] try to use complex strategies to capture global

features as much as possible.

In the past few years, convolutional neural networks

(CNNs) have become popular in the computer vision com-

munity by substantially advancing the state-of-the-art of

various tasks, including image classification [31, 50, 52],

object detection [20, 21, 34, 43] and semantic segmenta-

tion [7, 38] etc. Since CNNs have a strong capability to

learn high-level representations of natural images automati-

cally, there is a recent trend of using convolutional networks

to perform edge detection. Some well-known CNN-based

methods have pushed forward this field significantly, such

3000

as DeepEdge [4], N4-Fields [19], CSCNN [26], DeepCon-

tour [47], and HED [58]. Our algorithm falls into this cate-

gory as well.

To see the information obtained by different convolution

(i.e. conv) layers in edge detection, we build a simple net-

work to produce side outputs of intermediate layers using

VGG16 [50] which has five conv stages. Fig. 1 shows an

example. We discover that convolutional features become

coarser gradually and intermediate layers contain lots of

useful fine details. On the other hand, since richer convo-

lutional features are highly effective for many vision tasks,

many researchers make efforts to develop deeper networks

[25]. However, it is difficult to get the networks to converge

when going deeper because of vanishing/exploding gradi-

ents and training data shortage (e.g. for edge detection). So

why don’t we make full use the CNN features we have now?

Our motivation is based on these observations. Unlike pre-

vious CNN methods, the proposed novel network uses the

CNN features of all the conv layers to perform the pixel-

wise prediction in an image-to-image fashion, and thus is

able to obtain accurate representations for objects or object

parts in different scales. Concretely speaking, we attempt

to utilize the CNN features from all the conv layers in a uni-

fied framework that can be potentially generalized to other

vision tasks. By carefully designing a universal strategy to

combine hierarchical CNN features, our system performs

very well in edge detection.

When evaluating the proposed method on BSDS500

dataset [2], we achieve the best trade-off between effective-

ness and efficiency with the ODS F-measure of 0.811 and

the speed of 8 FPS. It even outperforms the result of hu-

man perception (ODS F-measure 0.803). In addition, the

fast version of RCF is also presented, which achieves ODS

F-measure of 0.806 with 30 FPS.

2. Related Work

Since edge detection was set as one of the most funda-

mental problems in computer vision [15,18,46], researchers

have struggled on it for nearly 50 years, and there have

emerged a large number of materials. Broadly speaking, we

can roughly categorize these approaches into three groups:

early pioneering ones, learning based ones using hand-

crafted features and deep learning based ones. Here we

briefly review some representative approaches that were de-

veloped in the past few decades.

Early pioneering methods mainly focused on the utiliza-

tion of intensity and color gradients. Robinson [46] dis-

cussed a quantitative measure in choosing color coordinates

for the extraction of visually significant edges and bound-

aries. [39, 53] presented zero-crossing theory based algo-

rithms. Sobel [51] proposed the famous Sobel operator to

compute the gradient map of an image, and then yielded

edges by thresholding the gradient map. An extended ver-

sion of Sobel, named Canny [6], added Gaussian smooth-

ing as a preprocessing step and used the bi-threshold to get

edges. In this way, Canny is more robust to noise. In fact, it

is still very popular across various tasks now because of its

notable efficiency. However, these early methods seem to

have poor accuracy and thus are difficult to adapt to today’s

applications.

Later, researchers tended to manually design features us-

ing low-level cues such as intensity, gradient, and texture,

and then employ sophisticated learning paradigm to clas-

sify edge and non-edge pixels [13, 44]. Konishi et al. [30]

proposed the first data-driven methods by learning the prob-

ability distributions of responses that correspond to two sets

of edge filters. Martin et al. [40] formulated changes in

brightness, color, and texture as Pb features, and trained a

classifier to combine the information from these features.

Arbeláez et al. [2] developed Pb into gPb by using stan-

dard Normalized Cuts [48] to combine above local cues

into a globalization framework. Lim [36] proposed novel

features, Sketch tokens that can be used to represent the

mid-level information. Dollár et al. [14] employed random

decision forests to represent the structure presented in lo-

cal image patches. Inputting color and gradient features,

the structured forests output high-quality edges. However,

all the above methods are developed based on handcrafted

features, which has limited ability to represent high level

information for semantically meaningful edge detection.

