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Abstract

We present an unsupervised representation learning ap-

proach that compactly encodes the motion dependencies

in videos. Given a pair of images from a video clip, our

framework learns to predict the long-term 3D motions. To

reduce the complexity of the learning framework, we pro-

pose to describe the motion as a sequence of atomic 3D

flows computed with RGB-D modality. We use a Recur-

rent Neural Network based Encoder-Decoder framework

to predict these sequences of flows. We argue that in or-

der for the decoder to reconstruct these sequences, the en-

coder must learn a robust video representation that captures

long-term motion dependencies and spatial-temporal rela-

tions. We demonstrate the effectiveness of our learned tem-

poral representations on activity classification across multi-

ple modalities and datasets such as NTU RGB+D and MSR

Daily Activity 3D. Our framework is generic to any input

modality, i.e., RGB, depth, and RGB-D videos.

1. Introduction

Human activities can often be described as a sequence of

basic motions. For instance, common activities like brush-

ing hair or waving a hand can be described as a sequence of

successive raising and lowering of the hand. Over the past

years, researchers have studied multiple strategies to effec-

tively represent motion dynamics and classify activities in

videos [38, 20, 42]. However, the existing methods suffer

from the inability to compactly encode long-term motion

dependencies. In this work, we propose to learn a represen-

tation that can describe the sequence of motions by learning

to predict it. In other words, we are interested in learning a

representation that, given a pair of video frames, can predict

the sequence of basic motions (see in Figure 1). We believe

that if the learned representation has encoded enough infor-

mation to predict the motion, it is discriminative enough to

classify activities in videos. Hence, our final goal is to use

our learned representation to classify activities in videos.

To classify activities, we argue that a video representa-

tion needs to capture not only the semantics, but also the

Figure 1. We propose a method that learns a video representation

by predicting a sequence of basic motions described as atomic 3D

flows. The learned representation is then extracted from this model

to recognize activities.

motion dependencies in a long temporal sequence. Since

robust representations exist to extract semantic informa-

tion [29], we focus our effort on learning a representation

that encodes the sequence of basic motions in consecutive

frames. We define basic motions as atomic 3D flows. The

atomic 3D flows are computed by quantizing the estimated

dense 3D flows in space and time using RGB-D modal-

ity. Given a pair of images from a video clip, our frame-

work learns a representation that can predict the sequence

of atomic 3D flows.

Our learning framework is unsupervised, i.e., it does

not require human-labeled data. Not relying on labels has

the following benefits. It is not clear how many labels

are needed to understand activities in videos. For a sin-

gle image, millions of labels have been used to surpass

human-level accuracy in extracting semantic information

[29]. Consequently, we would expect that videos will re-

quire several orders of magnitude more labels to learn a rep-

resentation in a supervised setting. It will be unrealistic to

collect all these labels.

Recently, a stream of unsupervised methods have been

proposed to learn temporal structures from videos. These
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methods are formulated with various objectives - supervi-

sion. Some focus on constructing future frames [32, 23],

or enforcing the learned representations to be temporally

smooth [53], while others make use of the sequential or-

der of frames sampled from a video [17, 44]. Although

they show promising results, most of the learned represen-

tations still focus heavily on either capturing semantic fea-

tures [17], or are not discriminative enough for classifying

activities as the output supervision is too large and coarse

(e.g., frame reconstruction).

When learning a representation that predicts motions,

the following properties are needed: the output supervision

needs to be of i) low dimensionality, ii) easy to parame-

terize, and iii) discriminative enough for other tasks. We

address the first two properties by reducing the dimension-

ality of the flows through clustering. Then, we address the

third property by augmenting the RGB videos with depth

modality to reason on 3D motions. By inferring 3D mo-

tion as opposed to view-specific 2D optical flow, our model

is able to learn an intermediate representation that captures

less view-specific spatial-temporal interactions. Compared

to 2D dense trajectories [38], our 3D motions are of much

lower dimensionality. Moreover, we focus on inferring the

sequence of basic motions that describes an activity as op-

posed to tracking keypoints over space and time. We claim

that our proposed description of the motion enables our

learning framework to predict longer motion dependencies

since the complexity of the output space is reduced. In Sec-

tion 5.2, we show quantitatively that our proposed method

outperforms previous methods on activity recognition.

