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Abstract

We describe a modular framework for video frame pre-

diction. We refer to it as a Flexible Spatio-Temporal Net-

work (FSTN) as it allows the extrapolation of a video se-

quence as well as the estimation of synthetic frames ly-

ing in between observed frames and thus the generation

of slow-motion videos. By devising a customized objec-

tive function comprising decoding, encoding, and adversar-

ial losses, we are able to mitigate the common problem of

blurry predictions, managing to retain high frequency in-

formation even for relatively distant future predictions. We

propose and analyse different training strategies to optimize

our model. Extensive experiments on several challenging

public datasets demonstrate both the versatility and valid-

ity of our model.

1. Introduction

Videos contain rich spatial and temporal structure and

capture non-trivial dependencies between objects and con-

textual information along with scene characteristics like

depth, occlusion, and illumination. Accurate modelling

of videos ultimately requires high-level understanding of

3D spatio-temporal information, which resembles humans’

ability to understand their surrounding physical world. One

fundamental problem in video modelling is to predict future

frames involving the construction of an internal representa-

tion that models, to some degree, both video content and

dynamics. Even for short-term future frames, video pre-

diction has remained a challenging problem until now, ow-

ing to the complexity and ambiguity inherent in video data.

Video prediction is thus still in its infancy, in particular the

long-term prediction of video sequences.

There are a number of recent works that predict unseen

future video frames [20, 19, 25, 16]. Predicting future im-

ages from a video sequence requires the learning of an inter-

nal representation that captures spatio-temporal correlations

and models the image evolution accurately. This might in-

clude information about how objects move, deform or be-

have, about occlusion and object boundaries, scene depth

and so on. Video prediction is a promising research di-

rection that will spawn a wealth of stimulating applications

[1, 14, 17, 13, 30, 29, 27, 5, 7, 28, 10, 23, 18].

Key to the success of previous methods is the use of

Long Short-Term Memory (LSTM) autoencoder networks

which are able to capture spatio-temporal long-range de-

pendencies. Although these works have shown encouraging

results for short-time prediction, a common shortcoming is

the increasing amount of blur for predictions more than a

single frame ahead.

In the present work we propose a new computational

model for video prediction that does not suffer from this

nuisance. It also allows for the prediction of an entire im-

age sequence rather than just a single frame ahead. Fur-

thermore, it is not only able to extrapolate in time but is

equally suited for temporal interpolation between subse-

quent frames. Our network can be trained end-to-end on

full frame images. Once trained, it is able to make predic-

tions in almost real-time.

In particular, we describe two new network modules, for

extrapolation and interpolation, each of which predicts a

single video frame. These modules can be concatenated to

enable the prediction of an entire video sequence with arbi-

trary many frames. Since each module is fully differentiable

they allow for end-to-end training even when combined. In-

spired by recent work of Pătrăucean et al. [19], each of

the modules comprises a spatio-temporal video autoencoder

consisting of a convolutional image encoder-decoder with a

nested memory module composed of convolutional LSTM

(ConvLSTM) cells. The ConvLSTM features a modified

Spatial Transformer Network (STN) layer [9] to capture

temporal changes and motion across time by optical flow

estimation and prediction.

Our approach also integrates a recently proposed type

of loss functions named deep perceptual similarity metric

(DeePSiM) [4] that has been shown to better reflect the

perceptual similarity of images. It measures distances be-

tween image features extracted by deep neural networks and

employs the adversarial network of Goodfellow et al. [6].

In our context, the extrapolation and interpolation modules

take the role of the generative network, while a discrimina-
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tive network is trained jointly to guide unsupervised train-

ing.

While our approach leads to significantly improved

results, the training procedure and optimization of model

parameters is non-trivial. We devise and discuss different

training strategies of our combined system and demonstrate

its merits in a comprehensive comparison with the state-of-

the-art. Our contributions are summarized as follows:

• We present a versatile and flexible framework for video

extrapolation and interpolation.

• We devise a novel objective function that comprises

decoding, encoding, and adversarial losses, and anal-

yse their effects and contributions.

• We propose different optimization strategies and dis-

cuss them in detail.