With the vigorous development of deep learning re-

cently, a series of deep learning based approaches have

been invented. Ganin et al. [19] proposed N4-Fields that

combines CNNs with the nearest neighbor search. Shen

et al. [47] partitioned contour data into subclasses and fit

each subclass by learning model parameters. Hwang et

al. [26] considered contour detection as a per-pixel clas-

sification problem. They employed DenseNet [27] to ex-

tract a feature vector for each pixel, and then SVM classier

was used to classify each pixel into the edge or non-edge

class. Xie et al. [58] recently developed an efficient and ac-

curate edge detector, HED, which performs image-to-image

training and prediction. This holistically-nested architec-

ture connects their side output layers, which is composed

of one conv layer with kernel size 1, one deconv layer and

one softmax layer, to the last conv layer of each stage in

VGG16 [50]. More recently, Liu et al. [37] used relaxed

label generated by bottom-up edges to guide the training

process of HED, and achieved some improvement. Li et

al. [35] proposed a complex model for unsupervised learn-

ing of edge detection, but the performance is worse than

training on the limited BSDS500 dataset.

The aforementioned CNN-based models have advanced

the state-of-the-art significantly, but all of them lost some

useful hierarchical CNN features when classifying pixels to

edge or non-edge class. These methods usually only adopt

3001

CNN features from the last layer of each conv stage. To

fix this case, we propose a fully convolutional network to

combine features from each CNN layer efficiently. We will

detail our method below.

3. Richer Convolutional Features (RCF)

3.1. Network Architecture

Inspired by previous literature in deep learning [20, 38,

43, 58], we design our network by modifying VGG16 net-

work [50]. VGG16 network that composes of 13 conv layers

and 3 fully connected layers has achieved state-of-the-art in

a variety of tasks, such as image classification [50] , object

3×3-64 conv

2×2 pool

3×3-128 conv

1×1-21 conv

1×1-1 conv loss/sigmoid

concat

stage 1

stage 2

stage 3

stage 4

image

RCF

∑

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

3×3-64 conv

3×3-128 conv

3×3-256 conv

3×3-256 conv

3×3-256 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

2×2 pool

2×2 pool

2×2 pool

stage 5

deconv

fusion

∑

∑

∑

∑

deconv

deconv

deconv

Figure 2: Our RCF network architecture. The input is an

image with arbitrary sizes, and our network outputs an edge

possibility map in the same size.

detection [20,21,43] and etc. Its conv layers are divided into

five stages, in which a pooling layer is connected after each

stage. The useful information captured by each conv layer

becomes coarser with its receptive field size increasing. De-

tailed receptive field sizes of different layers can be seen in

Tab. 1. The use of this rich hierarchical information is hy-

pothesized to help a lot. The starting point of our network

design lies here.

Table 1: Detailed receptive field and stride sizes of standard

VGG16 net [50].

layer conv1 1 conv1 2 pool1 conv2 1 conv2 2 pool2

rf size 3 5 6 10 14 16

stride 1 1 2 2 2 4

layer conv3 1 conv3 2 conv3 3 pool3 conv4 1 conv4 2

rf size 24 32 40 44 60 76

stride 4 4 4 8 8 8

layer conv4 3 pool4 conv5 1 conv5 2 conv5 3 pool5

rf size 92 100 132 164 196 212

stride 8 16 16 16 16 32

The novel network proposed by us is shown in Fig. 2.

Compared with VGG16, our modifications can be described

as following:

• We cut all the fully connected layers and the pool5

layer. On the one side, we remove the fully connected

layers due to the fact that they do not align with our

design of fully convolutional network. On the other

hand, adding pool5 layer will increase the stride by two

times, and it’s harmful for edge localization.

• Each conv layer in VGG16 is connected to a conv layer

with kernel size 1 × 1 and channel depth 21. And the

resulting layers in each stage are accumulated using an

eltwise layer to attain hybrid features.

• An 1 × 1 − 1 conv layer follows each eltwise layer.

Then, a deconv layer is used to up-sample this feature

map.

• A cross-entropy loss / sigmoid layer is connected to the

up-sampling layer in each stage.

• All the up-sampling layers are concatenated. Then an

1×1 conv layer is used to fuse feature maps from each

stage. At last, a cross-entropy loss / sigmoid layer is

followed to get the fusion loss / output.

Hence, we combine hierarchical features from all the conv

layers into a holistic framework, in which all of the parame-

ters are learned automatically. Since receptive field sizes of

conv layers in VGG16 are different from each other, our net-

work can learn multiscale, including low-level and object-

level, information that is helpful to edge detection. We show

3002

Figure 3: Several examples of the outputs in each stage of

RCF. The top line is the original images from BSDS500 [2].