The contributions of our work are as follows:

(i) We propose to use a Recurrent Neural Network based

Encoder-Decoder framework to effectively learn a rep-

resentation that predicts the sequence of basic motions.

Whereas existing unsupervised methods describe mo-

tion as either a single optical flow [37] or 2D dense tra-

jectories [38], we propose to describe it as a sequence

of atomic 3D flows over a long period of time (Section

3).

(ii) We are the first to explore and generalize unsuper-

vised learning methods across different modalities. We

study the performance of our unsupervised task - pre-

dicting the sequence of basic motions - using various

input modalities: RGB → motion, depth → motion,

and RGB-D → motion (Section 5.1).

(iii) We show the effectiveness of our learned represen-

tations on activity recognition tasks across multiple

modalities and datasets (Section 5.2). At the time of

its introduction, our model outperforms state-of-the-

art unsupervised methods [17, 32] across modalities

(RGB and depth).

2. Related Work

We first present previous works on unsupervised repre-

sentation learning for images and videos. Then, we give a

brief overview on existing methods that classify activities in

multi-modal videos.

Unsupervised Representation Learning. In the RGB

domain, unsupervised learning of visual representations

has shown usefulness for various supervised tasks such as

pedestrian detection and object detection [1, 26]. To ex-

ploit temporal structures, researchers have started focusing

on learning visual representations using RGB videos. Early

works such as [53] focused on inclusion of constraints via

video to autoencoder framework. The most common con-

straint is enforcing learned representations to be temporally

smooth [53]. More recently, a stream of reconstruction-

based models has been proposed. Ranzato et al. [23]

proposed a generative model that uses a recurrent neural

network to predict the next frame or interpolate between

frames. This was extended by Srivastava et al. [32] where

they utilized a LSTM Encoder-Decoder framework to re-

construct current frame or predict future frames. Another

line of work [44] uses video data to mine patches which be-

long to the same object to learn representations useful for

distinguishing objects. Misra et al. [17] presented an ap-

proach to learn visual representation with an unsupervised

sequential verification task, and showed performance gain

for supervised tasks like activity recognition and pose esti-

mation. One common problem for the learned representa-

tions is that they capture mostly semantic features that we

can get from ImageNet or short-range activities, neglecting

the temporal features.

RGB-D / depth-Based Activity Recognition. Techniques

for activity recognition in this domain use appearance and

motion information in order to reason about non-rigid hu-

man deformations activities. Feature-based approaches

such as HON4D [20], HOPC [21], and DCSF [46] capture

spatio-temporal features in a temporal grid-like structure.

Skeleton-based approaches such as [5, 22, 35, 39, 50] move

beyond such sparse grid-like pooling and focus on how to

propose good skeletal representations. Haque et al. [4] pro-

posed an alternative to skeleton representation by using a

Recurrent Attention model (RAM). Another stream of work

uses probabilistic graphical models such as Hidden Markov

Models (HMM) [49], Conditional Random Fields (CRF)

[12] or Latent Dialect Allocation (LDA) [45] to capture

spatial-temporal structures and learn the relations in activi-

ties from RGB-D videos. However, most of these works re-

quire a lot of feature engineering and can only model short-

range action relations. State-of-the-art methods [15, 16]

for RGB-D/depth-based activity recognition report human

level performance on well-established datasets like MSR-

DailyActivity3D [14] and CAD-120 [33]. However, these

datasets were often constructed under various constraints,

2204



Figure 2. Our proposed learning framework based on the LSTM Encoder-Decoder method. During the encoding step, a downsampling

network (referred to as “Conv”) extracts a low-dimensionality feature from the input frames. Note that we use a pair of frames as the input

to reduce temporal ambiguity. Then, the LTSM learns a temporal representation. This representation is then decoded with the upsampling

network (referred to as “Deconv”) to output the atomic 3D flows.

including single-view, single background, or with very few

subjects. On the other hand, [27] shows that there is a big

performance gap between human and existing methods on a

more challenging dataset [27], which contains significantly

more subjects, viewpoints, and background information.