• We perform a comprehensive comparison of recent

state-of-the-art video prediction methods, showing that

our approach has an advantage in terms of long-term

video prediction.

2. Related Work

A number of recent works use neural networks for video

prediction. Ranzato et al. [20] propose a recurrent convo-

lutional network architecture inspired from language mod-

elling. It performs prediction of future video frames and

interpolation of intermediate frames based on visual words

obtained by clustering image patches. Srivastava et al. [25]

adapt a LSTM model [8] and use an autoencoder that jointly

reconstructs the input sequence and predicts the unseen fu-

ture frames. While [25] used a fully connected LSTM layer,

Shi et al. [22] use a convolutional LSTM and apply their

model for precipitation nowcasting. To counter the prob-

lem of inherently blurry predictions common to previous

methods, Mathieu et al. [16] propose a multi-scale architec-

ture in combination with a revised loss function that also

accounts for the difference of the respective gradient im-

ages. In addition they employ a generative adversarial train-

ing method [6, 3] for next frame prediction. Concurrently to

[16], Pătrăucean et al. [19] describe a spatio-temporal video

autoencoder with a nested differentiable short-term memory

module that features a modified Spatial Transformer Net-

work Layer [9] for improved motion estimation and predic-

tion. Kalchbrenner et al. [11] propose a generative video

model estimating the discrete joint distribution of the pixel

values in the video. Different from the tasks above, Bhat-

tacharyya et al. [1] describe an approach for predicting fu-

ture boundary frames of segmented videos.

Several of the above mentioned works [20, 25, 16] have

stressed the importance and difficulty of designing an ap-

propriate loss function in order to render predicted frames

less blurry and more realistic. In a recent work, Dosovit-

skiy et al. [4] propose a new class of loss functions named

deep perceptual similarity metrics (DeePSiM) which mea-

sures similarity on learned features. Combined with a gen-

erative adversarial training the authors show significantly

improved results in a number of applications that involve

the automated generation of static images.

Our work combines a number of recent insights in a uni-

fied framework: it builds upon the convolutional LSTM au-

toencoder framework with improved motion capture capa-

bilities of [19], and proposes a novel loss function that uti-

lizes the findings of [6, 16, 4]. In contrast to [19] that can

only predict one future frame, our model can predict longer-

term video sequences as well as interpolate between two

frames.

3. Model Description

3.1. Architecture

The building blocks of our model are the basic units re-

cently proposed in [19]: encoder (E), decoder (D), ConvL-

STM unit, optical flow module, grid generator, and sam-

pler (S). E and D constitute a spatial autoencoder, where E

contains a convolutional layer, a non-linearity layer and a

spatial max-pooling layer, while D consists of a nearest-

neighbour spatial upsampling layer and a convolutional

layer. The ConvLSTM unit is a special LSTM unit with the

replacement of biased linear (fully-connected) transforma-

tions by spatial local convolutions. The optical flow module

generates a dense transformation map with the same size as

the memory output of ConvLSTM, one 2D flow vector per

pixel, representing the displacement in horizontal and verti-

cal directions due to motion between consecutive frames. It

integrates a smoothness penalty to ensure that nearby pix-

els follow a locally smooth motion and hence is capable

of capturing pixel-wise motion across consecutive frames.

The grid generator and S are a modified version of the Spa-

tial Transformer Network (STN) [9], where they accept one

transformation per pixel, instead of a single transformation

for the entire image as originally proposed in [9]. Since we

focus on learning features for motion prediction, they pro-

vide immediate feedback on the flow map predicted by the

optical flow prediction module.

Different from [19], we use these basic units to assemble

two new modules: an extrapolation module and an inter-

polation module, as shown in Fig. 1 (a) and 2.1 Each of

these can be viewed as a spatio-temporal video autoencoder

consisting of a convolutional image encoder-decoder with a

nested memory module composed of convolutional LSTM

(ConvLSTM) cells acting as a temporal encoder. Also, we

incorporate an adversarial network (A), that takes all gener-

ated frames at the same time and hence guides the training

from a global perspective.

1For simplicity, the optical flow module and grid generator are included

in a ConvLSTM unit in the figures.