From second to sixth line is the output of stage 1, 2, 3, 4 and

5 respectively.

the intermediate results from each stage in Fig. 3. From top

to bottom, the edge response becomes coarser while obtain-

ing strong response at the larger object or object part bound-

aries. It is consistent with our expectation, in which conv

layers will learn to detect the larger objects with the recep-

tive field size increasing. Since our RCF model combines

all the accessible conv layers to employ richer features, it is

expected to achieve a boost in accuracy.

3.2. Annotator­robust Loss Function

Edge datasets in this community are usually labeled by

several annotators using their knowledge about the pres-

ences of objects and object parts. Though humans vary in

cognition, these human-labeled edges for the same image

share high consistency. For each image, we average all the

ground truth to generate an edge probability map, which

ranges from 0 to 1. Here, 0 means no annotator labeled at

this pixel, and 1 means all annotators have labeled at this

pixel. We consider the pixels with edge probability higher

than η as positive samples and the pixels with edge proba-

bility equal to 0 as negative samples. Otherwise, if a pixel

is marked by fewer than η of the annotators, this pixel may

be semantically controversial to be an edge point. Thus,

whether regarding it as positive or negative samples may

confuse networks. So we ignore pixels in this category.

We compute the loss at every pixel with respect to pixel

label as

l(Xi;W) =











α · log (1− P (Xi;W)) if yi = 0

0 if 0 < yi ≤ η

β · log P (Xi;W) otherwise,
(1)

in which

α = λ ·
|Y +|

|Y +|+ |Y −|

β =
|Y −|

|Y +|+ |Y −|
.

(2)

Y + and Y − denote positive sample set and negative sam-

ple set respectively. The hyper-parameter λ is to balance

positive and negative samples. The activation value (CNN

feature vector) and ground truth edge probability at pixel i

are presented by Xi and yi, respectively. P (X) is the stan-

dard sigmoid function, and W denotes all the parameters

that will be learned in our architecture. Therefore, our im-

proved loss function can be formulated as

L(W) =

|I|
∑

i=1

(

K
∑

k=1

l(X
(k)
i ;W) + l(Xfuse

i ;W)
)

, (3)

where X
(k)
i is the activation value from stage k while

X
fuse
i is from fusion layer. |I| is the number of pixels in

image I , and K is the number of stages (equals to 5 here).

3.3. Multiscale Hierarchical Edge Detection

In single scale edge detection, we input an original im-

age into our fine-tuned RCF network, then, the output is

an edge probability map. To further improve the quality of

edges, we use image pyramids during testing. Specifically,

we resize an image to construct an image pyramid, and each

of these images is input to our single-scale detector sepa-

rately. Then, all resulting edge probability maps are resized

to original image size using bilinear interpolation. At last,

these maps are averaged to get a final prediction map. Fig. 4

shows a visualized pipeline of our multiscale algorithm. We

also try to use weighted sum, but we find the simple average

works very well. Considering the trade-off between accu-

racy and speed, we use three scales 0.5, 1.0, and 1.5 in this

paper. When evaluating on BSDS500 [2] dataset, this sim-

ple multiscale strategy improves the ODS F-measure from

0.806 to 0.811, though the speed drops from 30 FPS to 8

FPS. See Sec. 4 for details.

3.4. Comparison With HED

The most obvious difference between our RCF and HED

[58] is in three parts. First, HED only considers the last conv

layer in each stage of VGG16, in which lots of helpful in-

formation to edge detection is missed. In contrast to it, RCF

3003

Ground truth

Output

di
m

ar
y

P
eg

a
mI

Bilinear Interpola�onRCF Forward Average

Figure 4: The pipeline of our multiscale algorithm. The original image is resized to construct an image pyramid. And these

multiscale images are input to RCF network for a forward pass. Then, we use bilinear interpolation to restore resulting edge

response maps to original sizes. A simple average of these edge maps will output high-quality edges.

uses richer features from all the conv layers, thus it can cap-

ture more object or object part boundaries accurately across

a larger range of scales. Second, a novel loss function is pro-

posed to treat training examples properly. We only consider

the edge pixels that most annotators labeled as positive sam-

ples, since these edges are highly consistent and thus easy

to train. Besides, we ignore edge pixels that are marked

by a few annotators because of their confusing attributes.

