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Abstract

This paper addresses deep face recognition (FR) prob-

lem under open-set protocol, where ideal face features are

expected to have smaller maximal intra-class distance than

minimal inter-class distance under a suitably chosen met-

ric space. However, few existing algorithms can effectively

achieve this criterion. To this end, we propose the angular

softmax (A-Softmax) loss that enables convolutional neural

networks (CNNs) to learn angularly discriminative features.

Geometrically, A-Softmax loss can be viewed as imposing

discriminative constraints on a hypersphere manifold, which

intrinsically matches the prior that faces also lie on a mani-

fold. Moreover, the size of angular margin can be quantita-

tively adjusted by a parameter m. We further derive specific

m to approximate the ideal feature criterion. Extensive anal-

ysis and experiments on Labeled Face in the Wild (LFW),

Youtube Faces (YTF) and MegaFace Challenge 1 show the

superiority of A-Softmax loss in FR tasks.

1. Introduction

Recent years have witnessed the great success of convo-

lutional neural networks (CNNs) in face recognition (FR).

Owing to advanced network architectures [13, 23, 29, 4] and

discriminative learning approaches [25, 22, 34], deep CNNs

have boosted the FR performance to an unprecedent level.

Typically, face recognition can be categorized as face identi-

fication and face verification [8, 11]. The former classifies a

face to a specific identity, while the latter determines whether

a pair of faces belongs to the same identity.

In terms of testing protocol, face recognition can be e-

valuated under closed-set or open-set settings, as illustrated

in Fig. 1. For closed-set protocol, all testing identities are

predefined in training set. It is natural to classify testing

face images to the given identities. In this scenario, face

verification is equivalent to performing identification for a

pair of faces respectively (see left side of Fig. 1). There-

fore, closed-set FR can be well addressed as a classification

problem, where features are expected to be separable. For

open-set protocol, the testing identities are usually disjoint
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Figure 1: Comparison of open-set and closed-set face recognition.

from the training set, which makes FR more challenging

yet close to practice. Since it is impossible to classify faces

to known identities in training set, we need to map faces

to a discriminative feature space. In this scenario, face i-

dentification can be viewed as performing face verification

between the probe face and every identity in the gallery (see

right side of Fig. 1). Open-set FR is essentially a metric

learning problem, where the key is to learn discriminative

large-margin features.

Desired features for open-set FR are expected to satisfy

the criterion that the maximal intra-class distance is smaller

than the minimal inter-class distance under a certain metric

space. This criterion is necessary if we want to achieve

perfect accuracy using nearest neighbor. However, learning

features with this criterion is generally difficult because of

the intrinsically large intra-class variation and high inter-

class similarity [21] that faces exhibit.

Few CNN-based approaches are able to effectively for-

mulate the aforementioned criterion in loss functions. Pi-
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Figure 2: Comparison among softmax loss, modified softmax loss and A-Softmax loss. In this toy experiment, we construct a CNN to learn 2-D features on a

subset of the CASIA face dataset. In specific, we set the output dimension of FC1 layer as 2 and visualize the learned features. Yellow dots represent the

first class face features, while purple dots represent the second class face features. One can see that features learned by the original softmax loss can not be

classified simply via angles, while modified softmax loss can. Our A-Softmax loss can further increase the angular margin of learned features.

oneering work [30, 26] learn face features via the softmax

loss1, but softmax loss only learns separable features that are

not discriminative enough. To address this, some methods

combine softmax loss with contrastive loss [25, 28] or center

loss [34] to enhance the discrimination power of features.

[22] adopts triplet loss to supervise the embedding learning,

leading to state-of-the-art face recognition results. However,

center loss only explicitly encourages intra-class compact-

ness. Both contrastive loss [3] and triplet loss [22] can not

constrain on each individual sample, and thus require care-

fully designed pair/triplet mining procedure, which is both

time-consuming and performance-sensitive.

It seems to be a widely recognized choice to impose Eu-

clidean margin to learned features, but a question arises: Is

Euclidean margin always suitable for learning discrimina-

tive face features? To answer this question, we first look into

how Euclidean margin based losses are applied to FR. Most

recent approaches [25, 28, 34] combine Euclidean margin

based losses with softmax loss to construct a joint supervi-

sion. However, as can be observed from Fig. 2, the features

learned by softmax loss have intrinsic angular distribution

(also verified by [34]). In some sense, Euclidean margin

based losses are incompatible with softmax loss, so it is not

well motivated to combine these two type of losses.

In this paper, we propose to incorporate angular mar-

gin instead. We start with a binary-class case to analyze

the softmax loss. The decision boundary in softmax loss

is (W1−W2)x+b1−b2=0, whereWi and bi are weight-

s and bias2 in softmax loss, respectively. If we define x

as a feature vector and constrain ‖W1‖=‖W2‖=1 and

b1=b2=0, the decision boundary becomes ‖x‖(cos(θ1)−
cos(θ2))=0, where θi is the angle between Wi and x. The

new decision boundary only depends on θ1 and θ2. Modified

softmax loss is able to directly optimize angles, enabling

CNNs to learn angularly distributed features (Fig. 2).