RGB-Based Activity Recognition. The past few years

have seen great progress on activity recognition on short

clips [13, 51, 28, 38, 40]. These works can be roughly

divided into two categories. The first category focuses

on handcrafted local features and Bag of Visual Words

(BoVWs) representation. The most successful example is to

extract improved trajectory features [38] and employ Fisher

vector representation [25]. The second category utilizes

deep convolutional neural networks (ConvNets) to learn

video representations from raw data (e.g., RGB images or

optical flow fields) and train a recognition system in an end-

to-end manner. The most competitive deep learning model

is the deep two-stream ConvNets [42] and its successors

[43, 41], which combine both semantic features extracted

by ConvNets and traditional optical flow that captures mo-

tion. However, unlike image classification, the benefit of

using deep neural networks over traditional handcrafted fea-

tures is not very evident. This is potentially because super-

vised training of deep networks requires a lot of data, whilst

the current RGB activity recognition datasets are still too

small.

3. Method

The goal of our method is to learn a representation that

predicts the sequence of basic motions, which are defined as

atomic 3D flows (described in details in Section 3.1). The

problem is formulated as follows: given a pair of images

〈X1,X2〉, our objective is to predict the sequence of atomic

3D flows over T temporal steps: 〈Ŷ1, Ŷ2, ..., ŶT〉, where

Ŷt is the atomic 3D flow at time t (see Figure 2). Note that

Xi ∈ R
H×W×D and Ŷt ∈ R

H×W×3, where D is the num-

ber of input channels, and H,W are the height and width

of the video frames respectively. In Section 5, we experi-

ment with inputs from three different modalities: RGB only

(D = 3), depth only (D = 1), and RGB-D (D = 4).

The learned representation – the red cuboid in Figure 2 –

can then be used as a motion feature for activity recognition

(as described in Section 4). In the remaining of this section,

we first present details on how we describe basic motions.

Then, we present the learning framework .

3.1. Sequence of Atomic 3D Flows

To effectively predict the sequence of basic motions, we

need to describe the motion as a low-dimensional signal

such that it is easy to parameterize and is discriminative

enough for other tasks such as activity recognition. Inspired

by the vector quantization algorithms for image compres-

sion [9], we propose to address the first goal by quantiz-

ing the estimated 3D flows in space and time, referred to as

atomic 3D flows. We address the discriminative property

by inferring a long-term sequence of 3D flows instead of a

single 3D flow. With these properties, our learned represen-

tation has the ability to capture longer term motion depen-

dencies.

Reasoning in 3D. Whereas previous unsupervised learning

methods model 2D motions in the RGB space [37], we pro-

pose to predict motions in 3D. The benefit of using depth

information along with RGB input is to overcome difficul-

ties such as variations of texture, illumination, shape, view-

point, self occlusion, clutter and occlusion. We augment the

RGB videos with depth modality and estimate the 3D flows
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Figure 3. Qualitative results on predicting motion: two examples of long-term flow prediction (8 timesteps, 0.8s). The right hand side

illustrates the “Getting up” activity whereas the right side presents the “Sitting down” activity. A: Ground truth 3D flow. Each row

corresponds to flow along x, y, z direction respectively. B: Predicted 3D flows. C: Ground truth depths. The two frames in green boxes

are the input. D: Depth reconstructed by adding ground truth depth and predicted flow. E: Depth reconstructed by adding the previous

reconstructed depth and predicted flow, except for the first frame, in which case the ground truth depth is used.

[8] in order to reduce the level of ambiguities that exist in

each independent modality.

Reasoning with sequences. Previous unsupervised learn-

ing methods have modeled motion as either a single optical

flow [37] or a dense trajectories over multiple frames [38].

The first approach has the advantage of representing motion

with a single fixed size image. However, it only encodes

a short range motion. The second approach addresses the

long-term motion dependencies but is difficult to efficiently

model each keypoint. We propose a third alternative: model

the motion as a sequence of flows. Motivated by the recent

success of RNN to predict sequence of images [34], we pro-

pose to learn to predict the sequence of flows over a long

period of time. To ease the prediction of the sequence, we

can further transform the flow into a lower dimensionality

signal (referred to as atomic flows).