Thirdly, we use multiscale hierarchy to enhance edges. Our

evaluation results demonstrate the strengths (2.3% improve-

ment in ODS F-measure over HED) of these choices. See

Sec. 4 for details.

4. Experiments

We implement our network using the publicly available

Caffe [28] which is well-known in this community. The

VGG16 model that is pre-trained on ImageNet [11] is used

to initialize our network. We change the stride of pool4

layer to 1 and use the atrous algorithm to fill the holes. In

RCF training, the weights of 1 × 1 conv layer in stage 1-5

are initialized from zero-mean Gaussian distributions with

standard deviation 0.01 and the biases are initialized to 0.

The weights of 1×1 conv layer in fusion stage are initialized

to 0.2 and the biases are initialized to 0. Stochastic gradient

descent (SGD) minibatch samples 10 images randomly in

each iteration. For other SGD hyper-parameters, the global

learning rate is set to 1e-6 and will be divided by 10 after

every 10k iterations. The momentum and weight decay are

set to 0.9 and 0.0002 respectively. We run SGD for 40k

iterations totally. The parameters η and λ in loss function

are also set depending on training data. All experiments in

this paper are finished using a NVIDIA TITAN X GPU.

Given an edge probability map, a threshold is needed to

produce the edge image. There are two choices to set this

threshold. The first one is referred as optimal dataset scale

(ODS) which employs a fixed threshold for all images in the

dataset. And the second is called optimal image scale (OIS)

which selects an optimal threshold for each image. We use

F-measure (2·Precision·Recall
Precision+Recall

) of both ODS and OIS in our

experiments.

4.1. BSDS500 Dataset

BSDS500 [2] is a widely used dataset in edge detec-

tion. It is composed of 200 training, 100 validation and

200 test images, and each image is labeled by 4 to 9 anno-

tators. We utilize the training and validation sets for fine-

tuning, and test set for evaluation. Data augmentation is the

same as [58]. Inspired by the previous work [29,37,59], we

mix augmentation data of BSDS500 with flipped PASCAL

VOC Context dataset [42] as training data. When train-

ing, we set loss parameters η and λ to 0.5 and 1.1, respec-

tively. When evaluating, standard non-maximum suppres-

sion (NMS) [14] is applied to thin detected edges. We com-

pare our method with some non-deep-learning algorithms,

including Canny [6], EGB [16], gPb-UCM [2], ISCRA [45],

MCG [3], MShift [10], NCut [48], SE [14], and OEF [24],

and some recent deep learning based approaches, includ-

ing DeepContour [47], DeepEdge [4], HED [58], HFL [5],

MIL+G-DSN+MS+NCuts [29] and etc.

Fig. 5 shows the evaluation results. The performance of

human eye in edge detection is known as 0.803 ODS F-

measure. Both single-scale and multiscale (MS) versions

of RCF achieve better results than humans. When compar-

ing with HED [58], ODS F-measures of our RCF-MS and

RCF are 2.3% and 1.8% higher than it, respectively. And

3004

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[F=.803] Human

[F=.811] RCF-MS

[F=.806] RCF

[F=.788] HED

[F=.767] HFL

[F=.757] DeepContour

[F=.753] DeepEdge

[F=.746] OEF

[F=.744] MCG

[F=.743] SE

[F=.729] gPb-UCM

[F=.717] ISCRA

[F=.634] NCut

[F=.614] EGB

[F=.611] Canny

[F=.598] MShift

Figure 5: The evaluation results on standard BSDS500 [2]

dataset. Both single-scale and multiscale versions of RCF

achieve better performance than humans.

the precision-recall curves of our methods are also higher

than HED’s. These significant improvements demonstrate

the effectiveness of our richer convolutional features. All

the conv layers contain helpful hierarchical information, not

only the last one in each convolution stage.

We show statistic comparison in Tab. 2. From RCF

to RCF-MS, the ODS F-measure increases from 0.806 to

0.811, though the speed drops from 30 FPS to 8 FPS. It

proves the validity of our multiscale strategy. We also ob-

serve an interesting phenomenon in which the RCF curves

are not as long as other methods when evaluated using the

default parameters in BSDS500 benchmark. It may sug-

gest that RCF tends only to remain very confident edges.

Our methods also achieve better results than recent edge

detectors, such as RDS [37] and CEDN [59]. RDS uses re-

laxed laebls and extra training data to retrain the HED net-

work, and it improves 0.4% of ODS F-measure compared

with HED. In contrast, the F-measure of our RCF method is

1.4% higher in ODS F-measure than RDS. It demonstrates

our improvement is not trivial or ad hoc.

