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Abstract

Saliency detection aims to highlight the most relevant

objects in an image. Methods using conventional models

struggle whenever salient objects are pictured on top of a

cluttered background while deep neural nets suffer from ex-

cess complexity and slow evaluation speeds. In this paper,

we propose a simplified convolutional neural network which

combines local and global information through a multi-

resolution 4× 5 grid structure. Instead of enforcing spacial

coherence with a CRF or superpixels as is usually the case,

we implemented a loss function inspired by the Mumford-

Shah functional which penalizes errors on the boundary. We

trained our model on the MSRA-B dataset, and tested it on

six different saliency benchmark datasets. Results show that

our method is on par with the state-of-the-art while reduc-

ing computation time by a factor of 18 to 100 times, en-

abling near real-time, high performance saliency detection.

1. Introduction

Saliency detection aims to mimic the human visual sys-

tem which naturally separates predominant objects of a

scene from the rest of the image. Several applications bene-

fit from saliency detection including image and video com-

pression [14], context aware image re-targeting [25], scene

parsing [50], image resizing [3], object detection [44] and

segmentation [33].

A salient object is often defined as a region whose vi-

sual features differ from the rest of the image and whose

shape follows some a priori criteria [5]. Traditional meth-

ods typically extract local pixel-wise or region-wise fea-

tures and compare it with global features. The result of that

comparison is called a saliency score which is stored in a

saliency map. Recently, deep learning has entered the field

of saliency detection and quickly established itself as the de

facto benchmark. Their greatest asset relative to traditional
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unsupervised approaches is that they can be trained end-to-

end using simple optimization functions that combine local

and deep features.

While some methods apply a straight forward convo-

lutional neural net (CNN) model [36], others have pro-

posed a model tailored to the saliency detection prob-

lem [25, 26, 29, 43, 50]. To achieve state-of-the-art per-

formance, the top performing CNN models require non-

trivial steps such as generating object proposals, applying

post-processing, enforcing smoothness through the use of

superpixels or defining complex network architectures, all

the while making predictions far slower than real-time. As

such, there remain opportunities to simplify the model ar-

chitecture and speed up the computation.

In this paper, we show that the overarching objectives of

state-of-the-art CNN models (enforcing spatial coherence

of the predicted saliency map and using both the local and

global features in the optimization) can be achieved with

a much simplified non-local deep feature (NLDF) model.

Spatial coherence is enforced with a Bayesian loss inspired

by the Mumford-Shah (MS) functional [35]. The loss is ex-

pressed as the sum of a cross-entropy term and a boundary

term. As opposed to conventional implementations of the

MS functional, we use non-local features learned by a deep

network instead of raw RGB colors. Also, rather than min-

imizing the boundary length directly (as done by unsuper-

vised MS implementations), we minimize an intersection

over union loss computed using predicted and ground truth

boundary pixels. This boundary penalty term is shown to

contribute significantly to our model’s performance.

Our model’s network is composed of convolution and

deconvolution blocks organized in a 4 × 5 grid (see Fig-

ure 1) where each column of the grid extracts resolution-

specific features. Local contrast processing blocks are also

used along each resolution axis in order to promote features

with strong local contrast. The resulting local and global

features are combined into a “score” processing block that

gives the final output at half of the input resolution.
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Since our method does not rely on superpixels, it is

fully convolutional and thus achieves best-in-class evalua-

tion speeds. The NLDF model evaluates an input image in

0.08s, a speed gain of 18 to 100 times as compared to other

state-of-the-art deep learning methods, while being on par

with state-of-the-art evaluation performance on the MSRA-

B[30], HKU-IS[25], PASCAL-S[27], DUT-OMRON[49],

ECSSD [48] and SOD [32] benchmark datasets.

The rest of the paper is organized as follows. Section 2

provides an overview of deep learning based saliency detec-

tion techniques. Section 3 describes the theory and practi-

cal implementation of our NLDF model. Finally, Section 4

discusses the performance of non-local feature model com-

pared to other state-of-the-art saliency detection methods.