Reasoning with atomic flows. Flow prediction can be

posed as a regression problem where the loss is squared

Euclidean distance between the ground truth flow and pre-

dicted flow. Unfortunately, the squared Euclidean distance

in pixel space is not a good metric, since it is not stable

to small image deformations, and the output space tends

to smoothen results to the mean [23]. Instead, we formu-

late the flow prediction task as a classification task using

Z = F(Y), where Y ∈ R
H×W×3, Z ∈ R

h×w×K , and F
maps each non-overlapping M × M 3D flow patch in Y

to a probability distribution over K quantized classes (i.e.,

atomic flows). More specifically, we assign a soft class label

over K quantized codewords for each M ×M flow patch,

where M = H/h = W/w. After mapping each patch

to a probability distribution, we get a probability distribu-

tion Z ∈ R
h×w×K over all patches. We investigated three

quantization methods: k-means codebook (similar to [37]),

uniform codebook, and learnable codebook (initialized with

k-means or uniform codebook, and trained end-to-end). We

got the best result using uniform codebook and training the

codebook end-to-end only leads to minor performance gain.

K-means codebook results in inferior performance because

the lack of balance causes k-means to produce a poor clus-

tering.

Our uniform quantization is performed as follows: we

construct a codebook C ∈ R
K×3 by quantizing bounded

3D flow into equal-sized bins, where we have
3
√
K distinct

classes along each axes. For each M × M 3D flow patch,

we compute its mean and retrieve its k nearest neighbors

(each represents one flow class) from the codebook. Em-

pirically, we find having the number of nearest neighbors

k > 1 (soft label) yields better performance. To reconstruct

the predicted flow Ŷ from predicted distribution Ẑ, we re-

place each codebook distribution as a linear combination

of codewords. The parameters are determined empirically

such that K = 125 (5 quantized bins across each dimen-

sion) and M = 8.

3.2. Learning framework

To learn a representation that encodes the long-term mo-

tion dependencies in videos, we cast the learning framework

as a sequence-to-sequence problem. We propose to use a

Recurrent Neural Network (RNN) based Encoder-Decoder

framework to effectively learn these motion dependencies.

Given two frames, our proposed RNN predicts the sequence

of atomic 3D flows.

Figure 2 presents an overview of our learning frame-

work, which can be divided into an encoding and decoding

steps. During encoding, a downsampling network (referred

to as “Conv”) extracts a low-dimensionality feature from the
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Figure 4. Our proposed network architecture for activity recogni-

tion. Each pair of video frames is encoded with our learned tempo-

ral representation (fixing the weights). Then, a classification layer

is trained to infer the activities.

input frames. Then, the LTSM runs through the sequence of

extracted features to learn a temporal representation. This

representation is then decoded with the upsampling network

(“Deconv”) to output the atomic 3D flows.

The LSTM Encoder-Decoder framework [34] provides a

general framework for sequence-to-sequence learning prob-

lems, and its ability to capture long-term temporal depen-

dencies makes it a natural choice for this application. How-

ever, vanilla LSTMs do not take spatial correlations into

consideration. In fact, putting them between the upsampling

and downsampling networks leads to much slower con-

vergence speed and significantly worse performance, com-

pared to a single-step flow prediction without LSTMs. To

preserve the spatial information in intermediate represen-

tations, we use the convolutional LSTM unit [47] that has

convolutional structures in both the input-to-state and state-

to-state transitions. Here are more details on the downsam-

pling and upsampling networks:

Downsampling Network (“Conv” ). We train a Convolu-

tional Neural Network (CNN) to extract high-level features

from each input frame. The architecture of our network is

similar to the standard VGG-16 network [29] with the fol-

lowing modifications. Our network is fully convolutional,

with the first two fully connected layers converted to con-

volution with the same number of parameters to preserve

spatial information. The last softmax layer is replaced by a

convolutional layer with a filter of size 1 × 1 × 32, result-

ing in a downsampled output of shape 7× 7× 32. A batch

normalization layer [7] is added to the output of every con-

volutional layer. In addition, the number of input channels

in the first convolutional layer is adapted according to the

modality.

Upsampling Network (“Deconv”). We use an upsampling

CNN with fractionally-strided convolution [31] to perform

spatial upsampling and atomic 3D flow prediction. A stack

of five fractionally-strided convolutions upsamples each in-

put to the predicted distribution Ẑ ∈ R
h×w×K , where Ẑij

represents the unscaled log probabilities over the (i, j)th

Figure 5. Motion prediction error on NTU-RGB+D. We plot the

per-pixel root mean square error of estimating the atomic 3D flows

with respect to time across different input modalities.

flow patch.