Compared to original softmax loss, the features learned

by modified softmax loss are angularly distributed, but not

necessarily more discriminative. To the end, we generalize

the modified softmax loss to angular softmax (A-Softmax)

1Following [16], we define the softmax loss as the combination of the

last fully connected layer, softmax function and cross-entropy loss.
2If not specified, the weights and biases in the paper are corresponding

to the fully connected layer in the softmax loss.

loss. Specifically, we introduce an integer m (m≥1) to
quantitatively control the decision boundary. In binary-

class case, the decision boundaries for class 1 and class

2 become ‖x‖(cos(mθ1)−cos(θ2))=0 and ‖x‖(cos(θ1)−
cos(mθ2))=0, respectively. m quantitatively controls the

size of angular margin. Furthermore, A-Softmax loss can be

easily generalized to multiple classes, similar to softmax loss.

By optimizing A-Softmax loss, the decision regions become

more separated, simultaneously enlarging the inter-class mar-

gin and compressing the intra-class angular distribution.

A-Softmax loss has clear geometric interpretation. Su-

pervised by A-Softmax loss, the learned features construct a

discriminative angular distance metric that is equivalent to

geodesic distance on a hypersphere manifold. A-Softmax

loss can be interpreted as constraining learned features to

be discriminative on a hypersphere manifold, which intrin-

sically matches the prior that face images lie on a manifold

[14, 5, 31]. The close connection between A-Softmax loss

and hypersphere manifolds makes the learned features more

effective for face recognition. For this reason, we term the

learned features as SphereFace.

Moreover, A-Softmax loss can quantitatively adjust the

angular margin via a parameterm, enabling us to do quanti-

tative analysis. In the light of this, we derive lower bounds

for the parameter m to approximate the desired open-set

FR criterion that the maximal intra-class distance should be

smaller than the minimal inter-class distance.

Our major contributions can be summarized as follows:

(1) We propose A-Softmax loss for CNNs to learn dis-

criminative face features with clear and novel geometric

interpretation. The learned features discriminatively span

on a hypersphere manifold, which intrinsically matches the

prior that faces also lie on a manifold.

(2) We derive lower bounds form such that A-Softmax

loss can approximate the learning task that minimal inter-

class distance is larger than maximal intra-class distance.

(3) We are the very first to show the effectiveness of

angular margin in FR. Trained on publicly available CASIA

dataset [37], SphereFace achieves competitive results on

several benchmarks, including Labeled Face in the Wild

(LFW), Youtube Faces (YTF) and MegaFace Challenge 1.
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2. Related Work

Metric learning. Metric learning aims to learn a sim-

ilarity (distance) function. Traditional metric learning

[36, 33, 12, 38] usually learns a matrixA for a distance met-

ric ‖x1−x2‖A=
√

(x1−x2)TA(x1−x2) upon the given
features x1,x2. Recently, prevailing deep metric learning

[7, 17, 24, 30, 25, 22, 34] usually uses neural networks

to automatically learn discriminative features x1,x2 fol-

lowed by a simple distance metric such as Euclidean dis-

tance ‖x1−x2‖2. Most widely used loss functions for deep

metric learning are contrastive loss [1, 3] and triplet loss

[32, 22, 6], and both impose Euclidean margin to features.

Deep face recognition. Deep face recognition is ar-

guably one of the most active research area in the past few

years. [30, 26] address the open-set FR using CNNs super-

vised by softmax loss, which essentially treats open-set FR

as a multi-class classification problem. [25] combines con-

trastive loss and softmax loss to jointly supervise the CNN

training, greatly boosting the performance. [22] uses triplet

loss to learn a unified face embedding. Training on nearly

200 million face images, they achieve current state-of-the-art

FR accuracy. Inspired by linear discriminant analysis, [34]

proposes center loss for CNNs and also obtains promising

performance. In general, current well-performing CNNs

[28, 15] for FR are mostly built on either contrastive loss or

triplet loss. One could notice that state-of-the-art FR meth-

ods usually adopt ideas (e.g. contrastive loss, triplet loss)

from metric learning, showing open-set FR could be well

addressed by discriminative metric learning.

L-Softmax loss [16] also implicitly involves the concept

of angles. As a regularization method, it shows great im-

provement on closed-set classification problems. Differently,

A-Softmax loss is developed to learn discriminative face em-

bedding. The explicit connections to hypersphere manifold

makes our learned features particularly suitable for open-set

FR problem, as verified by our experiments. In addition,

the angular margin in A-Softmax loss is explicitly imposed

and can be quantitatively controlled (e.g. lower bounds to

approximate desired feature criterion), while [16] can only

be analyzed qualitatively.

3. Deep Hypersphere Embedding

3.1. Revisiting the Softmax Loss

We revisit the softmax loss by looking into the decision

criteria of softmax loss. In binary-class case, the posterior

probabilities obtained by softmax loss are

p1=
exp(W T

1 x+ b1)

exp(W T
1 x+ b1) + exp(W T

2 x+ b2)
(1)

p2=
exp(W T

2 x+ b2)

exp(W T
1 x+ b1) + exp(W T

2 x+ b2)
(2)

where x is the learned feature vector. Wi and bi are weight-

s and bias of last fully connected layer corresponding to

class i, respectively. The predicted label will be assigned

to class 1 if p1>p2 and class 2 if p1<p2. By comparing

p1 and p2, it is clear that W T
1 x+b1 and W T

2 x+b2 de-

termine the classification result. The decision boundary is

(W1−W2)x+b1−b2=0. We then rewrite W T
i x+bi as

‖W T
i ‖‖x‖ cos(θi)+bi where θi is the angle between Wi

and x. Notice that if we normalize the weights and zero

the biases (‖Wi‖=1, bi=0), the posterior probabilities be-
come p1=‖x‖ cos(θ1) and p2=‖x‖ cos(θ2). Note that p1
and p2 share the same x, the final result only depends on

the angles θ1 and θ2. The decision boundary also becomes

cos(θ1)−cos(θ2)=0 (i.e. angular bisector of vector W1 and

W2). Although the above analysis is built on binary-calss

case, it is trivial to generalize the analysis to multi-class case.

