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Abstract

This paper establishes the existence of observable foot-

prints that reveal the “causal dispositions” of the object

categories appearing in collections of images. We achieve

this goal in two steps. First, we take a learning approach to

observational causal discovery, and build a classifier that

achieves state-of-the-art performance on finding the causal

direction between pairs of random variables, given samples

from their joint distribution. Second, we use our causal direc-

tion classifier to effectively distinguish between features of

objects and features of their contexts in collections of static

images. Our experiments demonstrate the existence of a

relation between the direction of causality and the difference

between objects and their contexts, and by the same token,

the existence of observable signals that reveal the causal

dispositions of objects.

1. Introduction

Imagine an image representing a bridge over a river. On

top of the bridge, a car is speeding through the right lane.

Modern computer vision algorithms excel at answering

questions about the observable properties of the scene, such

as such as “Is there a car in this image?”. This is achieved

by leveraging correlations between pixels and image features

across large datasets of images. However, a more nuanced

understanding of images arguably requires the ability to

reason about how the scene depicted in the image would

change in response to interventions. Since the list of possible

interventions is long and complex, we can, as a first step,

reason about the intervention of removing an object.

To this end, consider the two counterfactual questions

“What would the scene look like if we were to remove the

car?” and “What would the scene look like if we were to

remove the bridge?” On the one hand, the first intervention

seems rather benign. After removing the car, we could argue

scene (real world)

car (object)

wheel
(feature) image (pixels)

score(car)

score(wheel)

feature extractor

object recognizer

Figure 1: Our goal is to reveal causal relationships between

pairs of real entities composing scenes in the world (e.g.

“the presence of cars cause the presence of wheels”, solid

blue arrow). To this end, we apply a novel observational

causal discovery technique, NCC, to the joint distribution

of a pair of related proxy variables that are computed by

applying CNNs to the image pixels. Since these variables

are expected to be highly correlated with the presence of the

corresponding real entities, the appearance of causation be-

tween the proxy variables (dashed blue arrow) suggests that

there is a causal link between the real world entities them-

selves (e.g. the appearance of causation between score(car)

and score(wheel) suggests that the presence of cars causes

the presence of wheels in the real world.)

that the rest of the scene depicted in the image (the river,

the bridge) would remain invariant. On the other hand, the

second intervention seems more severe. If the bridge had

been removed from the scene, it would, in general, make

little sense to observe the car floating weightlessly above the

river. Thus, we understand that the presence of the bridge has

an effect on the presence of the car. Reasoning about these

and similar counterfactuals allows to begin asking “Why is

there a car in this image?” This question is of course poorly

16979



defined, but the answer is linked to the causal relationship

between the bridge and the car. In our example, the presence

of the bridge causes the presence of the car, in the sense that

if the bridge were not there, then the car would not be either

(needless to say, it is not the only cause for the car). Such

interventional semantics of what is meant by causation align

with current approaches in the literature [25, 22].

1.1. Causal dispositions

We have so far discussed causal relations between two

objects present in a single image, representing a particular

scene. In order to deploy statistical techniques, we must

work with a large collection of images representing a variety

of scenes. Similar objects may have different causal relation-

ships in different scenes. For instance, an image may show a

car passing under the bridge, instead of over the bridge.

The dispositional semantics of causation [20] provide

a way to address this difficulty. In this framework, causal

relations are established when objects exercise some of their

causal dispositions, which are sometimes informally called

the powers of objects. For instance a bridge has the power

to provide support for a car, and a car has the power to

cross a bridge. Although the objects present in a scene do

not necessarily exercise all of their powers, the foundation

of the dispositional theory of causation is that all causal

relationships are manifestations of the powers of objects.1

Since the list of potential causal dispositions is as long

and complex as the list of possible interventions, we again

restrict our attention to interventions that affect the pres-

ence of certain objects in the scene. In particular we can

count the number C(A,B) of images in which the causal

dispositions of objects of categories A and B are exercised

in a manner that the objects of category B would disappear

if one were to remove objects of category A. We then say

that the objects of category A cause the presence of objects

of category B when C(A,B) is (sufficiently) greater than

the converse C(B,A). This definition induces a network of

asymmetric causal relationships between object categories

that represents, on average, how real-world scenes would be

modified when one were to make certain objects disappear.