2. Related Works

Most previous methods implement an unsupervised

model whose goal is to find objects with visual features

different than those from the background. Prior efforts

have tested simple features such as color and grayscale [2],

edges [13] or texture [10], as well as more complex features

such as objectness, focusness and backgroundness [18, 46,

9]. The literature offers a wide variety of unsupervised

methods working at the pixel level [2], the region level [11],

with graph-based methods [15, 45], and with a Bayesian

formulation [47]. The reader shall refer to the survey paper

by Borji et al. [5] for more details on unsupervised meth-

ods. While unsupervised methods have their advantages,

including simplicity and no need for training, they have

been outperformed by machine learning approaches. Al-

though some traditional AI methods such as SVM [41] per-

form well, deep learning methods, specifically CNN mod-

els, have raised the bar and imposed themselves as the un-

avoidable standard. With CNNs, the saliency problem has

been redefined as a labeling problem where feature selec-

tion between salient and non-salient objects is done auto-

matically through gradient descent.

CNNs were first developed to perform image classifica-

tion [22, 4, 24, 23]. These models are made of a series of

convolution layers with non-linear activation functions and

max pooling operations all the way to a softmax layer which

predicts the likelihood of each class. CNN methods are a

priori unfit to predict a saliency map since their output is a

k-D vector (where k is the number of classes), and not an

N ×M map (where N ×M is the size of the input image)

as one would expect. However, one can alleviate that prob-

lem by extracting a square patch around each pixel and use

that patch to predict the center pixel’s class [12, 16]. In or-

der for these methods to capture a global context that goes

beyond the scope of each patch, they process patches taken

from different resolutions of the input image.

Several deep visual saliency detection methods use this

same patch trick for predicting a saliency map [29, 50, 25,

43]. Zhao et al. [50] integrated the global and local context

of an image into a single, multi-context network, where the

global context helps to model the saliency in the full image,

and the local context helps to estimate the saliency of fine-

grained, feature rich areas. Li et al. [25] developed a com-

putational model using multi-scale deep features extracted

by three CNNs and three fully connected layers to define

salient regions of an image. Such a complex model was de-

signed to capture the saliency map of objects with various

scales, geometry, spatial positions, irregularities, and con-

trast levels. Wang et al. [43] developed a two tier strategy:

each pixel is assigned a saliency based upon a local con-

text estimation in parallel to a global search strategy used

to identify the salient regions. These two saliency maps

are then combined using geodesic object proposal tech-

niques [21].

Another way of having the output resolution of a CNN

match the input image resolution is through one (or several)

upsampling layer(s). A popular method for doing so is the

FCN method by Long et al. [31] which adds an upsampling

layer at the very end of the network. Saliency detection

methods using that approach are among the most accurate

ones [7, 36, 26] most likely because they better capture the

local and global context than patch-wise methods.

In order to enforce spatial coherence, a large num-

ber of methods use pre-computed regions or super pixels

[25, 26, 50, 29, 43]. Roughly speaking, the idea is to set the

saliency score of a superpixel as the mean saliency score

of each pixel located inside of it. Since superpixels can be

inaccurate, some methods [43] use several object proposals

which they combine afterwards while others use more than

one CNN stream [26, 50]. Spacial coherence can also be en-

forced by using a CRF or mean-field postprocess [26, 23].

The main inconvenience with these approaches is their pro-

cessing time.

Our approach differs from these methods as it uses a sin-

gle and fully convolutional CNN. It uses a series of mul-

tiscale convolution and deconvolution blocks organized in

a novel 5 × 4 grid. Our CNN model ensures that the out-

put has the right size while capturing the local and global

context as well as features at various resolutions. Spatial

coherence is enforced with a loss function inspired by the

Mumford-Shah model [35] which we adapted to the con-

text of machine learning.

3. Proposed Method

3.1. Model Based Saliency Detection

Salient region detection as well as image segmentation

often boils down to the optimization of a non-convex energy

function which consists of a data term and a regularization

term. An elegant mathematical global model is the cartoon
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Figure 1. Architecture of our 4× 5 grid-CNN network for salient object detection.