During training, the modified softmax loss (‖Wi‖=1, bi=0)
encourages features from the i-th class to have smaller angle

θi (larger cosine distance) than others, which makes angles

between Wi and features a reliable metric for classification.

To give a formal expression for the modified softmax loss,

we first define the input feature xi and its label yi. The

original softmax loss can be written as

L =
1

N

∑

i

Li =
1

N

∑

i

− log
( efyi
∑

j e
fj

)

(3)

where fj denotes the j-th element (j ∈ [1,K], K is the

class number) of the class score vector f , and N is the

number of training samples. In CNNs, f is usually the

output of a fully connected layer W , so fj = W T
j xi + bj

and fyi
= W T

yi
xi + byi

where xi, Wj ,Wyi
are the i-th

training sample, the j-th and yi-th column ofW respectively.

We further reformulate Li in Eq. (3) as

Li =− log
( e

W
T
yi

xi+byi

∑

j e
WT

j
xi+bj

)

=− log
( e
‖Wyi

‖‖xi‖ cos(θyi,i)+byi

∑

j e
‖Wj‖‖xi‖ cos(θj,i)+bj

)

(4)

in which θj,i(0≤θj,i≤π) is the angle between vector Wj

and xi. As analyzed above, we first normalize ‖Wj‖=1, ∀j
in each iteration and zero the biases. Then we have the

modified softmax loss:

Lmodified =
1

N

∑

i

− log
( e

‖xi‖ cos(θyi,i)

∑

j e
‖xi‖ cos(θj,i)

)

(5)

Although we can learn features with angular boundary with

the modified softmax loss, these features are still not neces-

sarily discriminative. Since we use angles as the distance

metric, it is natural to incorporate angular margin to learned

features in order to enhance the discrimination power. To

this end, we propose a novel way to combine angular margin.

3.2. Introducing Angular Margin to Softmax Loss

Instead of designing a new type of loss function and con-

structing a weighted combination with softmax loss (similar
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Loss Function Decision Boundary

Softmax Loss (W1−W2)x+b1−b2=0
Modified Softmax Loss ‖x‖(cos θ1−cos θ2)=0

A-Softmax Loss
‖x‖(cosmθ1−cos θ2)=0 for class 1

‖x‖(cos θ1−cosmθ2)=0 for class 2

Table 1: Comparison of decision boundaries in binary case. Note that, θi is

the angle betweenWi and x.

to contrastive loss) , we propose a more natural way to learn

angular margin. From the previous analysis of softmax loss,

we learn that decision boundaries can greatly affect the fea-

ture distribution, so our basic idea is to manipulate decision

boundaries to produce angular margin. We first give a moti-

vating binary-class example to explain how our idea works.

Assume a learned feature x from class 1 is given and θi
is the angle between x andWi, it is known that the modified

softmax loss requires cos(θ1)>cos(θ2) to correctly classify

x. But what if we instead require cos(mθ1)>cos(θ2) where
m≥2 is a integer in order to correctly classify x? It is essen-

tially making the decision more stringent than previous, be-

cause we require a lower bound3 of cos(θ1) to be larger than
cos(θ2). The decision boundary for class 1 is cos(mθ1)=
cos(θ2). Similarly, if we require cos(mθ2)>cos(θ1) to cor-

rectly classify features from class 2, the decision boundary

for class 2 is cos(mθ2)=cos(θ1). Suppose all training sam-

ples are correctly classified, such decision boundaries will

produce an angular margin of m−1
m+1θ

1
2 where θ12 is the angle

betweenW1 andW2. From angular perspective, correctly

classifying x from identity 1 requires θ1<
θ2
m
, while correct-

ly classifying x from identity 2 requires θ2<
θ1
m
. Both are

more difficult than original θ1<θ2 and θ2<θ1, respectively.

By directly formulating this idea into the modified softmax

loss Eq. (5), we have

Lang =
1

N

∑

i

− log
( e

‖xi‖ cos(mθyi,i)

e
‖xi‖ cos(mθyi,i) +

∑

j 6=yi
e‖xi‖ cos(θj,i)

)

(6)

where θyi,i has to be in the range of [0, π
m
]. In order to

get rid of this restriction and make it optimizable in CNNs,

we expand the definition range of cos(θyi,i) by generaliz-

ing it to a monotonically decreasing angle function ψ(θyi,i)
which should be equal to cos(θyi,i) in [0,

π
m
]. Therefore, our

proposed A-Softmax loss is formulated as:

Lang =
1

N

∑

i

− log
( e

‖xi‖ψ(θyi,i)

e
‖xi‖ψ(θyi,i) +

∑

j 6=yi
e‖xi‖ cos(θj,i)

)

(7)

in which we define ψ(θyi,i)=(−1)k cos(mθyi,i)−2k,

θyi,i ∈ [kπ
m
,
(k+1)π

m
] and k∈ [0,m − 1]. m≥1 is an inte-

ger that controls the size of angular margin. Whenm=1, it
becomes the modified softmax loss.