3.3. Loss Function

Finally, we define a loss function that is stable and easy

to optimize for motion prediction. As described in section

3.1, we define the cross-entropy loss between the ground

truth distribution Z over the atomic 3D flow space C and

the predicted distribution Ẑ:

Lce(Z, Ẑ) = −
H′∑

i=1

W ′∑

j=1

K∑

k=1

wkZijk log Ẑijk (1)

where w ∈ R
K is a weighting vector for rebalancing the

loss based on the frequency of each atomic flow vectors.

The distribution of atomic 3D flows is strongly biased to-

wards classes with small flow magnitude, as there is little to

no motion in the background. Without accounting for this,

the loss function is dominated by classes with very small

flow magnitudes, causing the model to predict only class

0 which represents no motion. Following the approach in

[52], we define the class weight w as follow:

w ∝
(
(1−λ)p̃+

λ

K

)−1

and

K∑

k=1

p̃kwk = 1 (2)

where p̃ is the empirical distribution of the codewords in

codebook C, and λ is the smoothing weight.

4. Activity recognition

The final goal of our learned representation is to clas-

sify activities in videos. We use our encoder architecture
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Methods Depth RGB

Our architecture only 37.5 34.1

Our method (with 2D motion) 58.8 –

Our method (3-step prediction) 62.5 54.7

Our method (8-step prediction) 66.2 56

Table 1. Quantitative results on activity recognition using the

NTU-RGB+D dataset [27] with the following input modalities:

depth and RGB. We report the mean AP in percentage on our ab-

lation study as well as our complete model (in bold). We report

the meanAP in percentage.

from unsupervised learning for activity recognition. A final

classification layer is added on top of the encoder output to

classify activities.

To study the effectiveness of our learned representation,

we consider the following three scenarios:

1. Initialize the weight of our architecture randomly and

learn them with the labels available for the supervision

task (referred to as “architecture only” in Table 1);

2. Initialize the weights with our learned representation

and fine-tune on activity recognition datasets;

3. Keep the pre-trained encoder fixed and only fine-tune

the last classification layer.

Note that we don’t combine our learned representation

with any pre-trained semantic representation (such as the

fc7 representation learned on ImageNet [24]). We argue

that for our model to learn to predict the basic motions, it

needs to understand the semantic content.

We follow the same data sampling strategy described in

[28]. During training, a mini-batch of 8 samples is con-

structed by sampling from 8 training videos, from each of

which a pair of consecutive frames is randomly selected.

For scenario (i) and (iii), the learning rate is initially set to

10−4 with a decay rate of 0.96 every 2000 steps. For sce-

nario (ii), the initial learning rates of encoder and the final

classification layer are set to 10−5 and 10−4 respectively,

with the same decay rate. At test time, we uniformly sam-

ple 25 frames from each video and average the scores across

the sampled frames to get the class score for the video.

Our presented classification method is intentionally sim-

ple to show the strength of our learned representation.

Moreover, our method is computationally effective. It runs

in real-time since it consists of a forward pass through our

encoder. Finally, our learned representation is compact

(7×7×32) enabling implementation on embedded devices.

Methods Depth

HOG [19] 32.24

Super Normal Vector [48] 31.82

HON4D [20] 30.56

Lie Group [35] 50.08

Skeletal Quads [3] 38.62

FTP Dynamic Skeletons [6] 60.23

HBRNN-L [2] 59.07

2 Layer P-LSTM [27] 62.93

Shuffle and Learn [17] 47.5

Our method (Unsupervised training) 66.2

Table 2. Quantitative results on depth-based activity recognition

using the NTU-RGB+D dataset [27]. The first group (row)

presents the state-of-the-art supervised depth-map based method;

the second group reports the supervised skeleton-based methods;

The third one includes skeleton-based deep learning methods; The

fourth is a recently proposed unsupervised method we imple-

mented; The final row presents our complete model. We report

the mean AP in percentage.

5. Experiments

We first present the performance of our unsupervised

learning task, i.e., predicting the sequence of motion, using

various input modalities including RGB, depth, and RGB-

D. Then, we study the effectiveness of our learned represen-

tations on classifying activities across multiple modalities

and datasets.

5.1. Unsupervised Learning of Long­term Motion

Dataset. We use the publicly available NTU RGB+D

dataset [27] to train our unsupervised framework. The

dataset contains 57K videos for 60 action classes, 40 sub-

jects and 80 viewpoints. We split the 40 subjects into train-

ing and testing groups as described in [27]. Each group

consists of 20 subjects where the training and testing sets

have 40,320 and 16,560 samples, respectively.