6524



(a) (b)

Figure 1. Proposed Extrapolation Model. E: Encoder, D: Decoder,

S: Sampler, A: Adversarial Network. (a) Extrapolation model; (b)

Unfolding of the extrapolation model with two recurrent steps.

Each of the proposed modules takes two inputs at a time

t: the predicted optical flow of ConvLSTM and the fea-

tures of the encoder unit at time t − 1. Similarly, their two

outputs correspond to the outputs of the ConvLSTM and

encoder units at the current time t respectively. The only

difference between the extrapolation and interpolation mod-

ules is whether they contain ground-truths for the predicted

frames or not.

Extrapolation Model. Our model for video extrapola-

tion consists of two ConvLSTMs - the input ConvLSTM

and the extrapolation module as shown in Fig. 1 (a). In

Fig. 1 (b) we provide a simple example by unfolding the

two recurrent sequences over several time steps, where

{Xt+1,Xt+2,Xt+3} is a sequence of ground truth frames

to be predicted from the input frames {Xt−1,Xt} in a

video sequence, and {X̂t+1, X̂t+2, X̂t+3} is a sequence

of frames predicted by our model. The ground truth frames

constitute the supervised information for each layer to guide

the training of our model.

Interpolation Model. Our FSTN model can also be used

for video interpolation. As shown in Figure 2, given two in-

put frames {Xt−1,Xt} and one output ground truth frame

{Xt+1}, we can interpolate q frames between any two con-

secutive frames (e.g., Xt−1 and Xt, Xt and Xt+1) by

inserting q interpolation modules between them. Unlike

the extrapolation module, the interpolation module does

not need the ground truth frames. The FSTN interpolation

model displayed on the left in Fig. 2 is the simplest one, but

one can extend it to more complex cases as shown in the

right half of Fig. 2. In this case, in addition to predicting p
future frames one also wants to generate q frames between

any two consecutive predicted future frames. This can be

readily achieved by stacking p interpolation & extrapolation

modules (boxed in black in Fig. 2), where each interpolation

module has q time steps.

3.2. Loss Function

In this section, we describe three distinct types of loss

functions used in our model. Since our proposed interpola-

tion and extrapolation models use the same loss function for

training, for simplicity, here we only focus on the extrapo-

lation model. Let q be the number of concatenated extrap-

olation modules, X<t be several input frames before time

Figure 2. Proposed Interpolation Model. E: Encoder, D: Decoder,

S: Sampler, A: Adversarial Network.

t, Xt+i and X̂t+i be the ground truth frame and the pre-

dicted frame at time step t + i (i = 1, . . . , q), respectively.

We further assume that E(Xt+i) denotes the output of the

encoder unit at time step t+ i, where Xt+i is its input.

Decoder Loss. We call the loss function over the output

of the decoder unit X̂t+i at time step step t + i decoder

loss, denoted by LD
t+i. To enforce edge preservation and

ensure local smoothness, we adopt the loss function from

[19]. Additionally, since our basic goal is to make X̂t+i

close to Xt+i, the l2 loss between them is also included.

Therefore, at time step t + i, we have the decoder loss

LD
t+i = ωD‖X̂t+i−Xt+i‖

2
2+ωG‖▽X̂t+i−▽Xt+i‖

2+
ωHH (▽Tt+i), where H(·) is the Huber loss, ▽T is the

local gradient of the flow map, and ωD, ωG, ωH are the pa-

rameters weighting the data term, decoder loss, and smooth-

ness constraint.

Encoder Loss. Following [4] we include a loss that mea-

sures similarity between images by computing the differ-

ence of their corresponding features extracted by the en-

coder network. We thus define the encoder loss LE
t+i at

time step t+ i as LE
t+i = ‖E(X̂t+i)−E(Xt+i)‖

2.

Adversarial Loss. Adversarial networks consist of a dis-

criminative network D and a generative network G, where

D learns to determine whether a frame is from the dataset

or produced by G. These two networks are simultaneously

trained, thus improving until D can no longer discriminate

the frames generated by G. In theory, when the training is

done, the generative network G can perfectly approximate

the generation process of real data.