The justification of A-Softmax loss can also be made from

decision boundary perspective. A-Softmax loss adopts dif-

ferent decision boundary for different class (each boundary

3The inequality cos(θ1)>cos(mθ1) holds while θ1∈ [0,
π
m
],m≥2.
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Figure 3: Geometry Interpretation of Euclidean margin loss (e.g. contrastive

loss, triplet loss, center loss, etc.), modified softmax loss and A-Softmax

loss. The first row is 2D feature constraint, and the second row is 3D feature

constraint. The orange region indicates the discriminative constraint for

class 1, while the green region is for class 2.

is more stringent than the original), thus producing angular

margin. The comparison of decision boundaries is given in

Table 1. From original softmax loss to modified softmax

loss, it is from optimizing inner product to optimizing angles.

From modified softmax loss to A-Softmax loss, it makes

the decision boundary more stringent and separated. The

angular margin increases with largerm and be zero ifm=1.
Supervised by A-Softmax loss, CNNs learn face features

with geometrically interpretable angular margin. Because A-

Softmax loss requiresWi=1, bi=0, it makes the prediction

only depends on angles between the sample x andWi. So

x can be classified to the identity with smallest angle. The

parameterm is added for the purpose of learning an angular

margin between different identities.

To facilitate gradient computation and back propagation,

we replace cos(θj,i) and cos(mθyi,i) with the expressions

only containing W and xi, which is easily done by defini-

tion of cosine and multi-angle formula (also the reason why

we need m to be an integer). Without θ, we can compute

derivative with respect to x and W , similar to softmax loss.

3.3. Hypersphere Interpretation of A-Softmax Loss

A-Softmax loss has stronger requirements for a correct

classification whenm≥2, which generates an angular classi-
fication margin between learned features of different classes.

A-Softmax loss not only imposes discriminative power to

the learned features via angular margin, but also renders nice

and novel hypersphere interpretation. As shown in Fig. 3,

A-Softmax loss is equivalent to learning features that are

discriminative on a hypersphere manifold, while Euclidean

margin losses learn features in Euclidean space.

To simplify, We take the binary case to analyze the hyper-

sphere interpretation. Considering a sample x from class 1

and two column weights W1,W2, the classification rule for
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A-Softmax loss is cos(mθ1)>cos(θ2), equivalentlymθ1<
θ2. Notice that θ1, θ2 are equal to their corresponding arc

length ω1, ω2
4 on unit hypersphere {vj , ∀j|

∑

j v
2
j=1, v≥0}.

Because ‖W ‖1=‖W ‖2=1, the decision replies on the arc

length ω1 and ω2. The decision boundary is equivalent to

mω1=ω2, and the constrained region for correctly classify-

ing x to class 1 ismω1<ω2. Geometrically speaking, this

is a hypercircle-like region lying on a hypersphere manifold.

For example, it is a circle-like region on the unit sphere in

3D case, as illustrated in Fig. 3. Note that largerm leads to

smaller hypercircle-like region for each class, which is an ex-

plicit discriminative constraint on a manifold. For better un-

derstanding, Fig. 3 provides 2D and 3D visualizations. One

can see that A-Softmax loss imposes arc length constraint on

a unit circle in 2D case and circle-like region constraint on a

unit sphere in 3D case. Our analysis shows that optimizing

angles with A-Softmax loss essentially makes the learned

features more discriminative on a hypersphere.

3.4. Properties of A-Softmax Loss

Property 1. A-Softmax loss defines a large angular mar-

gin learning task with adjustable difficulty. With larger m,

the angular margin becomes larger, the constrained region

on the manifold becomes smaller, and the corresponding

learning task also becomes more difficult.

We know that the largerm is, the larger angular margin

A-Softmax loss constrains. There exists a minimal m that

constrains the maximal intra-class angular distance to be

smaller than the minimal inter-class angular distance, which

can also be observed in our experiments.

Definition 1 (minimal m for desired feature distribution).

mmin is the minimal value such that while m > mmin, A-

Softmax loss defines a learning task where the maximal intra-

class angular feature distance is constrained to be smaller

than the minimal inter-class angular feature distance.

Property 2 (lower bound ofmmin in binary-class case). In

binary-class case, we have mmin≥2+
√
3.

Proof. We consider the space spaned by W1 and W2. Be-

causem≥2, it is easy to obtain the maximal angle that class

1 spans is θ12
m−1 + θ12

m+1 where θ12 is the angle betweenW1

and W2. To require the maximal intra-class feature angular

distance smaller than the minimal inter-class feature angular

distance, we need to constrain
θ12

m− 1
+

θ12

m+ 1
︸ ︷︷ ︸

max intra-class angle

≤
(m− 1)θ12

m+ 1
︸ ︷︷ ︸

min inter-class angle

, θ12 ≤
m− 1

m
π (8)

2π − θ12

m+ 1
+

θ12

m+ 1
︸ ︷︷ ︸

max intra-class angle

≤
(m− 1)θ12

m+ 1
︸ ︷︷ ︸

min inter-class angle

, θ12 >
m− 1

m
π (9)

4ωi is the shortest arc length (geodesic distance) betweenWi and the

projected point of sample x on the unit hypersphere, while the correspond-

ing θi is the angle betweenWi and x.