The fundamental question addressed in this paper is to

determine whether such an asymmetric causal relationship

can be inferred from statistics observed in image datasets.

Hypothesis 1. Image datasets carry an observable statis-

tical signal revealing the asymmetric relationship between

object categories that results from their causal dispositions.

To our knowledge, no prior work has established or even

considered the existence of such a signal. If such a signal

were found, it would imply that it is in principle possible for

1Causal dispositions are more primitive concepts than the causal graphs

of Pearl’s approach [22]. Therefore, in our case, causal dispositions are

responsible for the shape of causal graphs.

statistical computer vision algorithms to reason about the

causal structure of the world. This is not small feat, given

that it is being debated in statistics until this day whether one

can at all infer causality from purely statistical information,

without performing interventions. The focus of this contribu-

tion is to establish the existence of such causal signals using

a newly proposed method. We do not, in contrast, make any

engineering contribution advancing the state-of-the-art in

standard computer vision tasks using these signals — this is

beyond the scope of the present paper.

1.2. Object features and context features

Since image datasets do not provide labels describing the

causal dispositions of objects, we cannot resort to supervised

learning techniques to find the causal signal put forward

by Hypothesis 1. Instead, we take an indirect approach

described below.

The features computed by the final layers of a convolu-

tional neural network (CNN) [14, 21, 8] often indicate the

presence of a well localized object-like feature in the scene

depicted by the image under study.2 Various techniques have

been developed to investigate where these object-like fea-

tures appear in the scene and what they look like in the image

[32, 31]. We can therefore examine large collections of im-

ages representing different objects of interest such as cats,

dogs, trains, buses, cars, and people. The locations of these

objects in the images are given to us in the form of bounding

boxes. For each object of interest, we can distinguish be-

tween object features and context features. By definition, the

object features are those that are mostly activated inside the

bounding box of the object of interest, and the context fea-

tures are those that are mostly activated outside the bounding

box of the object of interest. Independently and in parallel,

we also distinguish between causal features and anticausal

features [27]. Causal features are those that cause the pres-

ence3 of the object in the scene, whereas anticausal features

are those caused by the presence of the object in the scene.

Having made a distinction between object and context

features, our indirect approach relies on a second hypothesis:

Hypothesis 2. There exists an observable statistical depen-

dence between object features and anticausal features. The

statistical dependence between context features and causal

features is nonexistent or much weaker.

We expect Hypothesis 2 to be true, because many of the

features caused by the presence of an object of interest are

in fact parts of the object itself, and hence are likely to be

contained inside its bounding box. For instance, the presence

of a car often causes the presence of wheels. In contrast,

the context of an object of interest may either cause or be

2The word feature in this work describes a property of the scene whose

presence is flagged by feature activations computed by the CNN.
3In the sense defined in Section 1.1.
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caused by the presence of the object. For instance, asphalt-

like features cause the presence of a car, but the car’s shadow

is caused by the presence of the car. Importantly, empirical

support in favour of Hypothesis 2 translates into support in

favour of Hypothesis 1.

1.3. Our contribution

Our plan is to use a large collection of images to pro-

vide empirical evidence in favour of Hypothesis 2. In order

to do so, we must effectively determine, for each object

category, which features are causal or anti-causal. In this

manner we would support Hypothesis 2, and consequently,

Hypothesis 1.