We can see that RCF achieves the best tarde-off be-

tween effectiveness and efficiency. Although MIL+G-

DSN+MS+NCuts [29] achieves a little better accuracy than

our methods, our RCF and RCF-MS are much fastest than

it. The single-scale RCF achieves 30 FPS, and RCF-MS

can also achieve 8 FPS. Note that our RCF network only

adds some 1 × 1 conv layers to HED, so the time con-

sumption is almost same as HED. Besides, starting from

Table 2: The comparison with some competitors on

BSDS500 [2] dataset. † means GPU time. The top three

results are highlighted in red, green and blue respectively.

Method ODS OIS FPS

Canny [6] .611 .676 28

EGB [16] .614 .658 10

MShift [10] .598 .645 1/5

gPb-UCM [2] .729 .755 1/240

Sketch Tokens [36] .727 .746 1

MCG [3] .744 .777 1/18

SE [14] .743 .763 2.5

OEF [24] .746 .770 2/3

DeepContour [47] .757 .776 1/30†

DeepEdge [4] .753 .772 1/1000†

HFL [5] .767 .788 5/6†

N4-Fields [19] .753 .769 1/6†

HED [58] .788 .808 30†

RDS [37] .792 .810 30†

CEDN [59] .788 .804 10†

MIL+G-DSN+MS+NCuts [29] .813 .831 1

RCF .806 .823 30†

RCF-MS .811 .830 8†

HED, Iasonas et al. [29] added some useful components

to it, such as Multiple Instance Learning (MIL) [12], G-

DSN [32], multiscale, extern training data with PASCAL

Context dataset [42] and Normalized Cuts [2]. Our pro-

posed methods are much simpler than [2]. Since our edge

detectors are simple and efficient, it is easy to apply them in

various high-level vision tasks.

4.2. NYUD Dataset

NYUD [49] dataset is composed of 1449 densely la-

beled pairs of aligned RGB and depth images. Recently

many works have conducted edge evaluation on it, such

as [14, 57]. Gupta et al. [22] split NYUD dataset into 381

training, 414 validation and 654 testing images. We follow

their settings and train our RCF network using training and

validation sets in full resolution as in HED [58].

We utilize depth information by using HHA [23], in

which depth information is encoded into three channels:

horizontal disparity, height above ground, and angle with

gravity. Thus HHA features can be represented as a color

image. Then, two models for RGB images and HHA fea-

ture images are trained separately. We rotate the images and

corresponding annotations to 4 different angles (0, 90, 180

and 270 degrees) and flip them at each angle. In the train-

ing process, λ is set to 1.2 for both RGB and HHA. Since

NYUD only has one ground truth for each image, η is use-

less here. Other network settings are the same as used for

BSDS500. At testing, the final edge predictions are defined

3005

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[F=.757] RCF

[F=.741] HED

[F=.706] SE+NG+

[F=.695] SE

[F=.687] gPb+NG

[F=.651] OEF

[F=.631] gPb-UCM

Figure 6: The evaluation results on NYUD [49] dataset.

RCF is referred to single-scale version here.

by averaging the outputs of RGB model and HHA model.

When evaluating, we increase localization tolerance, which

controls the maximum allowed distance in matches between

predicted edges and ground truth, from 0.0075 to 0.011, be-

cause images in NYUD dataset are larger than images in

BSDS500 dataset.

Table 3: The comparison with some competitors on NYUD

dataset [49]. †means GPU time.

Method ODS OIS FPS

OEF [24] .651 .667 1/2

gPb-UCM [2] .631 .661 1/360

gPb+NG [22] .687 .716 1/375

SE [14] .695 .708 5

SE+NG+ [23] .706 .734 1/15

HED-HHA [58] .681 .695 20†

HED-RGB [58] .717 .732 20†

HED-RGB-HHA [58] .741 .757 10†

RCF-HHA .705 .715 20†

RCF-RGB .729 .742 20†

RCF-HHA-RGB .757 .771 10†

We only compare our single-scale version of RCF with

some famous competitors. OEF [24] and gPb-UCM [2]

only use RGB images, while other methods employ both

depth and RGB information. The precision-recall curves

are shown in Fig. 6. RCF achieves the best performance on

NYUD dataset, and the second place is HED [58]. Tab. 3

shows statistical comparison. We can see that RCF achieves

better results than HED not only on separate HHA or RGB

data, but also on the merged HHA-RGB data. For HHA and

RGB data, ODS F-measure of RCF is 2.4% and 1.2% higher

than HED, respectively. For merging HHA-RGB data, RCF

is 1.6% higher than HED. Furthermore, HHA edges per-

form worse than RGB, but averaging HHA and RGB edges

achieves much higher results. It suggests that combining

different types of information is very useful for edge de-

tection, and it may be the reason why OEF and gPb-UCM

perform worse than other methods.