After solving these two inequalities, we could havemmin≥
2+
√
3, which is a lower bound for binary case.

Property 3 (lower bound ofmmin in multi-class case). Un-

der the assumption that Wi, ∀i are uniformly spaced in the

Euclidean space, we have mmin ≥ 3.

Proof. We consider the 2D k-class (k ≥ 3) scenario for the

lower bound. Because Wi, ∀i are uniformly spaced in the

2D Euclidean space, we have θi+1
i = 2π

k
where θi+1

i is the

angle between Wi and Wi+1. Since Wi, ∀i are symmetric,

we only need to analyze one of them. For the i-th class (Wi),

We need to constrain

θi+1
i

m+ 1
+

θii−1

m+ 1
︸ ︷︷ ︸

max intra-class angle

≤ min

{
(m− 1)θi+1

i

m+ 1
,
(m− 1)θii−1

m+ 1

}

︸ ︷︷ ︸

min inter-class angle

(10)

After solving this inequality, we obtainmmin ≥ 3, which is
a lower bound for multi-class case.

Based on this, we usem=4 to approximate the desired

feature distribution criteria. Since the lower bounds are not

necessarily tight, giving a tighter lower bound and a upper

bound under certain conditions is also possible, which we

leave to the future work. Experiments also show that larger

m consistently works better andm=4 will usually suffice.

3.5. Discussions

Why angular margin. First and most importantly, angu-

lar margin directly links to discriminativeness on a manifold,

which intrinsically matches the prior that faces also lie on a

manifold. Second, incorporating angular margin to softmax

loss is actually a more natural choice. As Fig. 2 shows,

features learned by the original softmax loss have an intrin-

sic angular distribution. So directly combining Euclidean

margin constraints with softmax loss is not reasonable.

Comparison with existing losses. In deep FR task, the

most popular and well-performing loss functions include

contrastive loss, triplet loss and center loss. First, they only

impose Euclidean margin to the learned features (w/o normal-

ization), while ours instead directly considers angular margin

which is naturally motivated. Second, both contrastive loss

and triplet loss suffer from data expansion when constituting

the pairs/triplets from the training set, while ours requires no

sample mining and imposes discriminative constraints to the

entire mini-batches (compared to contrastive and triplet loss

that only affect a few representative pairs/triplets).

4. Experiments

4.1. Experimental Settings

Preprocessing. We only use standard preprocessing. The

face landmarks in all images are detected by MTCNN [39].

The cropped faces are obtained by similarity transforma-

tion. Each pixel ([0, 255]) in RGB images is normalized by

subtracting 127.5 and then being divided by 128.
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Layer 4-layer CNN 10-layer CNN 20-layer CNN 36-layer CNN 64-layer CNN

Conv1.x [3×3, 64]×1, S2 [3×3, 64]×1, S2

[3×3, 64]×1, S2
[

3× 3, 64

3× 3, 64

]

× 1

[3×3, 64]×1, S2
[

3× 3, 64

3× 3, 64

]

× 2

[3×3, 64]×1, S2
[

3× 3, 64

3× 3, 64

]

× 3

Conv2.x [3×3, 128]×1, S2

[3×3, 128]×1, S2
[

3× 3, 128

3× 3, 128

]

× 1

[3×3, 128]×1, S2
[

3× 3, 128

3× 3, 128

]

× 2

[3×3, 128]×1, S2
[

3× 3, 128

3× 3, 128

]

× 4

[3×3, 128]×1, S2
[

3× 3, 128

3× 3, 128

]

× 8

Conv3.x [3×3, 256]×1, S2

[3×3, 256]×1, S2
[

3× 3, 256

3× 3, 256

]

× 2

[3×3, 256]×1, S2
[

3× 3, 256

3× 3, 256

]

× 4

[3×3, 256]×1, S2
[

3× 3, 256

3× 3, 256

]

× 8

[3×3, 256]×1, S2
[

3× 3, 256

3× 3, 256

]

× 16

Conv4.x [3×3, 512]×1, S2 [3×3, 512]×1, S2

[3×3, 512]×1, S2
[

3× 3, 512

3× 3, 512

]

× 1

[3×3, 512]×1, S2
[

3× 3, 512

3× 3, 512

]

× 2

[3×3, 512]×1, S2
[

3× 3, 512

3× 3, 512

]

× 3

FC1 512 512 512 512 512

Table 2: Our CNN architectures with different convolutional layers. Conv1.x, Conv2.x and Conv3.x denote convolution units that may contain multiple

convolution layers and residual units are shown in double-column brackets. E.g., [3×3, 64]×4 denotes 4 cascaded convolution layers with 64 filters of size
3×3, and S2 denotes stride 2. FC1 is the fully connected layer.