Mumford-Shah (MS) model [35], whose fitting energy,

F MS =
∑

j

λj

∫

v∈Ωj

∣
∣I(v)− uj

∣
∣
2
dv

︸ ︷︷ ︸

data fidelity

+
∑

j

γj

∮

v∈Cj

dv

︸ ︷︷ ︸

boundary length

(1)

segments an image I as a set of disjoint piece-wise constant

functions uj , indexed by j. Here, Ω ⊂ RN is an open set

representing the image domain, I is the observed image, uj

is the underlying piece-wise constant segmented image, v

is a pixel location, and C is the boundary of the segmented

regions. The positive weighting constants λj , and γj tune

the multi-criteria energy function in terms of data fidelity,

and total boundary length. From a Bayesian statistical per-

spective [6, 51], Eq. (1) can be approximated as,

F MS ≈
∑

j

λj

∫

v∈Ωj

log pj(I(v), v)dv

︸ ︷︷ ︸

data fidelity

+
∑

j

γj

∮

v∈Cj

dv

︸ ︷︷ ︸

boundary length

. (2)

As there is no analytic solution to Eqs. (1) and (2), the

most common unsupervised approaches to optimize these

employ level set base curve evolution techniques [8, 42],

generalized Bayesian criteria using the variational principle,

and simulated annealing [51]. Despite their mathematical

elegance, these methods are all iterative in nature, making

them sensitive to initial conditions and likely to fail in the

presence of noise, background clutter, weak image bound-

aries or image non-uniformity. Furthermore, poor conver-

gence rates in the iterative solution of the level set limits

their utility to non real-time applications.

To address these issues, we propose a supervised deep

convolutional network whose loss approximates the MS

functional with the sum of a cross entropy data fidelity

term between the ground truth and estimated saliency and

a boundary loss term:

F MS ≈
∑

j

λj

∫

v∈Ωj

Hj(y(v), ŷ(v))

︸ ︷︷ ︸

cross entropy

+
∑

j

γj(1− IoU(Cj , Ĉj))

︸ ︷︷ ︸

boundary IoU loss

(3)

where Hj is the total cross entropy between ground truth

(y) and estimated (ŷ) saliency map of all pixels (v) inside

region Ωj , and IoU(Cj , Ĉj) is the intersection over union

between the pixels on the true boundary Cj and the pixels

on the estimated boundary Ĉj . Note that since our method

implements a supervised version of the MS functional, the

use of the IoU allows our method to learn a higher level

a priori term, i.e. a term that learns to penalize erroneous

boundaries instead of minimizing the total boundary length.

3.2. Network Architecture

Here we provide a deep convolutional network architec-

ture whose goal is to learn discriminant saliency features

(our model is shown in Figure 1). As mentioned in Sec. 2,

good saliency features must account for both the local and

global context of an image and incorporate details from var-

ious resolutions. To achieve this goal, we have implemented

a novel grid-like CNN network containing 5 columns and 4

rows. Here, each column is geared toward the extraction of

features specific to a given input scale. The input I to our

model (on the left) is an 352×352 image and the output (on

the right) is a 176×176 saliency map which we resize back

to 352× 352 with a bilinear interpolation.

The first row of our model contains five convolutional

blocks derived from VGG-16 [39] (CONV-1 to CONV-
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Table 1. Details of the proposed deep convolutional network for

predicting salient objects (S: Stride, Pad: zero padding).