Training details. We use a mini-batch of size 16. The

model is trained for 50 epochs with an initial learning rate of

1e−4 using the Adam optimizer [10]. We divide the learn-

ing rate by 10 whenever validation accuracy stops going up.

The network is L2 regularized with a weight decay of 5e−4.

For classification, we use a smoothing λ = 0.5.

Evaluation. We measure the root mean square error

(RMSE) between the ground truth flow Y and the predicted

flow Ŷ. F1 score is used to measure the classification error

between the ground truth index table Z and the predicted

index table Ẑ.

Results. In Figure 5, we plot the prediction error with re-

spect to different input modalities (RGB, depth, RGB-D)

and prediction time (3 and 8 timesteps). We also report the
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Figure 6. The detailed architecture of our model. The Conv shows

the architecture of our downsampling network; LSTM represents

the encoder-decoder framework; Deconv shows the architecture of

our upsampling network.

prediction error of using a single input frame to predict the

next frame similar to [37] (blue dot). The error is intuitively

the highest since there are ambiguities when reasoning with

a single input image. Interestingly, all input modalities per-

form very similarly when predicting 8 timesteps. The RGB

modality is quite competitive to the other two modalites al-

though the 3D information is not measured. When all 4

channels are used, i.e., RGB-D input, the performance is

still similar to using the other modality. The overall error

linearly increases with the first 4 frames and stabilizes for

the final 4 frames. All methods that predict only the next 3

frames have similar prediction errors compared to the ones

that predict a longer sequence. Consequently, our model

has enough capacity to learn a harder problem, i.e., predict-

ing long sequences. In Figure 3, we qualitatively show the

prediction output using depth modality. We illustrate the re-

sults by reconstructing the input frame (depth image) from

the predicted flows. Our method has not been trained to

accurately reconstruct the signal. Nevertheless, the recon-

structed signals convey the accuracy of the prediction.

5.2. Activity Recognition

We compare our activity recognition performance with

state-of-the-art supervised methods for each modality. In

addition, we perform the ablation studies for our unsuper-

vised methods and compare with the a recently-proposed

unsupervised method.

Our method with 2D motion. Instead of predicting 3D

motion, we predict 2D motion in the form of quantized 2D

optical flow.

Our method with 3-step prediction. We predict motions

for the next three frames. Note that our proposed method

uses 8-step prediction.

Shuffle and Learn [17]. Given a tuple of three frames ex-

tracted from a video, the model predicts whether the three

frames are in the correct temporal order or not. We imple-

mented the above model using TensorFlow and trained on

the NTU RGB-D dataset for the sequential verification task,

following the same data sampling techniques and unsuper-

vised training strategies as specified in [17].

Figure 7. The confusion matrix for action recognition on MSR-

DailyActivity3D dataset [14]. Activities with large motions are

better classified than the ones with fine-grained motion.

5.2.1 Depth-based Activity Recognition

Dataset. We train and test our depth-based activity recog-

nition model on two datasets: NTU-RGB+D and MSRDai-

lyActivity3D [14]. For NTU-RGB+D, we follow the cross-

subject split as described in [27]. The MSRDailyActivity3D

dataset contains 16 activities performed by 10 subjects. We

follow the same leave-one-out training-testing split as in

[11]. We intentionally use this extra MSRDailyActivity3D

dataset that is different from the one we use for unsuper-

vised training to show the effectiveness of our learned rep-

resentation in new domains (different viewpoints and activ-

ities).

Results on NTU-RGB+D. Table 2 shows classification ac-

curacy on the NTU-RGB+D dataset. The first group of

methods use depth maps as inputs, while the second and the

third use skeleton features. Methods in the third group are

deep-learning based models. Our proposed method outper-

forms the state-of-the-art supervised methods. We use our

learned representation that predicts the next 8 frames with-

out fine-tuning it on the classification task. Interestingly,

fine-tuning the weights of our encoder did not give a boost

in performance.

