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Abstract

We describe a modular framework for video frame pre-

diction. We refer to it as a Flexible Spatio-Temporal Net-

work (FSTN) as it allows the extrapolation of a video se-

quence as well as the estimation of synthetic frames ly-

ing in between observed frames and thus the generation

of slow-motion videos. By devising a customized objec-

tive function comprising decoding, encoding, and adversar-

ial losses, we are able to mitigate the common problem of

blurry predictions, managing to retain high frequency in-

formation even for relatively distant future predictions. We

propose and analyse different training strategies to optimize

our model. Extensive experiments on several challenging

public datasets demonstrate both the versatility and valid-

ity of our model.

1. Introduction

Videos contain rich spatial and temporal structure and

capture non-trivial dependencies between objects and con-

textual information along with scene characteristics like

depth, occlusion, and illumination. Accurate modelling

of videos ultimately requires high-level understanding of

3D spatio-temporal information, which resembles humans’

ability to understand their surrounding physical world. One

fundamental problem in video modelling is to predict future

frames involving the construction of an internal representa-

tion that models, to some degree, both video content and

dynamics. Even for short-term future frames, video pre-

diction has remained a challenging problem until now, ow-

ing to the complexity and ambiguity inherent in video data.

Video prediction is thus still in its infancy, in particular the

long-term prediction of video sequences.

There are a number of recent works that predict unseen

future video frames [20, 19, 25, 16]. Predicting future im-

ages from a video sequence requires the learning of an inter-

nal representation that captures spatio-temporal correlations

and models the image evolution accurately. This might in-

clude information about how objects move, deform or be-

have, about occlusion and object boundaries, scene depth

and so on. Video prediction is a promising research di-

rection that will spawn a wealth of stimulating applications

[1, 14, 17, 13, 30, 29, 27, 5, 7, 28, 10, 23, 18].

Key to the success of previous methods is the use of

Long Short-Term Memory (LSTM) autoencoder networks

which are able to capture spatio-temporal long-range de-

pendencies. Although these works have shown encouraging

results for short-time prediction, a common shortcoming is

the increasing amount of blur for predictions more than a

single frame ahead.

In the present work we propose a new computational

model for video prediction that does not suffer from this

nuisance. It also allows for the prediction of an entire im-

age sequence rather than just a single frame ahead. Fur-

thermore, it is not only able to extrapolate in time but is

equally suited for temporal interpolation between subse-

quent frames. Our network can be trained end-to-end on

full frame images. Once trained, it is able to make predic-

tions in almost real-time.

In particular, we describe two new network modules, for

extrapolation and interpolation, each of which predicts a

single video frame. These modules can be concatenated to

enable the prediction of an entire video sequence with arbi-

trary many frames. Since each module is fully differentiable

they allow for end-to-end training even when combined. In-

spired by recent work of Pătrăucean et al. [19], each of

the modules comprises a spatio-temporal video autoencoder

consisting of a convolutional image encoder-decoder with a

nested memory module composed of convolutional LSTM

(ConvLSTM) cells. The ConvLSTM features a modified

Spatial Transformer Network (STN) layer [9] to capture

temporal changes and motion across time by optical flow

estimation and prediction.

Our approach also integrates a recently proposed type

of loss functions named deep perceptual similarity metric

(DeePSiM) [4] that has been shown to better reflect the

perceptual similarity of images. It measures distances be-

tween image features extracted by deep neural networks and

employs the adversarial network of Goodfellow et al. [6].

In our context, the extrapolation and interpolation modules

take the role of the generative network, while a discrimina-
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tive network is trained jointly to guide unsupervised train-

ing.

While our approach leads to significantly improved

results, the training procedure and optimization of model

parameters is non-trivial. We devise and discuss different

training strategies of our combined system and demonstrate

its merits in a comprehensive comparison with the state-of-

the-art. Our contributions are summarized as follows:

• We present a versatile and flexible framework for video

extrapolation and interpolation.

• We devise a novel objective function that comprises

decoding, encoding, and adversarial losses, and anal-

yse their effects and contributions.

• We propose different optimization strategies and dis-

cuss them in detail.