Block Layer Kernel S Pad Output

CONV-1 2 conv 3*3 1 Yes 352*352*64

max-pool 2*2 2 Yes 176*176*64

CONV-2 2 conv 3*3 1 Yes 176*176*128

max-pool 2*2 2 Yes 88*88*128

CONV-3 3 conv 3*3 1 Yes 88*88*256

max-pool 2*2 2 Yes 44*44*256

CONV-4 3 conv 3*3 1 Yes 44*44*512

max-pool 2*2 2 Yes 22*22*512

CONV-5 3 conv 3*3 1 Yes 22*22*512

max-pool 2*2 2 Yes 11*11*512

CONV-6 conv 3*3 1 Yes 176*176*128

CONV-7 conv 3*3 1 Yes 88*88*128

CONV-8 conv 3*3 1 Yes 44*44*128

CONV-9 conv 3*3 1 Yes 22*22*128

CONV-10 conv 3*3 1 Yes 11*11*128

UNPOOL-5 deconv 5*5 2 Yes 22*22*128

UNPOOL-4 deconv 5*5 2 Yes 44*44*256

UNPOOL-3 deconv 5*5 2 Yes 88*88*384

UNPOOL-2 deconv 5*5 2 Yes 176*176*512

LOCAL conv 1*1 1 No 176*176*640

GLOBAL conv-1 5*5 1 No 7*7*128

conv-2 5*5 1 No 3*3*128

conv-3 3*3 1 No 1*1*128

SCORE conv-L 1*1 1 No 176*176*2

conv-G 1*1 1 No 1*1*2

5). As shown in Table 1, these convolution blocks con-

tain a max pooling operation of stride 2 which down-

samples their feature maps {X1, ..., X5} by a factor of 2,

e.g. {176 × 176, 88 × 88, ..., 11 × 11}. The last and right-

most convolution block of the first row computes features

XG that are specific to the global context of the image.

The second and third row is a set of ten convolutional

blocks, CONV-6 to CONV-10 for row 2 and Contrast-1 to

Contrast-5 for row 3. The aim of these blocks is to compute

features (Xi) and contrast features (XC
i ) specific to each

resolution. The contrast features capture the difference of

each feature against its local neighborhood favoring regions

that are either brighter or darker than their neighbors.

The last row is a set of deconvolution layers used to up-

scale the features maps from 11 × 11 (bottom right) all the

way to 176× 176 (bottom left). These UNPOOL layers are

a means of combining the feature maps (Xi, X
C
i ) computed

at each scale. The lower left block constructs the final lo-

cal feature maps XL. The SCORE block has 2 convolution

layers and a softmax to compute the saliency probability by

fusing the local (XL) and global (XG) features. Further de-

tails of our model are given in Table 1.

3.2.1 Non-Local Feature Extraction

Multi-Scale local features: As shown in the second row

of Figure 1, the convolutional blocks CONV-6 to CONV-10

are connected to the VGG-16 CONV-1 to CONV-5 process-

ing blocks. The goal of these convolutional layers is to learn

multi-scale local feature maps {X1, X2, ..., X5}. Each con-

volution block has a kernel size 3× 3 and 128 channels.

Contrast features: Saliency is the distinctive quality of

a foreground object which makes it stand out from its sur-

rounding background. Saliency features must thus be uni-

form inside the foreground objects and within the back-

ground but at the same time be different between foreground

and background areas. In order to capture this kind of con-

trast information, we added a contrast feature associated to

each local feature Xi. Each contrast feature Xc
i is computed

by subtracting Xi from its local average. The kernel size of

the average pooling is 3× 3

Xc
i = Xi − AvgPool(Xi). (4)

Note that such contrast feature is similar in spirit to that of

Achanta et al. [2] which computes the difference between

the pixel RGB color and the global average color of the

image. It is even closer to that of Liu and Gleicher [28]

which computes contrast features from a Gaussian image

pyramid. However, our approach is different as our features

are learned and not predefined.

Deconvolution features: Since the size of the final out-

put is 176× 176, we use a series of deconvolution layers to

increase the size of the precomputed features maps Xi and

XC
i . Instead of increasing the feature maps by a ratio of

{2, 4, 8, 16} as suggested by Long et al. [31] which results

in coarse feature maps, we adopt a step-wise upsampling

procedure as showed in the third row in Figure 1. At each

UNPOOL processing block, we upsample the previous fea-

ture maps by a factor of 2. The resulting unpooled feature

map Ui is computed by combining the information of its lo-

cal feature Xi, local contrast feature Xc
i , and the previous

block’s unpooled feature Ui+1

Ui = UNPOOL(Xi, X
c
i , Ui+1). (5)

The UNPOOL operation is implemented with a deconvolu-

tion layer with a stride of 2 and a 5 × 5 kernel. The input

is the concatenation of Xi, X
C
i and Ui+1 . The number of

feature channels of Ui is equal to the sum of Xi and Ui+1.