Ablation study on NTU-RGB+D. In Table 1, we present

more insights on our design choices. We first show that

by using our encoder architecture without pre-training it to

predict the motion (referred to as “our architecture only”),

the classification accuracy (mean AP) is the lowest. We

then show that modeling 3D motion instead of 2D motion

positively impacts the performance. Finally, we report the

results when shorter sequences (3-step prediction) are en-
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Methods Depth

Dynamic Temporal Warping [18] 54.0

Actionlet Ensemble [39] 85.8

HON4D [20] 85

3D Trajectories [11] 72

Our method (Unsupervised training) 86.9

Table 3. Quantitative results on activity recognition using the

MSRDailyActivity3D dataset [14]. Methods in italic require full

skeleton detection. Our method has learned a video representation

from a different dataset and has not fine-tuned on this dataset. We

report the meanAP in percentage.

coded during our unsupervised training. Increasing the se-

quence length to 8 time-steps increases the classification ac-

curacy. The discrimination power of our representation is

increased by encoding longer-term dependencies. For the

sake of completeness, we also fine-tune our activity recog-

nition model using RGB videos from the NTU RGB-D

dataset. We notice that the results are comparable to depth-

based activity recognition and follow the same trend for ab-

lation studies (i.e., predicting longer motion in 3D yields

better performance).

Results on MSRDailyActivity3D. Table 3 presents classi-

fication accuracy on the MSRDailyActivity3D dataset [14]

and Figure 7 its confusion matrix. Methods in italic require

skeleton detection, while the fourth one makes use of dense

3D trajectories. Note that our unsupervised learning task –

predicting the basic motions – has not been trained on these

activities and viewpoints. Nevertheless, we outperform pre-

vious work specially the method based on the 3D trajecto-

ries by a large margin (+15%). Our compact representation

of the 3D motion is more discriminative than the existing

representation for 3D trajectories [38].

5.2.2 RGB-based Activity Recognition

Dataset. We train and test our RGB-based activity recog-

nition model on the UCF-101 dataset [30] to compare with

state-of-the-art unsupervised methods [17, 36] in this do-

main. The dataset contains 13,320 videos with an aver-

age length of 6.2 seconds and 101 different activity cate-

gories. We follow the same training and testing protocol as

suggested in [28]. However, note that we are not training

the unsupervised task on the UCF-101 dataset. Instead, the

model is pretrained on the RGB videos from NTU-RGB+D

dataset. We want to study the capacity of our learned repre-

sentation to be used across domains and activities.

Results on UCF-101. Table 4 shows classification accu-

racy for RGB-based activity recognition methods on the

UCF-101 dataset. By initializing the weights of our super-

vised model with the learned representation, our model (i.e.,

our method w/o semantics) outperforms two recent unsu-

Methods RGB

S: Deep two stream [42] 91.4

U: Shuffle and Learn [17] 50.2

U: VGAN [36] 52.1

U: Our method (w/o semantics) 53.0

U: Unsupervised LSTMs [32] 75.8

U: Our method (w/ semantics) 79.3

Table 4. Quantitative results on activity recognition using the

UCF-101 dataset [30]. The first group presents the state-of-the-

art supervised (S) method; the second group reports unsupervised

(U) methods without using ImageNet semantics; the third shows

unsupervised (U) methods with ImageNet semantics. We report

the meanAP in percentage.

pervised video representation learning approaches [17, 36].

Note that although the unsupervised LSTM [32] method

outperforms all other methods, it uses a ConvNet pretrained

on ImageNet for semantic feature extraction, whilst the

other methods do not make use of extra semantic informa-

tion. To compare with [32], we use a VGG-16 network pre-

trained on ImageNet to extract semantic features (i.e., fc7

feature) from input images, and add a softmax layer on top

of it. We combine the softmax score from our model with

the semantic softmax score by late fusion.

6. Conclusions

We have presented a general framework to learn long-

term temporal representations for videos across different

modalities. By using our proposed sequence of atomic 3D

flows as supervision, we can train our model on a large num-

ber of unlabeled videos. We show that our learned repre-

sentation is effective and discriminative enough for classi-

fying actions as we achieve state-of-the-art activity recogni-

tion performance on two well-established RGB-D datasets.

For future work, we aim to explore the performance of our

method on RGB based datasets such as ActivityNet or other

supervised tasks beyond activity recognition. We want to

use other free labels from videos such as predicting 3D

scenes interactions from RGB frames. We also want to

come up with a compact representation for dense trajectory,

which can effectively reduce background motions in many

existing datasets.
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