CNNs Setup. Caffe [10] is used to implement A-Softmax

loss and CNNs. The general framework to train and extract

SphereFace features is shown in Fig. 4. We use residual

units [4] in our CNN architecture. For fairness, all compared

methods use the same CNN architecture (including residual

units) as SphereFace. CNNs with different depths (4, 10, 20,

36, 64) are used to better evaluate our method. The specific

settings for difffernt CNNs we used are given in Table 2.

According to the analysis in Section 3.4, we usually setm

as 4 in A-Softmax loss unless specified. These models are

trained with batch size of 128 on four GPUs. The learning

rate begins with 0.1 and is divided by 10 at the 16K, 24K

iterations. The training is finished at 28K iterations.

Conv
Layers

FC
Layer

A-Softmax
Loss

Training
Faces

Labels

Deep
Features

Testing
Faces

Angular
Metric

Training

Testing

Cosine

Similarity

Figure 4: Training and Extracting SphereFace features.

Training Data. We use publicly available web-collected

training dataset CASIA-WebFace [37] (after excluding the

images of identities appearing in testing sets) to train our

CNN models. CASIA-WebFace has 494,414 face images

belonging to 10,575 different individuals. These face images

are horizontally flipped for data augmentation. Notice that

the scale of our training data (0.49M) is relatively small, es-

pecially compared to other private datasets used in DeepFace

[30] (4M), VGGFace [20] (2M) and FaceNet [22] (200M).

Testing. We extract the deep features (SphereFace) from

the output of the FC1 layer. For all experiments, the final

representation of a testing face is obtained by concatenating

its original face features and its horizontally flipped features.

The score (metric) is computed by the cosine distance of two

features. The nearest neighbor classifier and thresholding

are used for face identification and verification, respectively.

4.2. Exploratory Experiments

Effect of m. To show that larger m leads to larger an-

gular margin (i.e. more discriminative feature distribution

on manifold), we perform a toy example with different m.

We train A-Softmax loss with 6 individuals that have the

most samples in CASIA-WebFace. We set the output feature

dimension (FC1) as 3 and visualize the training samples in

Fig. 5. One can observe that larger m leads to more dis-

criminative distribution on the sphere and also larger angular

margin, as expected. We also use class 1 (blue) and class

2 (dark green) to construct positive and negative pairs to

evaluate the angle distribution of features from the same

class and different classes. The angle distribution of positive

and negative pairs (the second row of Fig. 5) quantitatively

shows the angular margin becomes larger whilem increases

and every class also becomes more distinct with each other.

Besides visual comparison, we also perform face recogni-

tion on LFW and YTF to evaluate the effect ofm. For fair

comparison, we use 64-layer CNN (Table 2) for all losses.

Results are given in Table 3. One can observe that while

m becomes larger, the accuracy of A-Softmax loss also be-

comes better, which shows that larger angular margin can

bring stronger discrimination power.

Dataset Original m=1 m=2 m=3 m=4

LFW 97.88 97.90 98.40 99.25 99.42

YTF 93.1 93.2 93.8 94.4 95.0

Table 3: Accuracy(%) comparison of different m (A-Softmax loss) and

original softmax loss on LFW and YTF dataset.

Effect of CNN architectures. We train A-Softmax loss

(m=4) and original softmax loss with different number

of convolution layers. Specific CNN architectures can be

found in Table 2. From Fig. 6, one can observe that A-

Softmax loss consistently outperforms CNNs with softmax

loss (1.54%∼1.91%), indicating that A-Softmax loss is more

suitable for open-set FR. Besides, the difficult learning task
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Figure 5: Visualization of features learned with differentm. The first row shows the 3D features projected on the unit sphere. The projected points are the

intersection points of the feature vectors and the unit sphere. The second row shows the angle distribution of both positive pairs and negative pairs (we choose

class 1 and class 2 from the subset to construct positive and negative pairs). Orange area indicates positive pairs while blue indicates negative pairs. All angles

are represented in radian. Note that, this visualization experiment uses a 6-class subset of the CASIA-WebFace dataset.

defined by A-Softmax loss makes full use of the superior

learning capability of deeper architectures. A-Softmax loss

greatly improve the verification accuracy from 98.20% to

99.42% on LFW, and from 93.4% to 95.0% on YTF. On

the contrary, the improvement of deeper standard CNNs is

unsatisfactory and also easily get saturated (from 96.60% to

97.75% on LFW, from 91.1% to 93.1% on YTF).
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Figure 6: Accuracy (%) on LFW and YTF with different number of convo-

lutional layers. Left side is for LFW, while right side is for YTF.

4.3. Experiments on LFW and YTF

LFW dataset [9] includes 13,233 face images from 5749

different identities, and YTF dataset [35] includes 3,424

videos from 1,595 different individuals. Both datasets con-

tains faces with large variations in pose, expression and

illuminations. We follow the unrestricted with labeled out-

side data protocol [8] on both datasets. The performance of

SphereFace are evaluated on 6,000 face pairs from LFW and

5,000 video pairs from YTF. The results are given in Table 4.

For contrastive loss and center loss, we follow the FR con-

vention to form a weighted combination with softmax loss.

The weights are selected via cross validation on training set.