Our exposition is organized as follows. After a discussing

related literature, Section 2 introduces the basics of causal

inference from observational data. Section 3 proposes a new

algorithm, the Neural Causation Coefficient (NCC), able

to learn causation from a corpus of labeled data. NCC is

shown to outperform the previous state-of-the-art in cause-

effect inference. Section 4 makes use of NCC to distinguish

between causal and anticausal features in collections of im-

ages. As hypothesized, we show a consistent relationship

between anticausal features and object features. Finally, Sec-

tion 5 closes our exposition by offering some conclusions

and directions for future research.

1.4. Related work

The experiments described in this paper depend crucially

on the properties of the features computed by the convolu-

tional layers of a CNN [14]. Zeiler et al. [31] show that the

final convolutional layers can often be interpreted as object-

like features. Work on weak supervision [21, 32] suggests

that such features can be accurately localized.

We also build on the growing literature discussing the

discovery of causal relationships from observational data [10,

19, 17, 1]. In particular, the Neural Causation Coefficient

(Section 3) is related to [17] but offers superior performance,

and is learned end-to-end from data. The notion of causal

and anticausal features was inspired by [27]. We believe that

our work is the first observational causal discovery technique

that targets the causal dispositions of objects.

Causation in computer vision has been the object of at

least four recent works. Pickup et al. [24] use observational

causal discovery techniques to determine the direction of

time in video playback. Lebeda et al. [13] use transfer en-

tropy to study the causal relationship between object and

camera motions in video data. Fire and Zhu [5, 6] use video

data annotated with object status and actions to infer percep-

tual causality. The work of Chalupka et al. [2] is closer to our

work because it addresses causation issues in images. How-

ever, their work deploys interventional experiments to target

causal relationships in the labelling process, that is, which

pixel manipulations can result in different labels, whereas

f ∼ Pf

for j = 1, . . . ,m do

xj ∼ Pc(X)
ej ∼ Pe(E)
yj ← f(xj) + ej

end for

return S = {(xj , yj)}
m
j=1

Figure 2: Additive Noise Model, where X → Y .

we target causal relationships in scenes from a purely obser-

vational perspective. This critical difference leads to very

different conceptual and technological challenges.

2. Observational causal discovery

Randomized experiments are the gold standard for causal

inference [22]. Like a child may drop a toy to probe the

nature of gravity, these experiments rely on interacting with

the world to reveal causal relations between variables of

interest. When such experiments are expensive, unethical,

or impossible to conduct, we must discern cause from effect

using observational data only, and without the ability to

intervene [30]. This is the domain of observational causal

discovery.

In the absence of any assumptions, the determination of

causal relations between random variables given samples

from their joint distribution is fundamentally impossible

[22, 23]. However, it may still be possible to determine a

plausible causal structure in practice. For joint distributions

that occur in the real world, the different causal interpreta-

tions may not be equally likely. That is, the causal direction

between typical variables of interest may leave a detectable

signature in their joint distribution. We shall exploit this

insight to build a classifier for determining the cause-effect

relation between two random variables from samples of their

joint distribution.

In its simplest form, observational causal discovery [23,

19, 18] considers the observational sample

S = {(xj , yj)}
m
j=1 ∼ P

m(X,Y ), (1)

and aims to infer whether X → Y or Y → X . In particular,

S is assumed to be drawn from one of two models: from a

causal model where X → Y , or from an anticausal model

where X ← Y . Figure 2 exemplifies a family of such mod-

els, the Additive Noise Model (ANM) [10], where the effect

variable Y is a nonlinear function f of the cause variable X ,

plus some independent random noise E.