Local feature maps: We use a convolution layer with a

kernel size 1×1 to get the final local feature maps XL. The

input of that layer is the concatenation of X1, X
C
1 and U2

XL = CONV(X1, X
c
1 , U2). (6)
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The number of feature channels of XL is equal to the sum

of X1 and U2. Note that we tried using another UNPOOL

operation to increase the size of XL from 176×176 to 352×
352, but found that this operation doubles the computation

time without measurably improving accuracy.

Capturing global context: Detecting salient objects in an

image requires the model to capture the global context of

the image before assigning saliency to individual small re-

gions. To account for this, we added three convolutional

layers after the CONV-5 block to compute the global fea-

ture XG. The first two convolutional layers have a kernel

size of 5, and the last convolutional is 3. All three layers

have 128 features channels.

3.3. Cross Entropy Loss

The final saliency map is computed as a linear combina-

tion of the local features XL and global features XG using

two linear operators (WL, bL) and (WG, bG). The softmax

function is used to compute the probability for each pixel of

being salient or not.

ŷ(v) = p
(
y(v) = c

)
=

eW
c
LXL(v)+bcL+W c

GXG+bcG

∑

c′∈{0,1} e
W c′

L
XL(v)+bc

′

L
+W c′

G
XG+bc

′

G

(7)

The cross-entropy loss function

Hj(y(v), ŷ(v)) = −
1

N

N∑

i=1

∑

c∈{0,1}

(y(vi) = c)
(
log

(
ŷ(vi) = c

))

(8)

is used to minimize the first data term in Eq. (2).

3.4. IoU Boundary Loss

Motivated by the significant applications of Dice loss

or IoU boundary loss in medical image segmentation [53,

40, 34], our proposed method approximates the penalty on

boundary length of Eq. (1) using an IoU boundary loss term.

To compute the boundary loss, we approximate the saliency

map gradient magnitude (and hence the boundary pixels)

using a Sobel operator followed by a tanh activation. The

tanh activation projects the gradient magnitude of saliency

maps to a probability range of [0, 1]. Given the gradient

magnitude of saliency maps Ĉj and gradient magnitude of

true saliency maps C of region j, the Dice or IoU boundary

loss can be computed as

IoU Loss = 1−
2|Cj ∩ Ĉj |

|Cj |+ |Ĉj |
, (9)

which has range [0, 1]. Our whole boundary overlapping

loss computation procedure is end-to-end trainable, and an

Figure 2. A single input image (a) together with its groundtruth

saliency (b) and boundary (c) is used to train a model only contain-

ing the IoU boundary loss term in Eq. (3). The estimated boundary

(d) after training for 200 iterations is in excellent agreement with

the true boundary.

example is shown in Figure 2. Please note that the intersec-

tion is implemented using a point-wise multiplication oper-

ator.

4. Experimental Results

4.1. Benchmark Datasets

We have evaluated the performance of our method

(NLDF) on six different public benchmark datasets:

MSRA-B [30], HKU-IS [25], DUT-OMRON [49],

PASCAL-S [27], ECSSD [48] and SOD [32].

MSRA-B: contains 5000 images, and is widely used for

visual saliency detection. Most of the images have one

salient object and a pixel-wise ground truth [17].

HKU-IS: contains 4447 images, most of which have low

contrast and multiple salient objects. This dataset has been

split into 2500 training images, 500 validation images and

the remaining 1447 test images.

DUT-OMRON: contains 5168 challenging images, each

of which contains one or more salient objects with a rela-

tively cluttered background.

PASCAL-S: contains 850 natural images which were

built from the validation set of the PASCAL-VOC 2010 seg-

mentation challenge. This dataset contains both pixel-wise

saliency ground truth and eye fixation ground truth labeled

by 12 subjects.

ECSSD: contains 1000 images with complex structure

acquired from the Internet. The ground truth masks were

labeled by 5 subjects.
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Figure 3. Saliency maps produced by the GS [46], MR [49], wCtr* [52], BSCA [38], LEGS [43], MC [50], MDF [25] and DCL [26]

methods compared to our NLDF method. The NLDF maps provides clear salient regions and exhibit good uniformity as compared to the

saliency maps from the other deep learning methods (LEGS, MC, MDF and DCL). Our method is also more robust to background clutter

than the non-deep-learning methods (GS, MR, wCtr* and BSCA).