For L-Softmax [16], we also use m=4. All the compared

Method Models Data LFW YTF

DeepFace [30] 3 4M* 97.35 91.4

FaceNet [22] 1 200M* 99.65 95.1

Deep FR [20] 1 2.6M 98.95 97.3

DeepID2+ [27] 1 300K* 98.70 N/A

DeepID2+ [27] 25 300K* 99.47 93.2

Baidu [15] 1 1.3M* 99.13 N/A

Center Face [34] 1 0.7M* 99.28 94.9

Yi et al. [37] 1 WebFace 97.73 92.2

Ding et al. [2] 1 WebFace 98.43 N/A

Liu et al. [16] 1 WebFace 98.71 N/A

Softmax Loss 1 WebFace 97.88 93.1

Softmax+Contrastive [26] 1 WebFace 98.78 93.5

Triplet Loss [22] 1 WebFace 98.70 93.4

L-Softmax Loss [16] 1 WebFace 99.10 94.0

Softmax+Center Loss [34] 1 WebFace 99.05 94.4

SphereFace 1 WebFace 99.42 95.0

Table 4: Accuracy (%) on LFW and YTF dataset. * denotes the outside data

is private (not publicly available). For fair comparison, all loss functions

(including ours) we implemented use 64-layer CNN architecture in Table 2.

loss functions share the same 64-layer CNN architecture.

Most of the existing face verification systems achieve

high performance with huge training data or model ensem-

ble. While using single model trained on publicly available

dataset (CAISA-WebFace, relatively small and having noisy

labels), SphereFace achieves 99.42% and 95.0% accuracies

on LFW and YTF datasets. It is the current best performance

trained on WebFace and considerably better than the other

models trained on the same dataset. Compared with models

trained on high-quality private datasets, SphereFace is still

very competitive, outperforming most of the existing results

in Table 4. One should notice that our single model perfor-

mance is only worse than Google FaceNet which is trained

with more than 200 million data.
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Figure 7: CMC and ROC curves of different methods under the small training set protocol.

Method protocol Rank1 Acc. Ver.

NTechLAB - facenx large Large 73.300 85.081

Vocord - DeepVo1 Large 75.127 67.318

Deepsense - Large Large 74.799 87.764

Shanghai Tech Large 74.049 86.369

Google - FaceNet v8 Large 70.496 86.473

Beijing FaceAll_Norm_1600 Large 64.804 67.118

Beijing FaceAll_1600 Large 63.977 63.960

Deepsense - Small Small 70.983 82.851

SIAT_MMLAB Small 65.233 76.720

Barebones FR - cnn Small 59.363 59.036

NTechLAB - facenx_small Small 58.218 66.366

3DiVi Company - tdvm6 Small 33.705 36.927

Softmax Loss Small 54.855 65.925

Softmax+Contrastive Loss [26] Small 65.219 78.865

Triplet Loss [22] Small 64.797 78.322

L-Softmax Loss [16] Small 67.128 80.423

Softmax+Center Loss [34] Small 65.494 80.146

SphereFace (single model) Small 72.729 85.561

SphereFace (3-patch ensemble) Small 75.766 89.142

Table 5: Performance (%) on MegaFace challenge. “Rank-1 Acc.” indicates

rank-1 identification accuracy with 1M distractors, and “Ver.” indicates

verification TAR for 10−6 FAR. TAR and FAR denote True Accept Rate

and False Accept Rate respectively. For fair comparison, all loss functions

(including ours) we implemented use the same deep CNN architecture.

For fair comparison, we also implement the softmax loss,

contrastive loss, center loss, triplet loss, L-Softmax loss [16]

and train them with the same 64-layer CNN architecture as

A-Softmax loss. As can be observed in Table 4, SphereFace

consistently outperforms the features learned by all these

compared losses, showing its superiority in FR tasks.

4.4. Experiments on MegaFace Challenge

MegaFace dataset [18] is a recently released testing bench-

mark with very challenging task to evaluate the performance

of face recognition methods at the million scale of distractors.

MegaFace dataset contains a gallery set and a probe set. The

gallery set contains more than 1 million images from 690K

different individuals. The probe set consists of two existing

datasets: Facescrub [19] and FGNet. MegaFace has several

testing scenarios including identification, verification and

pose invariance under two protocols (large or small training

set). The training set is viewed as small if it is less than

0.5M. We evaluate SphereFace under the small training set

protocol. We adopt two testing protocols: face identification

and verification. The results are given in Fig. 7 and Tabel

5. Note that we use simple 3-patch feature concatenation

ensemble as the final performance of SphereFace.

Fig. 7 and Tabel 5 show that SphereFace (3 patches en-

semble) beats the second best result by a large margins (4.8%

for rank-1 identification rate and 6.3% for verification rate)

on MegaFace benchmark under the small training dataset

protocol. Compared to the models trained on large dataset

(500 million for Google and 18 million for NTechLAB), our

method still performs better (0.64% for id. rate and 1.4%

for veri. rate). Moreover, in contrast to their sophisticated

network design, we only employ typical CNN architecture

supervised by A-Softamx to achieve such excellent perfor-

mance. For single model SphereFace, the accuracy of face

identification and verification are still 72.73% and 85.56%

respectively, which already outperforms most state-of-the-

art methods. For better evaluation, we also implement the

softmax loss, contrastive loss, center loss, triplet loss and L-

Softmax loss [16]. Compared to these loss functions trained

with the same CNN architecture and dataset, SphereFace also

shows significant and consistent improvements. These result-

s convincingly demonstrate that the proposed SphereFace is

well designed for open-set face recognition. One can also see

that learning features with large inter-class angular margin

can significantly improve the open-set FR performance.