If we make no assumptions about the distributions Pf ,

Pc, and Pe appearing in Figure 2, the problem of observa-

tional causal discovery is nonidentifiable [23]. To address

this issue, we assume that whenever X → Y , the cause,
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Figure 3: Examples of causal footprints.

noise, and mechanism distributions are “independent”. This

should be interpreted as an informal statement that includes

two types of independences. One is the independence be-

tween the cause and the mechanism (ICM) [15, 27], which

is formalized not as an independence between the input

variable x and the mechanism f , but as an independence

between the data source (that is, the distribution P (X)) and

the mechanism P (Y |X) mapping cause to effect. This can

be formalized either probabilistically [3] or in terms of al-

gorithmic complexity [12]. The ICM is one incarnation of

uniformitarianism: processes f in nature are fixed and agnos-

tic to the distributions Pc of their causal inputs. The second

independence is between the cause and the noise. This is

a standard assumption in structural equation modeling, and

it can be related to causal sufficiency. Essentially, if this

assumption is violated, our causal model is too small and we

should include additional variables [22]. In lay terms, believ-

ing these assumptions amounts to not believing in spurious

correlations.

For most choices of (Pc, Pe, Pf ), the ICM will be vio-

lated in the anticausal direction X ← Y . This violation

will often leave an observable statistical footprint, render-

ing cause and effect distinguishable from observational data

alone [23]. But, what exactly are these causal footprints,

and how can we develop statistical tests to find them?

2.1. Examples of observable causal footprints

Let us illustrate two types of observable causal footprints.

First, consider a linear additive noise model Y ← f(X)+
E, where the cause X and the noise E are two indepen-

dent uniform random variables with bounded range, and

the mechanism f is a linear function (Figure 3a). Crucially,

it is impossible to construct a linear additive noise model

X ← f̃(Y )+Ẽ where the new cause Y and the new noise Ẽ

are two independent random variables (except in degenerate

cases). This is illustrated in Figure 3b, where the variance

of the new noise variable Ẽ varies (as depicted in red bars)

across different locations of the new cause variable Y . There-

fore, the ICM assumption is satisfied for the correct causal

direction X → Y but violated for the wrong causal direction

Y → X . This asymmetry makes cause distinguishable from

effect [10]. Here, the relevant footprint is the independence

between X and E.

Second, consider a new observational sample where

X → Y , Y = f(X), and f is a monotone function. The

causal relationship X → Y is deterministic, so the noise-

based footprints from the previous paragraphs are rendered

useless. Let us assume that P (X) is a uniform distribution.

Then, the probability density function of the effect Y in-

creases whenever the derivative f ′ decreases, as depicted by

Figure 3c. Loosely speaking, the shape of the effect distri-

bution P (Y ) is thus not independent of the mechanism f .

In this example, ICM is satisfied under the correct causal

direction X → Y , but violated under the wrong causal di-

rection Y → X [3]. Again, this asymmetry renders the

cause distinguishable from the effect [3]. Here, the relevant

footprint is a form of independence between the density of

X and f ′.

It may be possible to continue in this manner, consider-

ing more classes of models and adding new footprints to

detect causation in each case. However, engineering and

maintaining a catalog of causal footprints is a tedious task,

and any such catalog will most likely be incomplete. The

next section thus proposes to use neural networks to learn

causal footprints directly from data.

3. The neural causation coefficient

To learn causal footprints from data, we follow [18] and

pose cause-effect inference as a binary classification task.

Our input patterns Si are effectively scatterplots similar to

those shown in Figures 3a and 3b. That is, each data point

is a bag of samples (xij , yij) ∈ R
2 drawn iid from a dis-

tribution P (Xi, Yi). The class label li indicates the causal

direction between Xi and Yi.

D = {(Si, li)}
n
i=1,

Si = {(xij , yij)}
mi

j=1 ∼ P
mi(Xi, Yi),

li =

{

0 if Xi → Yi

1 if Xi ← Yi
. (2)

Using data of this form, we will train a neural network to clas-

sify samples from probability distributions as causal or anti-

causal. Since the input patterns Si are not fixed-dimensional

vectors, but bags of points, we borrow inspiration from the

literature on kernel mean embedding classifiers [28] and

construct a feedforward neural network of the form

NCC({(xij , yij)}
mi

j=1) = ψ





1

mi

mi
∑

j=1

φ(xij , yij)



 .