In our work, the extrapolation model can be regarded as

the generative network G, generating samples X̂t+i. Using

the corresponding ground truth frame Xt+i, we define the

adversarial loss on D as

LA
D =

∑

i

log (D (Xt+i)) + log (1−D (G (X<t)))

=
∑

i

log (D (Xt+i)) + log
(

1−D
(

X̂t+i

))

,

LA
G =

∑

i

log (D (G (X<t))) =
∑

i

log
(

D
(

X̂t+i

))

.
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More specifically, considering the extrapolation module as a

generator, we view its outputs and ground truth frames, de-

noted by {X̂t+1, X̂t+2, X̂t+3} and {Xt+1,Xt+2,Xt+3}
respectively, as the fake and real inputs of a discriminator

with labels {0, 1} for the adversarial training.

Loss Analysis. In our model we use all the above-

mentioned loss functions, as they describe complementary

types of information: the decoder loss captures the informa-

tion loss in image space, encouraging the predicted frame to

be as close to the ground truth as possible at each time step.

The encoder loss, on the other hand, focuses on the feature

space, and compares images in the lower-dimensional rep-

resentation space. The adversarial loss, finally, optimizes

the model from a global perspective, because it takes as in-

put all the frames at all time steps. The adversarial loss thus

takes into consideration the distribution difference between

predicted frames and ground truth frames, and hence facili-

tates the global optimization of the whole model.

4. Training

In the training phase, we tested three different strategies

to optimize our model. Since the adversarial loss considers

all predicted frames simultaneously, it is used in the same

way in all three strategies. We thus elaborate only on the

decoder and encoder loss.

Figure 3. Different training strategies. (a) Strategy I: Globally-

First Training; (b) Strategy II: Convergence-First Training; (c)

Strategy III: Locally-First Training.

Strategy I: Globally-First Training. A straightforward

strategy is the globally-first training as shown in Fig. 3 (a).

In each iteration it sums up all the decoder and encoder

losses at different time steps and regards the sum as the fi-

nal objective function, i.e. LI
FSTN =

∑

i
LD
t+i+LE

t+i. Given

the current loss we make a forward pass and backward pass

through the entire model. This strategy gathers all the losses

and distributes them to the whole model, which might pre-

vent it from getting stuck in local minima, but at the same

time makes the model difficult to optimize.

Strategy II: Convergence-First Training. In contrast,

this strategy promotes the other extreme, as shown in Fig. 3

(b). In this case, the model is optimized step by step. Ini-

tially, the first sub-model is optimized until it has (almost)

converged. Its parameters are used for initializing the sec-

ond sub-model, and these two sub-models are then opti-

mized jointly, and so on. Formally, at time step t + 1,

we optimize the following objective function until it con-

verges, LII
FSTN = LD

t+1 + LE
t+1. After convergence, we

continue jointly optimizing the first two sub-models until

convergence, LII
FSTN =

∑2

i=1
LD
t+i + LE

t+i. In this manner,

we can optimize the entire model. Compared to Strategy I,

this makes the model easier to train as each time it finds a

relatively good initial point for the training of the next sub-

model. However, since the whole model is not taken into

consideration until the very final iterations, this method is

prone to local minima.

Strategy III: Locally-First Training. Considering the

weaknesses of both strategies above, there is a trade-off

between Strategy I and Strategy II. In the third strategy as

shown in Fig. 3 (c), each sub-model is only trained k times

in each iteration. Therefore, this strategy considers not only

sub-models but also the whole model during the training

phase. The parameter k needs to be tuned depending on the

complexity of data and model.

4.1. Analysis on Training Strategies

To verify the effects of different training strategies, we

trained the same model with the above three training strate-

gies on the PV dataset (see Section 5.1), as shown in Fig. 4.

Figure 4 (c) shows the effect of the globally-first training

strategy, from which we can see that the training loss in-

creases quickly and dramatically rises to a large value. This

may be caused by the saturation of parameters resulting

from large gradients. On this dataset, it is thus hard for our

model to find a good initialization using Strategy I. The

training curve for Strategy II is shown in Fig. 4 (f). The

curve has large fluctuation, indicating that it is almost im-

possible for the model to converge on this complex dataset.