5. Concluding Remarks

This paper presents a novel deep hypersphere embedding

approach for face recognition. In specific, we propose the

angular softmax loss for CNNs to learn discriminative face

features (SphereFace) with angular margin. A-Softmax loss

renders nice geometric interpretation by constraining learned

features to be discriminative on a hypersphere manifold,

which intrinsically matches the prior that faces also lie on

a non-linear manifold. This connection makes A-Softmax

very effective for learning face representation. Competitive

results on several popular face benchmarks demonstrate the

superiority and great potentials of our approach.

Acknowledgement. The work was funded by NSFC (61401524),

NSFGD (2014A030313123), NSFGZ (201605121423270).

219



References

[1] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, 2005. 3

[2] C. Ding and D. Tao. Robust face recognition via multimodal

deep face representation. IEEE TMM, 17(11):2049–2058,

2015. 7

[3] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In CVPR, 2006. 2,

3

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 6

[5] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face

recognition using laplacianfaces. TPAMI, 27(3):328–340,

2005. 2

[6] E. Hoffer and N. Ailon. Deep metric learning using triplet

network. arXiv preprint:1412.6622, 2014. 3

[7] J. Hu, J. Lu, and Y.-P. Tan. Discriminative deep metric learn-

ing for face verification in the wild. In CVPR, 2014. 3

[8] G. B. Huang and E. Learned-Miller. Labeled faces in the

wild: Updates and new reporting procedures. Dept. Comput.

Sci., Univ. Massachusetts Amherst, Amherst, MA, USA, Tech.

Rep, pages 14–003, 2014. 1, 7

[9] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face recog-

nition in unconstrained environments. Technical report, Tech-

nical Report, 2007. 7

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-

volutional architecture for fast feature embedding. arXiv

preprint:1408.5093, 2014. 6

[11] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and

E. Brossard. The megaface benchmark: 1 million faces for

recognition at scale. In CVPR, 2016. 1

[12] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and

H. Bischof. Large scale metric learning from equivalence

constraints. In CVPR, 2012. 3

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[14] K.-C. Lee, J. Ho, M.-H. Yang, and D. Kriegman. Video-based

face recognition using probabilistic appearance manifolds. In

CVPR, 2003. 2

[15] J. Liu, Y. Deng, and C. Huang. Targeting ultimate ac-

curacy: Face recognition via deep embedding. arXiv

preprint:1506.07310, 2015. 3, 7

[16] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax

loss for convolutional neural networks. In ICML, 2016. 2, 3,

7, 8

[17] J. Lu, G. Wang, W. Deng, P. Moulin, and J. Zhou. Multi-

manifold deep metric learning for image set classification. In

CVPR, 2015. 3

[18] D. Miller, E. Brossard, S. Seitz, and I. Kemelmacher-

Shlizerman. Megaface: A million faces for recognition at

scale. arXiv preprint:1505.02108, 2015. 8

[19] H.-W. Ng and S. Winkler. A data-driven approach to cleaning

large face datasets. In ICIP, 2014. 8

[20] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In BMVC, 2015. 6, 7

[21] A. Ross and A. K. Jain. Multimodal biometrics: An overview.

In Signal Processing Conference, 2004 12th European, pages

1221–1224. IEEE, 2004. 1

[22] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A

unified embedding for face recognition and clustering. In

CVPR, 2015. 1, 2, 3, 6, 7, 8

[23] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint:1409.1556, 2014. 1

[24] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

CVPR, 2016. 3

[25] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In NIPS,

2014. 1, 2, 3

[26] Y. Sun, X. Wang, and X. Tang. Deep learning face represen-

tation from predicting 10,000 classes. In CVPR, 2014. 2, 3,

7, 8

[27] Y. Sun, X. Wang, and X. Tang. Deeply learned face repre-

sentations are sparse, selective, and robust. In CVPR, 2015.

7

[28] Y. Sun, X. Wang, and X. Tang. Sparsifying neural network

connections for face recognition. In CVPR, 2016. 2, 3

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In CVPR, 2015. 1

[30] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In CVPR, 2014. 2, 3, 6, 7

[31] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold

learning. In CVPR, 2008. 2

[32] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,

B. Chen, and Y. Wu. Learning fine-grained image similarity

with deep ranking. In CVPR, 2014. 3

[33] K. Q. Weinberger and L. K. Saul. Distance metric learning

for large margin nearest neighbor classification. Journal of

Machine Learning Research, 10(Feb):207–244, 2009. 3

[34] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative

feature learning approach for deep face recognition. In ECCV,

2016. 1, 2, 3, 7, 8

[35] L. Wolf, T. Hassner, and I. Maoz. Face recognition in un-

constrained videos with matched background similarity. In

CVPR, 2011. 7

[36] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Dis-

tance metric learning with application to clustering with side-

information. NIPS, 2003. 3

[37] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint:1411.7923, 2014. 2, 6,

7

[38] Y. Ying and P. Li. Distance metric learning with eigenvalue

optimization. JMLR, 13(Jan):1–26, 2012. 3

[39] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-

tion and alignment using multi-task cascaded convolutional

networks. arXiv preprint:1604.02878, 2016. 5

220