In the previous, φ is a feature map, and the average over all

φ(xij , yij) is the mean embedding of the empirical distribu-

tion 1
mi

∑mi

i=1 δ(xij ,yij). The function ψ is a binary classifier

that takes a fixed-length mean embedding as input [18].
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{(xij , yij)}
mi

j=1 (xi1, yi1)

(ximi
, yimi

)

1
mi

∑mi

j=1(·) P̂(Xi → Yi)

average

classifier layers

embedding layers

each point featurized separately

Figure 4: Scheme of the Neural Causation Coefficient (NCC) architecture.

In kernel methods, φ is fixed a priori and defined with

respect to a nonlinear kernel [28]. In contrast, our feature

map φ : R2 → R
h and our classifier ψ : Rh → {0, 1} are

both multilayer perceptrons, which are learned jointly from

data. Figure 4 illustrates the proposed architecture, which

we term the Neural Causation Coefficient (NCC). In short,

to classify a sample Si as causal or anticausal, NCC maps

each point (xij , yij) in the sample Si to the representation

φ(xij , yij) ∈ R
h, computes the embedding vector φSi

:=
1
mi

∑mi

j=1 φ(xij , yij) across all points (xij , yij) ∈ Si, and

classifies the embedding vector φSi
∈ R

h as causal or an-

ticausal using the neural network classifier ψ. Importantly,

the proposed neural architecture is not restricted to cause-

effect inference, and can be used to represent and learn from

general distributions.

NCC has some attractive properties. First, predicting the

cause-effect relation for a new set of samples at test time can

be done efficiently with a single forward pass through the ag-

gregate network. The complexity of this operation is linear in

the number of samples. In contrast, the computational com-

plexity of the state-of-the-art (kernel-based additive noise

models) is cubic in the number of samples. Second, NCC

can be trained using mixtures of different causal and anti-

causal generative models, such as linear, non-linear, noisy,

and deterministic mechanisms linking causes to their effects.

This rich training allows NCC to learn a diversity of causal

footprints simultaneously. Third, for differentiable activation

functions, NCC is a differentiable function. This allows us

to embed NCC into larger neural architectures or to use it as

a regularization term to encourage the learning of causal or

anticausal patterns.

The flexibility of NCC comes at a cost. In practice, la-

beled cause-effect data as in Equation (2) is scarce and la-

borious to collect. Because of this, we follow [18] and train

NCC on artificially generated data. This turns out to be ad-

vantageous as it gives us easy access to unlimited data. In

the following, we describe the process to generate synthetic

cause-effect data along with the training procedure for NCC,

and demonstrate the performance of NCC on real-world

cause-effect data.

3.1. Synthesis of training data

Causal signals differ significantly from the correlation

structures exploited by modern computer vision algorithms.

In particular, since the first and second moments are always

symmetrical, causal signals can only be found in high-order

moments.

More specifically, we will construct n synthetic observa-

tional samples Si (see Figure 2), where the ith observational

sample contains mi points. The points comprising the ob-

servational sample Si = {(xij , yij)}
mi

j=1 are drawn from an

heteroscedastic additive noise model yij ← fi(xij)+ vijeij ,

for all j = 1, . . . ,mi. In this manner, we generalize the

homoscedastic noise assumption ubiquitous in previous liter-

ature [19].

The cause terms xij are drawn from a mixture of ki Gaus-

sians distributions. We construct each Gaussian by sampling

its mean from Gaussian(0, ri), its standard deviation from

Gaussian(0, si) followed by an absolute value, and its un-

normalized mixture weight from Gaussian(0, 1) followed by

an absolute value. We sample ki ∼ RandomInteger[1, 5] and

ri, si ∼ Uniform[0, 5]. We normalize the mixture weights to

sum to one. We normalize {xij}
mi

j=1 to zero mean and unit

variance.