SOD: contains 300 images originally designed for image

segmentation. Many images contain multiple salient objects

with low contrast and overlapping boundaries.

4.2. Implementation and Experimental Setup

Our NLDF model was implemented in TensorFlow [1].

The weights in the CONV-1 to CONV-5 blocks were ini-

tialized with the pretrained weights of VGG-16 [39]. All

the weights of newly added convolution and deconvolution

layers were initialized randomly with a truncated normal

(σ = 0.01), and the biases were initialized to 0. The Adam

optimizer [19] was used to train our model with an initial

learning rate of 10−6, β1 = 0.9, and β2 = 0.999. The λj

and γj in Eq. (3) were set to 1.

For fair comparison with other methods, we followed the

experimental setup of [17], dividing the MSRA-B dataset

into 3 parts: 2500 images for training, 500 images for val-

idation and the remaining 2000 images for testing. The

training and validation sets were combined together to train

our model with horizontal flipping as data augmentation.

The inputs were resized to 352 × 352 for training. With

an NVIDIA Titan X GPU, it takes ∼ 9 hours to finish the

whole training procedure for 20 epochs with a single image

batch size. Without further optimization, this trained model

was used to compute the saliency maps of the other datasets.

4.3. Evaluation Criteria

Precision-recall (PR) curves, Fβ and mean absolute error

(MAE) were used as metrics to evaluate the performance of

saliency detection. The PR curve is computed by binariz-

ing the saliency maps under different probability thresholds

ranging from 0 to 1 and comparing against the ground truth.

As for the Fβ measure, it is defined as,

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
. (10)

where β2 = 0.3 to emphasize precision over recall as sug-

gested in [2]. We report the maximum F-Measure computed

6614



Table 2. Quantitative performance of our model on six benchmark datasets compared with the GS [46], MR [49], wCtr* [52], BSCA [38],

LEGS [43], MC [50], MDF [25] and DCL [26]models. The latter four are deep learning methods and the former are not. The Fβ and MAE

metrics are defined in the text.

Dataset Metric GS MR wCtr* BSCA LEGS MC MDF DCL DCL+ NLDF- NLDF

MSRA-B
maxFβ 0.777 0.824 0.820 0.830 0.870 0.894 0.885 0.905 0.916 0.912 0.911

MAE 0.144 0.127 0.110 0.130 0.081 0.054 0.066 0.052 0.047 0.048 0.048

HKU-IS
maxFβ 0.682 0.715 0.726 0.723 0.770 0.798 0.861 0.892 0.904 0.874 0.902

MAE 0.167 0.174 0.141 0.174 0.118 0.102 0.076 0.054 0.049 0.060 0.048

DUT-OMRON
maxFβ 0.557 0.610 0.630 0.616 0.669 0.703 0.694 0.733 0.757 0.724 0.753

MAE 0.173 0.187 0.144 0.191 0.133 0.088 0.092 0.084 0.080 0.085 0.080

PASCAL-S
maxFβ 0.624 0.666 0.659 0.666 0.756 0.740 0.764 0.815 0.822 0.804 0.831

MAE 0.224 0.223 0.201 0.224 0.157 0.145 0.145 0.113 0.108 0.116 0.099

ECSSD
maxFβ 0.661 0.736 0.716 0.758 0.827 0.822 0.832 0.887 0.901 0.886 0.905

MAE 0.206 0.189 0.171 0.183 0.118 0.106 0.105 0.072 0.075 0.075 0.063

SOD
maxFβ 0.601 0.619 0.632 0.634 0.707 0.688 0.745 0.795 0.801 0.776 0.810

MAE 0.266 0.273 0.245 0.266 0.215 0.197 0.192 0.142 0.153 0.161 0.143

Figure 4. Visual comparison of saliency detection results with and

without the boundary loss term in Eq. (2).

from the PR curve. MAE [37] is computed as the aver-

age pixel-wise absolute difference between the estimated

saliency map S and its corresponding ground truth L,

MAE =
1

W ×H

W∑

x=1

H∑

y=1

∣
∣S(x, y)− L(x, y)

∣
∣. (11)

where W and H is the width and height of a given image.