• We perform a comprehensive comparison of recent

state-of-the-art video prediction methods, showing that

our approach has an advantage in terms of long-term

video prediction.

2. Related Work

A number of recent works use neural networks for video

prediction. Ranzato et al. [20] propose a recurrent convo-

lutional network architecture inspired from language mod-

elling. It performs prediction of future video frames and

interpolation of intermediate frames based on visual words

obtained by clustering image patches. Srivastava et al. [25]

adapt a LSTM model [8] and use an autoencoder that jointly

reconstructs the input sequence and predicts the unseen fu-

ture frames. While [25] used a fully connected LSTM layer,

Shi et al. [22] use a convolutional LSTM and apply their

model for precipitation nowcasting. To counter the prob-

lem of inherently blurry predictions common to previous

methods, Mathieu et al. [16] propose a multi-scale architec-

ture in combination with a revised loss function that also

accounts for the difference of the respective gradient im-

ages. In addition they employ a generative adversarial train-

ing method [6, 3] for next frame prediction. Concurrently to

[16], Pătrăucean et al. [19] describe a spatio-temporal video

autoencoder with a nested differentiable short-term memory

module that features a modified Spatial Transformer Net-

work Layer [9] for improved motion estimation and predic-

tion. Kalchbrenner et al. [11] propose a generative video

model estimating the discrete joint distribution of the pixel

values in the video. Different from the tasks above, Bhat-

tacharyya et al. [1] describe an approach for predicting fu-

ture boundary frames of segmented videos.

Several of the above mentioned works [20, 25, 16] have

stressed the importance and difficulty of designing an ap-

propriate loss function in order to render predicted frames

less blurry and more realistic. In a recent work, Dosovit-

skiy et al. [4] propose a new class of loss functions named

deep perceptual similarity metrics (DeePSiM) which mea-

sures similarity on learned features. Combined with a gen-

erative adversarial training the authors show significantly

improved results in a number of applications that involve

the automated generation of static images.

Our work combines a number of recent insights in a uni-

fied framework: it builds upon the convolutional LSTM au-

toencoder framework with improved motion capture capa-

bilities of [19], and proposes a novel loss function that uti-

lizes the findings of [6, 16, 4]. In contrast to [19] that can

only predict one future frame, our model can predict longer-

term video sequences as well as interpolate between two

frames.

3. Model Description

3.1. Architecture

The building blocks of our model are the basic units re-

cently proposed in [19]: encoder (E), decoder (D), ConvL-

STM unit, optical flow module, grid generator, and sam-

pler (S). E and D constitute a spatial autoencoder, where E

contains a convolutional layer, a non-linearity layer and a

spatial max-pooling layer, while D consists of a nearest-

neighbour spatial upsampling layer and a convolutional

layer. The ConvLSTM unit is a special LSTM unit with the

replacement of biased linear (fully-connected) transforma-

tions by spatial local convolutions. The optical flow module

generates a dense transformation map with the same size as

the memory output of ConvLSTM, one 2D flow vector per

pixel, representing the displacement in horizontal and verti-

cal directions due to motion between consecutive frames. It

integrates a smoothness penalty to ensure that nearby pix-

els follow a locally smooth motion and hence is capable

of capturing pixel-wise motion across consecutive frames.

The grid generator and S are a modified version of the Spa-

tial Transformer Network (STN) [9], where they accept one

transformation per pixel, instead of a single transformation

for the entire image as originally proposed in [9]. Since we

focus on learning features for motion prediction, they pro-

vide immediate feedback on the flow map predicted by the

optical flow prediction module.

Different from [19], we use these basic units to assemble

two new modules: an extrapolation module and an inter-

polation module, as shown in Fig. 1 (a) and 2.1 Each of

these can be viewed as a spatio-temporal video autoencoder

consisting of a convolutional image encoder-decoder with a

nested memory module composed of convolutional LSTM

(ConvLSTM) cells acting as a temporal encoder. Also, we

incorporate an adversarial network (A), that takes all gener-

ated frames at the same time and hence guides the training

from a global perspective.

1For simplicity, the optical flow module and grid generator are included

in a ConvLSTM unit in the figures.
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