The mechanism fi is a cubic Hermite spline with support

[

min({xij}
mi

j=1)− std({xij}
mi

j=1) ,

max({xij}
mi

j=1) + std({xij}
mi

j=1)
] (3)
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and di knots drawn from Gaussian(0, 1), where

di ∼ RandomInteger(4, 5). The noiseless effect terms

{f(xij)}
mi

j=1 are normalized to have zero mean and unit

variance.

The noise terms eij are sampled from Gaussian(0, vi),
where vi ∼ Uniform[0, 5]. To generalize the ICM, we al-

low for heteroscedastic noise: we multiply each eij by vij ,

where vij is the value of a smoothing spline with support

defined as in Equation (3) and di random knots drawn from

Uniform[0, 5]. The noisy effect terms {yij}
mi

j=1 are normal-

ized to have zero mean and unit variance.

This sampling process produces a training set of 2n la-

beled observational samples

D =
{

({(xij , yij)}
mi

j=1, 0)
}n

i=1

∪
{

({(yij , xij)}
mi

j=1, 1)
}n

i=1
.

(4)

3.2. Training NCC

We train NCC with two embedding layers and two clas-

sification layers followed by a softmax output layer. Each

hidden layer is a composition of batch normalization [11],

100 hidden neurons, a rectified linear unit, and 25% dropout

[29]. We train for 10000 iterations using RMSProp [9] with

the default parameters, where each minibatch is of the form

given in Equation (4) and has size 2n = 32. Lastly, we fur-

ther enforce the symmetry P(X → Y ) = 1 − P(Y → X),
by training the composite classifier

1
2

(

1− NCC({(xij , yij)}
mi

j=1)

+ NCC({(yij , xij)}
mi

j=1)
)

,
(5)

where NCC({(xij , yij)}
mi

j=1) tends to zero if the classifier

believes in Xi → Yi, and tends to one if the classifier be-

lieves in Xi ← Yi. We chose our parameters by monitoring

the validation error of NCC on a held-out set of 10000 syn-

thetic observational samples. Using this held-out set, we

cross-validated the dropout rate over {0.1, 0.25, 0.3}, the

number of hidden layers over {2, 3}, and the number of

hidden units in each of the layers over {50, 100, 500}.

3.3. Testing NCC

We test the performance of NCC on the Tübingen datasets,

version 1.0 [19]. This is a collection of one hundred heteroge-

neous, hand-collected, real-world cause-effect observational

samples that are widely used as a benchmark in the causal

inference literature [18]. The NCC model with the highest

synthetic held-out validation accuracy correctly classifies

the cause-effect direction of 79% of the Tübingen datasets

observational samples. This result outperforms the previ-

ous state-of-the-art on observational cause-effect discovery,

which achieves 75% accuracy on this dataset [18].4

4The accuracies reported in [18] are for version 0.8 of the dataset, so we

reran the algorithm from [18] on version 1.0 of the dataset.

This validation highlights a crucial fact: even when

trained on abstract data, NCC discovers the correct cause-

effect relationship in a wide variety of real-world datasets.

But: Do these abstract, domain-independent, causal foot-

prints hide in complex image data?

4. Causal signals in sets of static images

We now have at our disposal all the necessary tools to

verify our hypotheses. In the following, we chose to work

with the twenty object categories of the Pascal VOC 2012

dataset [4]. We first explain how we use NCC to select the

most plausible causal or anticausal features for each object

category. We then we show that the selected anticausal

features are more likely to be object features, that is, located

within the object bounding box, than the selected causal

features. This establishes that Hypothesis 2 is true, and, as a

consequence, also establish that Hypothesis 1 is true.

4.1. Datasets

Our experiments use a feature extraction network trained

on the ImageNet [26] dataset and a classifier network trained

on the Pascal VOC 2012 dataset [4]. We then use these

networks to identify causal relationships on the subset of

the 99,309 MSCOCO images [16] representing objects be-

longing to the twenty Pascal categories: aeroplane, bicycle,

bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog,

horse, motorbike, person, potted plant, sheep, sofa, train, and

television. These datasets feature heterogeneous images that

possibly contain multiple objects from different categories.