4.4. Effectiveness of the Boundary Loss Term

In addition to our NLDF model, we also trained a model,

denoted as NLDF-, which only contains the cross-entropy

loss term and excludes the boundary loss term [see Eq. 3].

As shown in Figure 4, the saliency maps generated from

NLDF- are fairly coarse and the boundary of the salient ob-

jects are not well preserved. As shown in last two columns

of Table 2, this qualitative decrease in performance is also

mirrored in the quantitative results. The inclusion of the

boundary loss in NLDF as compared to NLDF- accounts for

increases in max Fβ of 2.1% to 4.4% and decreases in MAE

of 5.8% to 20.0% on HKU-IS, DUT-OMRON, PASCAL-

S, ECSSD and SOD datasets. Little change is observed

for MSRA-B, an expected result, since training and testing

samples are drawn from a similar pool of images. Signif-

icantly, these results illustrate that the boundary loss term

directly enhances the generality of NLDF, making it more

robust to variations in input types.

4.5. Comparison with the State of the Art

We quantitatively compared our NLDF method with

several recent state-of-the-art methods: Geodesic Saliency

(GS) [46], Manifold Ranking (MR) [49], optimized

Weighted Contrast (wCtr*) [52], Background based Single-

layer Cellular Automata (BSCA) [38], Local Estimation

and Global Search (LEGS) [43], Multi-Context (MC) [50],

Multiscale Deep Features (MDF) [25] and Deep Contrast

Learning (DCL) [26]. LEGS, MC, MDF and DCL are the

latest deep learning based saliency detection methods. Note

that since part of the HKU-IS dataset was used to train the

MDF model [25], we only compute the evaluation metrics

on the testing set of HKU-IS. Also the MDF only provided

200 pre-compute saliency maps on SOD dataset, we use the

same subset for evaluation.

In comparison to the top performing method,

DCL+, [26] an extension of DCL that uses a fully-

connected CRF [20] as a post-processing step to refine the

saliency map, we find that NLDF attains nearly identical

(or better) performance across the board (see Table 2).

That this is achieved without a significant post-processing

step means that the execution time and implementation

complexity are greatly reduced. The computation time

reported in [26] for DCL is 1.5 s per (300 × 400) image

and an additional 0.8 s for CRF post-processing (DCL+).

In comparison, our NLDF method only requires 0.08 s

per image on a Titan X GPU. This substantial speedup

enables nearly real-time salient object detection while also

delivering state-of-the-art performance.
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Figure 5. Precision-recall curves for our model compared to GS [46], MR [49], wCtr* [52], LEGS [43], BSCA [38], MDF [25], MC [50]

and DCL [26] evaluated on the MASR-B, HKU-IS, DUT-OMRON, PASCAL-S, ECSSD and SOD benchmark datasets. Our NLDF model

can deliver state-of-the-art performance on all six datasets.

A visual comparison of the saliency maps is provided in

Figure 3. All saliency maps of other methods were either

provided by the authors or computed using the authors’ re-

leased code. Precision-recall curves are shown in Figure 3

and the maximum Fβ and MAE scores are in Table 2. As

shown in Table 2, our NLDF model achieves superior quan-

titative max Fβ , MAE and PR performance across the board

when compared to GS, MR, wCtr*, BSCA, LEGS, MC,

MDF and DCL. NLDF also surpasses DCL+ more times

than not in max Fβ and MAE and exhibits equivalent or

better PR curves.

We also compared the average computation time with

other four leading deep learning methods for generating the

saliency map of one images in Table 3. On a Titan Black

GPU, our approach is 18 to 100 times faster than existing

methods.

Table 3. Inference time of leading deep learning methods.

LEGS MC MDF DCL DCL+ NLDF

s/img 2 1.6 8 1.5 2.3 0.08

5. Conclusion

The integration of local and global features has already

been shown to be a powerful mechanism for saliency de-

tection. Here we took this approach one step further by

adding a boundary loss term to the typical cross entropy

loss, in effect implementing the Mumford-Shah functional

in a deep neural net framework and training it end to end.

The resulting model achieves state of the art performance

across multiple saliency detection benchmark datasets, does

not use any special pre- or post-processing steps and com-

putes saliency maps 18 to 100 times faster than competing

systems.
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