4.3. Multicue Dataset

Recently, Multicue dataset is proposed by Mély et al.

[41] to study psychophysics theory for boundary detec-

tion. It is composed of short binocular video sequences of

100 challenging natural scenes captured by a stereo cam-

era. Each scene contains a left and a right view short (10-

frame) color sequences. The last frame of the left images

for each scene is labeled for two annotations, object bound-

aries and low-level edges. Unlike people who usually use

boundary and edge interchangeably, they strictly defined

boundary and edge according to visual perception at dif-

ferent stages. Thus, boundaries are referred to the boundary

pixels of meaningful objects, and edges are abrupt pixels at

which the luminance, color or stereo change sharply. In this

subsection, we use boundary and edge as defined by Mély

et al. [41] while considering boundary and edge having the

same meaning in previous sections.

As done in Mély et al. [41] and HED [58], we randomly

split these human-labeled images into 80 training and 20

test samples, and average the scores of three independent

trials as final results. When training on Multicue, λ is set to

1.1, and η is set to 0.4 for boundary task and 0.3 for edge

task. For boundary detection task, we use learning rate 1e-6

and run SGD for 2k iterations. For edge detection task, we

use learning rate 1e-7 and run SGD for 4k iterations. We

augment the training data as we do on NYUD dataset. Since

the image resolution of Multicue is very high, we randomly

crop 500× 500 patches from original images.

We show evaluation results in Tab. 4. Our proposed RCF

achieve substantially higher results than HED. For bound-

ary task, RCF-MS is 1.1% ODS F-measure higher and 1.4%

OIS F-measure higher than HED. For edge task, RCF-MS is

0.9% ODS F-measure higher than HED. Note that the fluc-

tuation of RCF is also smaller than HED, which suggests

RCF is more robust over different kinds of images. Some

qualitative results are shown in Fig. 7.

4.4. Network Discussion

To further explore the effectiveness of our network archi-

tecture, we implement some mixed networks using VGG16

[50] by connecting our richer feature side outputs to some

3006

Figure 7: Some examples of RCF. From top to bottom: BSDS500 [2], NYUD [49], Multicue-Boundary [41], and Multicue-

Edge [41]. From left to right: origin image, ground truth, RCF edge map, origin image, ground truth, and RCF edge map.

Table 4: The comparison with some competitors on Multi-

cue dataset [41].

Method ODS OIS

Human-Boundary [41] .760 (.017) –

Multicue-Boundary [41] .720 (.014) –

HED-Boundary [58] .814 (.011) .822 (.008)

RCF-Boundary .817 (.004) .825 (.005)

RCF-MS-Boundary .825 (.008) .836 (.007)

Human-Edge [41] .750 (.024) –

Multicue-Edge [41] .830 (.002) –

HED-Edge [58] .851 (.014) .864 (.011)

RCF-Edge .857 (.004) .862 (.004)

RCF-MS-Edge .860 (.005) .864 (.004)

convolution stages while connecting side outputs of HED to

the other stages. With training only on BSDS500 [2] dataset

and testing on the single scale, evaluation results of these

mixed networks are shown in Tab. 5. The last two lines of

this table correspond to HED and RCF, respectively. We

can observe that all of these mixed networks perform better

than HED and worse than RCF that is fully connected to

RCF side outputs. It clearly demonstrates the importance of

our strategy of richer convolutional features.

In order to investigate whether including additional non-

linearity helps, we connecting ReLU layer after 1× 1− 21
or 1 × 1 − 1 conv layers in each stage. However, the net-

work performs worse. Especially, when we attempt to add

nonlinear layers to 1 × 1 − 1 conv layers, the network can

not converge properly.

Table 5: Results of some thought networks.