The objects may appear at different scales and angles, and be

partially visible or occluded. In addition to these challenges,

we have no control about the confounding and selection bias

effects polluting these datasets of images. All images are

rescaled to ensure that their shorter side is 224 pixels long,

then cropped to the central 224×224 square.

4.2. Selecting causal and anticausal features

Our first task is to determine which of the features scores

computed by the feature extraction neural network represent

real world entities that cause the presence of the object of

interest (causal features), or are caused by the presence of

the object of interest (anticausal features).

To that effect, we consider the feature scores computed

by a 18-layer ResNet [8] trained on the ImageNet dataset

using a proven implementation [7]. Building on top of these

features, we use the Pascal VOC2012 dataset to train an

independent network with two 512-unit hidden layers to

recognize the 20 Pascal VOC2012 categories,

For each of the MSCOCO images containing at least one

instance of the twenty Pascal VOC 2012 object categories,

xj ∈ R
3×224×224, let fj = f(xj) ∈ R

512 denote the vector

of feature scores (before the ReLU nonlinearity) obtained us-

ing the feature extraction network and let cj = c(xj) ∈ R
20
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(a) xj (b) xo
j (c) xc

j

Figure 5: Blacking out image pixels to distinguish object-

features from context-features. We show the original im-

age xj , and the corresponding object-only image xoj and

context-only image xcj for the category “dog”. The pixels

are blacked out after normalizing the image in order to obtain

true zero pixels.

denote the vector of log-odds (that is, the output unit acti-

vations before the sigmoid nonlinearity) obtained using the

classifier network. We use features before their nonlinearity

and log odds instead of the class probabilities because NCC

is trained on continuous data with full support on R.

As depicted in Figure 1, for each category k ∈ {1 . . . 20}
and each feature l ∈ {1 . . . 512}, we apply NCC to the scat-

terplot {(fjl, cjk)}
m
j=1 representing the joint distribution of

the scores of feature j and the score of category k. Since

these scores are computed by running our neural networks

on the image pixels, they are not related by a direct causal

relationship. However we know that these scores are highly

correlated with the presence of objects and features in the

real scene. Therefore, the appearance of a causal relation-

ship between these scores suggests that there is a causal

relationship between the real world entities they represent.

Because we analyze one feature at a time, the values taken

by all other features appear as an additional source of noise,

and the observed statistical dependencies are then be much

weaker than in the synthetic NCC training data. To avoid

detecting causation between independent random variables,

we use a variant of NCC trained with an augmented training

set: in addition to presenting each scatterplot in both causal

directions as in (4), we pick a random permutation σ to gen-

erate an additional uncorrelated example {xi,σ(j), yij}
mi

j=1

with label 1
2 . We use our best model of this kind which, for

validation purposes, achieves 79% accuracy in the Tübingen

pair benchmark.

For each category k ∈ 1 . . . 20, we then record the indices

of the top 1% causal and the top 1% anticausal features.

4.3. Verifying Hypothesis 2

In order to verify Hypothesis 2, it is sufficient to show

that the top anticausal features are more likely to be object

features than the top causal features. For each category k

and each feature j, we must therefore determine whether

feature j is likely to be an object feature or a context feature.

This is relatively easy because we have access to the object

bounding boxes and we simply need to determine how much

of each feature score j is imputable to the bounding boxes

of the objects of category k.

To that effect, we prepare two alternate versions of each

MSCOCO image xj by blacking out (with zeroes) the pixels

located outside the bounding boxes of the category k objects,

yielding the object-only image xoj , or by blacking out the

pixels located inside the bounding boxes of the category k

objects, yielding the context-only image xcj . This process is

illustrated in Figure 5c. We then compute the corresponding

vectors of feature scores foj = f(xoj) and f cj = f(xcj).
For each category k and each feature f we heuristically

define the object-feature ratio sol and the context-feature

ratio scl as follows:

sol =

∑m

j=1

∣

∣

∣f cjl − fjl

∣

∣

∣

∑m

j=1 |fjl|
, scl =

∑m

j=1

∣

∣

∣fojl − fjl

∣

∣

∣

∑m

j=1 |fjl|
.