A reasonable trade-off is Strategy III, training the model

step by step, as depicted in Fig. 4 (a), (b), (d), and (e),

where the model is trained using k = 1, 200, 500, 1000.

This increases the chance for the model to be optimized in a

good direction (note that Fig. 4 (d) shows an overall down-

ward trend). Note that the periodic structure is caused by

the periodic training in Strategy III, where each sub-model

is only trained k times in each iteration.

5. Experiments

5.1. Datasets

We performed experiments on three real-world datasets:

UCF101 [24], Sports1m [12], and a dataset of video se-

quences extracted from the PROST [21] and ViSOR [26]

sets. Additionally, we show results for the toy dataset of

Srivastava et al. [25] consisting of 10, 000 video sequences,

each of which is 20 frames long and contains two moving
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Figure 4. Training loss with different training strategies on the PV dataset.

digits (random direction and velocity) inside a square of

size 64 × 64. The UCF101 dataset contains 13, 320 videos

with an average length of 6.2 seconds from 101 different

action categories. We provide a quantitative evaluation of

our model on this dataset. The Sport1m dataset consists of

1 million YouTube clips, and we used a subset of 600 ran-

domly selected videos for the training of our model. As for

the last dataset (PROST and ViSOR), that we will refer to

as PV for short, we used it to train our model in order to

compare with Pătrăucean et al. [19]. We followed the same

setting as described in [19] and selected a subset consisting

of 11 video sequences extracted from PROST and ViSOR.

For simplicity, all the used images on UCF101, Sports1m,

and PV are converted to grayscale and rescaled to the same

size of 128× 128 pixels.

5.2. Network Architectures and Training

Most of the existing approaches differ in the exact tasks

they are trained on. This makes it hard to compare all of

them at the same time, and we instead opted for providing

individual comparisons. For a fair comparison, we train our

model with a similar I/O layout as the respective approach

we compare to in Sec. 5.4. Specifically, we use the FSTN

extrapolation model with four input frames and four extrap-

olation modules in our comparison with Pătrăucean et al.

[19]; for Srivastava et al. [25], a larger FSTN extrapolation

model with 10 input frames and ten extrapolation modules

is applied; in the comparisons with Mathieu et al. [16] and

Ranzato et al. [20], we use the same model featuring four

frames and two extrapolation modules. Note that none of

the above models include an interpolation module. Finally,

in Section 5.5, where we compare our interpolation module

with the one of Ranzato et al., we use our FSTN interpo-

lation model with two input frames and three interpolation

modules.

For the adversarial training, the architecture of the dis-

criminative network A is chosen as 4 × 4 × 64(2) −→
4×4×128(2) −→ 4×4×128(2) −→ 4×4×256(2) −→
4× 4× 512(2) −→ 4× 4× 1, where the numbers in each

group mean (width, height, number, stride) of the filters,

and each convolutional layer is followed by a batch nor-

malization layer. A Leaky ReLU nonlinearity with negative

slope 0.2 is used after all layers except for the final layer,

where we use a sigmoid function instead.

In the training phase, Strategy III is used to train all the

above models. Unless stated otherwise, we adopt the setup

and parameter setting of [19]. In particular, we use rmsprop,

with parameters ǫ = 10−5, ρ = 0.9, and a decaying learn-

ing rate following the rule η = 10−4( 100

√

1/2)epoch. Our

implementation uses the Torch library [2] and is based in

parts on the implementation of [19].

5.3. Comparisons of Loss Functions

To assess and appreciate the contribution of the different

loss functions, we provide a quantitative evaluation simi-

lar to [16]. We conducted five comparative experiments,

whose results are summarized in Table 1. We report the

Peak Signal to Noise Ratio (PSNR) and the sharpness crite-

rion [16] of the first and fourth predicted frame respectively,

where in both cases higher scores indicate better results. In

the experiments, we trained the FSTN extrapolation model

with the same architecture but different combinations of

loss functions on the PV dataset. The scores indicate that

all the frames predicted by our model have similar PSNR

and sharpness values, showing that our model takes all fu-

ture frames into consideration and is able to preserve image

quality and sharpness over time.