RCF Stage HED Stage ODS OIS

1, 2 3, 4, 5 .792 .810

2, 4 1, 3, 5 .795 .812

4, 5 1, 2, 3 .790 .810

1, 3, 5 2, 4 .794 .810

3, 4, 5 1, 2 .796 .812

– 1, 2, 3, 4, 5 .788 .808

1, 2, 3, 4, 5 – .798 .815

5. Conclusion

In this paper, we propose a novel CNN architecture,

RCF, that makes full use of semantic and fine detail fea-

tures to carry out edge detection. We carefully design it as

an extensible architecture. The resulting RCF method can

produce high-quality edges very efficiently, and this makes

it promising to be applied in other vision tasks. RCF ar-

chitecture can be seen as a development direction of fully

connected network, like FCN [38] and HED [58]. It would

be interesting to explore the usefulness of our network ar-

chitecture in other hot topics, such as salient object detec-

tion and semantic segmentation. Source code is available at

https://github.com/yun-liu/rcf.

Acknowledgments We would like to thank the anony-

mous reviewers for their useful feedbacks. This research

was supported by NSFC (NO. 61572264, 61620106008),

Huawei Innovation Research Program (HIRP), and CAST

young talents plan.

3007

https://github.com/yun-liu/rcf

References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. From con-

tours to regions: An empirical evaluation. In IEEE CVPR,

pages 2294–2301. IEEE, 2009.

[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour de-

tection and hierarchical image segmentation. IEEE TPAMI,

33(5):898–916, 2011.

[3] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and

J. Malik. Multiscale combinatorial grouping. In IEEE CVPR,

pages 328–335, 2014.

[4] G. Bertasius, J. Shi, and L. Torresani. DeepEdge: A multi-

scale bifurcated deep network for top-down contour detec-

tion. In IEEE CVPR, pages 4380–4389, 2015.

[5] G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-

for-high: Efficient boundary detection from deep object fea-

tures and its applications to high-level vision. In IEEE ICCV,

pages 504–512, 2015.

[6] J. Canny. A computational approach to edge detection. IEEE

TPAMI, 8(6):679–698, 1986.

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. arXiv preprint

arXiv:1412.7062, 2014.

[8] M.-M. Cheng, Y. Liu, Q. Hou, J. Bian, P. Torr, S.-M. Hu, and

Z. Tu. HFS: Hierarchical feature selection for efficient image

segmentation. In ECCV, pages 867–882. Springer, 2016.

[9] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr.

BING: Binarized normed gradients for objectness estimation

at 300fps. In IEEE CVPR, pages 3286–3293, 2014.

[10] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE TPAMI, 24(5):603–619,

2002.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

IEEE CVPR, pages 248–255. IEEE, 2009.

[12] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solv-

ing the multiple instance problem with axis-parallel rectan-

gles. Artificial intelligence, 89(1):31–71, 1997.

[13] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of

edges and object boundaries. In IEEE CVPR, volume 2,

pages 1964–1971. IEEE, 2006.

[14] P. Dollár and C. L. Zitnick. Fast edge detection using struc-

tured forests. IEEE TPAMI, 37(8):1558–1570, 2015.

[15] R. O. Duda, P. E. Hart, et al. Pattern classification and scene

analysis, volume 3. Wiley New York, 1973.

[16] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-

based image segmentation. IJCV, 59(2):167–181, 2004.

[17] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of ad-

jacent contour segments for object detection. IEEE TPAMI,

30(1):36–51, 2008.

[18] J. R. Fram and E. S. Deutsch. On the quantitative evaluation

of edge detection schemes and their comparison with human

performance. IEEE TOC, 100(6):616–628, 1975.

[19] Y. Ganin and V. Lempitsky. N4-Fields: Neural network near-

est neighbor fields for image transforms. In ACCV, pages

536–551. Springer, 2014.

[20] R. Girshick. Fast R-CNN. In IEEE ICCV, pages 1440–1448,

2015.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In IEEE CVPR, pages 580–587, 2014.

[22] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization

and recognition of indoor scenes from rgb-d images. In IEEE

CVPR, pages 564–571, 2013.

[23] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning

rich features from rgb-d images for object detection and seg-

mentation. In ECCV, pages 345–360. Springer, 2014.

[24] S. Hallman and C. C. Fowlkes. Oriented edge forests for

boundary detection. In IEEE CVPR, pages 1732–1740,

2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In IEEE CVPR, pages 770–778,

2016.

[26] J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for con-

tour detection. arXiv preprint arXiv:1504.01989, 2015.