Intuitively, features with high object-feature ratio (resp. high

context-feature ratio) are those features that react violently

when the object (resp. the context) is erased.

Note that blacking out pixels does not constitute an in-

tervention on the scene represented by the image. This is

merely a procedure to impute the contribution of the object

bounding boxes to each feature score.

4.4. Results

Figure 6 shows the means and the standard deviations of

the object-context ratios (top plot) and the context-feature

ratios (bottom plot) estimated on the top 1% anticausal fea-

tures (blue bars) and the top 1% causal features (green bars)

for each of the twenty object categories.

As predicted by Hypothesis 2, object features are related

to anticausal features: the top 1% anticausal features exhibit

a higher object-feature ratio than the top 1% causal features.

Since this effect can be observed on all 20 classes of interest,

the probability of obtaining such a result by chance would

be 2−20≈10−6. When we select the top 20% causal and

anticausal features, this effect remains consistent across 16
out of 20 classes of interest.

This result indicates that anticausal features may be useful

for detecting objects locations in a robust manner, regardless

of their context. As stated in Hypothesis 2, we could not find

a consistent relationship between context features and causal

features. Remarkably, we remind the reader that the NCC

classifier does not depend on the object categories and was

trained using synthetic data unrelated to images. As a sanity

check, we did not obtain any such results when replacing the

NCC scores with the correlation coefficient or the absolute

value of the correlation coefficient.5

5We also ran preliminary experiments to find causal relationships be-
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Figure 6: Average and standard deviation of the object/context feature scores associated to the top 1% causal/anticausal feature

scores, for all the twenty studied categories. The average object feature score associated to the top 1% anticausal feature scores

is always higher than the average object feature score associated to the top 1% causal features. Such separation does not occur

for context feature scores. These results are strong empirical evidence in favour of Hypoteheses 1 and 2: the probability of

obtaining these results by chance is 2−20 ≈ 10−6.

Therefore we believe that this result establishes that Hy-

pothesis 2 is true with high certainty. As explained in Sec-

tion 1.3, verifying Hypothesis 2 in this manner also implies

confirms Hypothesis 1.

5. Conclusion

Using a carefully designed experiment, we have estab-

lished that the high order statistical properties of image

datasets contain information about the causal dispositions

of objects and, more generally, about causal structure of the

real world.

Our experiment relies on three main components. First,

we use synthetic scatterplots to train a binary classifier that

identifies plausible causal (X→Y ) and anticausal (X←Y )

relations. Second we hypothesise that the distinction be-

tween object features and context features in natural scenes

tween objects of interest, by computing the NCC scores between the log

odds of different objects of interest. The strongest causal relationships that

we found were “bus causes car,” “chair causes plant,” “chair causes sofa,”

“dining table causes bottle,” “dining table causes chair,” “dining table causes

plant,” “television causes chair,” and “television causes sofa.”

is related to the distinction between features that cause the

presence of the object and features that are caused by the

presence of the object. Finally, we construct an experiment

that leverages static image datasets to establish that this latter

hypothesis is true. Thus, we conclude that we must therefore

have been able to effectively distinguish which features were

causal or anticausal.

Because we now know that such a signal exist, we can

envision in a reasonable future that computer vision algo-

rithms will be able to perceive the causal structure of the

real world and reason about scenes. There is no question

that significant algorithmic advances will be necessary to

achieve this goal. In particular, we stress the importance

of (1) building large, real-world datasets to aid research in

causal inference, (2) extending data-driven techniques like

NCC to causal inference of more than two variables, and (3)

exploring data with explicit causal signals, such as the arrow

of time in videos (e.g. [24].)
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