Furthermore, Table 1 reveals the complementary nature
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Table 1. Comparison of the accuracy of the predictions using different loss functions. The best performance is obtained using the combina-

tion of decoder, encoder and adversarial loss. Note, moreover, that image quality (measured by PSNR and Sharpness [16]) does not decay

much from the 1
st to the 4

th frame.

Loss Function
1st frame prediction scores 4th frame prediction scores

PSNR Sharpness PSNR Sharpness

LD 26.4 0.69 25.9 0.62

LE 18.6 0.47 18.2 0.41

LA 24.3 0.56 23.9 0.50

LD + LE 27.8 0.89 27.3 0.87

LD + LE + LA 30.6 0.99 30.1 0.98

of the different loss functions. Although the encoder loss

alone shows poor performance, it is able to improve overall

performance when combined with the decoder loss. The

adversarial loss is able to boost performance further, and

leads to the best PSNR and sharpness values when used in

combination with decoder and encoder loss.

Figure 5. Comparison of results on the PV dataset: (a) Ground

truth; (b) Spatio-Temporal Video Autoencoder [19]; (c) our FSTN

Extrapolation Model. The magnified details on the r.h.s. show that

our face prediction is sharper; also, we capture the opening gap

between the legs missed by [19].

5.4. Video Extrapolation

In this section, we compare both our models, the FSTN

extrapolation model and the FSTN intrapolation model,

with state-of-the-art video prediction approaches.

Comparison to the Spatio-Temporal Video Autoencoder

of Pătrăucean et al. [19]

Figure 5 presents a comparison with the spatio-temporal

video autoencoder recently proposed by [19]. We use four

input frames to predict four future frames. Since the method

of [19] can predict only a single frame ahead, we applied

their model recursively by using the newly generated frame

as an input. As shown in the second row, their predicted

frames become increasingly blurry over time, while all four

frames predicted by our model (third row) look similarly

sharp. In addition, considering the zoom of the image

patches in the right side, we can see that more details about

the motion are captured by our model. A more compre-

hensive experiment, which also shows the limitations of our

approach, is shown in Fig. 11, where 36 future frames are

predicted.

Comparison to the LSTM Approach of Srivastava et

al. [25]

Figure 6 compares the results of the LSTM approach of [25]

to our model. To this end, we trained our model on the mov-

ing MNIST digits.2 The results in the third row in Fig. 6 are

generated by their two layer composite model with a condi-

tional future predictor. Although these are the best results

in [25], they do not reach the quality of our predictions (last

row), especially for the first three and the last two images.

Figure 6. Comparison of results on a moving digits sequence taken

from [25]: (a) input frames; (b) ground truth; (c) LSTM approach

[25]; (d) our FSTN extrapolation model.

Comparison to the Deep Multi-Scale Video Prediction

Approach of Mathieu et al. [16]

To compare our model with [16], we trained our model

on the Sports1m dataset and tested it on a video taken

from [16]. The results are shown in Fig. 7. The close-

ups show that our predicted frames are significantly sharper.

More importantly, both of our predicted frames are similarly

sharp, while in their results the second frame appears more

blurry than the first one.

Comparison to the rNN Approach of Ranzato et al. [20]

In this experiment, we employ the same architecture as

above, using four frames to predict two future frames.

Figure 8 shows a comparison with the results of [20].

Since the method of [20] operates on image patches, each

predicted frame is generated by averaging 64 predicted

2http://www.cs.toronto.edu/˜emansim/datasets/

bouncing_mnist_test.npy
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Figure 7. Comparison with Mathieu et al. [16] of results on a video

taken from their paper: (a) input frames; (b) ground truth contin-

uation; (c) two frames generated by the deep multi-scale video

prediction model of [16]; (d) the same frames generated using our

FSTN extrapolation model.

patches. Again our model is able to generate sharper im-

ages than the rNN approach of [20].

Figure 8. Comparison with Ranzato et al. [20] of results on the

Hand Stand Walking UCF101 video clip taken from [20]: (a) input

frames; (b) ground truth; (c) rNN approach; [20]; (d) our FSTN

extrapolation model.