[27] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Dar-

rell, and K. Keutzer. Densenet: Implementing efficient con-

vnet descriptor pyramids. arXiv preprint arXiv:1404.1869,

2014.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, pages

675–678. ACM, 2014.

[29] I. Kokkinos. Pushing the boundaries of boundary detec-

tion using deep learning. arXiv preprint arXiv:1511.07386,

2015.

[30] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Sta-

tistical edge detection: Learning and evaluating edge cues.

IEEE TPAMI, 25(1):57–74, 2003.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[32] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu.

Deeply-supervised nets. In AISTATS, volume 2, page 5,

2015.

[33] M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Gener-

alized boundaries from multiple image interpretations. IEEE

TPAMI, 36(7):1312–1324, 2014.

[34] Y. Li, K. He, J. Sun, et al. R-fcn: Object detection via region-

based fully convolutional networks. In NIPS, pages 379–387,

2016.

[35] Y. Li, M. Paluri, J. M. Rehg, and P. Dollár. Unsupervised

learning of edges. In IEEE CVPR, pages 1619–1627, 2016.

[36] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A

learned mid-level representation for contour and object de-

tection. In IEEE CVPR, pages 3158–3165, 2013.

[37] Y. Liu and M. S. Lew. Learning relaxed deep supervision for

better edge detection. In IEEE CVPR, pages 231–240, 2016.

[38] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE CVPR, pages

3431–3440, 2015.

[39] D. Marr and E. Hildreth. Theory of edge detection. Proceed-

ings of the Royal Society of London B: Biological Sciences,

207(1167):187–217, 1980.

3008

[40] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect

natural image boundaries using local brightness, color, and

texture cues. IEEE TPAMI, 26(5):530–549, 2004.

[41] D. A. Mély, J. Kim, M. McGill, Y. Guo, and T. Serre. A sys-

tematic comparison between visual cues for boundary detec-

tion. Vision research, 120:93–107, 2016.

[42] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-

dler, R. Urtasun, and A. Yuille. The role of context for object

detection and semantic segmentation in the wild. In IEEE

CVPR, pages 891–898, 2014.

[43] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, pages 91–99, 2015.

[44] X. Ren. Multi-scale improves boundary detection in natural

images. In ECCV, pages 533–545. Springer, 2008.

[45] Z. Ren and G. Shakhnarovich. Image segmentation by cas-

caded region agglomeration. In IEEE CVPR, pages 2011–

2018, 2013.

[46] G. S. Robinson. Color edge detection. Optical Engineering,

16(5):165479–165479, 1977.

[47] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deep-

Contour: A deep convolutional feature learned by positive-

sharing loss for contour detection. In IEEE CVPR, pages

3982–3991, 2015.

[48] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE TPAMI, 22(8):888–905, 2000.

[49] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

European Conference on Computer Vision, pages 746–760.

Springer, 2012.

[50] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[51] I. Sobel. Camera models and machine perception. Technical

report, DTIC Document, 1970.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE CVPR, pages 1–9,

2015.

[53] V. Torre and T. A. Poggio. On edge detection. IEEE TPAMI,

8(2):147–163, 1986.

[54] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

104(2):154–171, 2013.

[55] S. Ullman and R. Basri. Recognition by linear combinations

of models. IEEE TPAMI, 13(10):992–1006, 1991.

[56] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng,

Y. Zhao, and S. Yan. Stc: A simple to complex framework

for weakly-supervised semantic segmentation. IEEE TPAMI,

2016.

[57] R. Xiaofeng and L. Bo. Discriminatively trained sparse code

gradients for contour detection. In NIPS, pages 584–592,

2012.

[58] S. Xie and Z. Tu. Holistically-nested edge detection. In

IJCV. Springer, 2017.

[59] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object

contour detection with a fully convolutional encoder-decoder

network. arXiv preprint arXiv:1603.04530, 2016.

[60] Z. Zhang, Y. Liu, T. Bolukbasi, M.-M. Cheng, and

V. Saligrama. Bing++: A fast high quality object proposal

generator at 100fps. arXiv preprint arXiv:1511.04511, 2015.

[61] S. Zheng, V. A. Prisacariu, M. Averkiou, M.-M. Cheng, N. J.

Mitra, J. Shotton, P. H. Torr, and C. Rother. Object propos-

als estimation in depth image using compact 3d shape mani-

folds. In German Conference on Pattern Recognition, pages

196–208. Springer, 2015.

[62] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, pages 391–405. Springer,

2014.

3009