5.5. Video Interpolation

In this section, we evaluate our model on the task of

frame interpolation in videos. Given two frames at two dif-

ferent time steps t and t + 4, we want to predict three con-

secutive frames at time steps t+1, t+2, and t+3 between

them. As shown in Fig. 9, among all the three frames in-

terpolated by other methods, the middle one is obviously

more blurry than its two neighbors, while our model per-

forms significantly better in this aspect. From the closeups

we can see that our model can handle and preserve the de-

tails well even in the middle frame.

5.6. Long­term Video Prediction

To demonstrate the ability of our model to predict long-

term video sequences in both extrapolation and interpola-

tion tasks, we visualize some samples generated by our

models (see more video demos in the supplementary mate-

rial). In Fig. 10, the interpolation model takes as input two

frames and interpolates seven consecutive frames between

them. Figure 11 shows that our extrapolation model with

four input frames is capable of predicting 36 sharp future

frames (e.g., the row generated by FSTN30). Compared

Figure 9. Comparison of results on the Hand Stand Walking

UCF101 clip appearing in [20]: (a) input frames; (b) ground truth;

(c) Optical Flow [20]; (d) Linear Interpolation; (e) rNN approach

[20]; (f) our FSTN interpolation model, producing the visually

best result especially for the middle image.

with traditional methods that apply the model recursively

by using the newly generated frame as input to extrapolate

further in the future, our model clearly has the edge when it

comes to long-term prediction.

Figure 10. Example of long-term video interpolation. First row:

two input frames in the interpolation model; Second row: interpo-

lated frames using FSTN; Third row: ground truth frames. Best

viewed in the form of video in the supplementary material.

On the left-hand side of Fig. 11, the performance of our

models, and in particular of FSTN30, is impressive. Note

that this is partly due to the fact that the training setup [19] is

such that it does not require generalization across different

videos: the training set contains some videos that are similar

to those in the test set. From those results, we would thus

not claim that the method genuinely learns how to continue

novel motion in video. The results do show, however, that

the model is able to store complex motions, and reconstruct

them from the first four frames, across a dataset of diverse

videos. In particular, note that the network does not simply

reproduce these videos by recalling explicit templates: it

does not store training videos explicitly, but it has to re-

generate them based on the first four frames.

To investigate the generalization power of our model to

a video that is completely new (i.e., no part of it has been

included in the training set), we also test on a separate video
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Figure 11. Example of long-term video extrapolation. Left: test result of a video that is similar to training videos; Right: test video is

significantly different from training videos (downloaded from YouTube: https://www.youtube.com/watch?v=UiOweJioSD0).

BL: baseline ([19]); GT: ground truth; FSTN10, FSTN20, and FSTN30 are all our models, with different numbers of extrapolation modules

(e.g., FSTN10 refers to the FSTN model with 10 extrapolation modules.) Best viewed in the form of video in the supplementary

material.

taken from YouTube, as shown on the right-hand side of

Fig. 11. Compared with [19], it is evident that our model

can predict aspects of the long-term motion in the video,

although the predicted frames are more blurry than they are

for the other videos.

6. Conclusion and Future Work

We presented a modular data-driven framework for video

extrapolation and interpolation based on an end-to-end dif-

ferentiable network architecture. We devised a novel ob-

jective function and proposed different optimization strate-

gies for model training. Extensive experiments on public

datasets illustrated both the validity and versatility of our

approach.

Since our model demonstrated its capability to capture

complex spatio-temporal dependences and motion patterns,

we believe that models pre-trained with our pipeline may

also be useful when used in a supervised setup targeting

high-level vision task such as object tracking, semantic seg-

mentation or action recognition based on videos. Our model

might also find interesting applications in the context of

video compression.

In addition to the above applications, our work was mo-

tivated by the observation that video prediction may form

a basic component of an animal’s model of the world and,

as pointed out by Yann LeCun [15] 3, it is an elegant way

of converting a problem of modelling unlabelled data into a

supervised learning task.

3http://cilvr.nyu.edu/lib/exe/

fetch.php?media=deeplearning:2016:

lecun-20160308-unssupervised-learning-nyu.pdf
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