
Budget-Aware Deep Semantic Video Segmentation

Behrooz Mahasseni, Sinisa Todorovic and Alan Fern

Oregon State University

Corvallis, OR

behrooz.mahasseni@gmail.com {sinisa,alan.fern}@oregonstate.edu

Abstract

In this work, we study a poorly understood trade-off be-

tween accuracy and runtime costs for deep semantic video

segmentation. While recent work has demonstrated advan-

tages of learning to speed-up deep activity detection, it is

not clear if similar advantages will hold for our very dif-

ferent segmentation loss function, which is defined over in-

dividual pixels across the frames. In deep video segmen-

tation, the most time consuming step represents the ap-

plication of a CNN to every frame for assigning class la-

bels to every pixel, typically taking 6-9 times of the video

footage. This motivates our new budget-aware framework

that learns to optimally select a small subset of frames

for pixelwise labeling by a CNN, and then efficiently in-

terpolates the obtained segmentations to yet unprocessed

frames. This interpolation may use either a simple optical-

flow guided mapping of pixel labels, or another signifi-

cantly less complex and thus faster CNN. We formalize the

frame selection as a Markov Decision Process, and spec-

ify a Long Short-Term Memory (LSTM) network to model a

policy for selecting the frames. For training the LSTM, we

develop a policy-gradient reinforcement-learning approach

for approximating the gradient of our non-decomposable

and non-differentiable objective. Evaluation on two bench-

mark video datasets show that our new framework is able to

significantly reduce computation time, and maintain com-

petitive video segmentation accuracy under varying bud-

gets.

1. Introduction

We consider the problem of semantic video segmen-

tation, where the goal is to assign a correct class label

to every pixel in a video. Recently deep networks have

achieved state-of-the-art results for semantic video segmen-

tation [32, 35, 23, 48, 10], where typically a Convolutional

Neural Network (CNN) is applied to directly label each

pixel of each frame. In this way, they significantly im-

prove on the the processing time of more traditional ap-

proaches (e.g., energy minimization), as the latter requires

time for graphical-model inference and pre-processing time

for feature extraction. However, despite the feed-forward

architecture of CNNs, and their parallelizable computation

on GPUs, runtimes are still far from real time. For exam-

ple, it takes 6-9 times the video length to execute the ap-

proach of [2] on benchmark datasets. Unfortunately, this

rules out the practical use of these approaches for applica-

tions with tighter runtime constraints. In some situations

hardware solutions can help meet the constraints. However,

it is equally important to develop a better understanding of

how to achieve maximal accuracy given constraints on the

compute time and resources.

In this paper, we address the above problem by intro-

ducing a framework for budget-aware deep semantic video

segmentation. Our approach is applicable to any available

semantic segmentation network, which is treated as a black

box. Given a semantic segmentation network and a time

budget, our approach attempts to maximize accuracy within

the budget. The main idea is based on the observation that

videos typically show smooth motions, and hence pixel la-

bels of a frame can be efficiently and accurately interpo-

lated from neighboring segmentations. This motivates intel-

ligently selecting frames to be processed by a deep segmen-

tation network and then using fast interpolation networks to

assign pixel values to unselected frames. When the interpo-

lation network is significantly faster than the segmentation

network there can be significant computational savings.

The problem of budget aware inference is receiving in-

creasing attention as state-of-the-art accuracies approach

the needs of many applications. Recently, this problem

has been studied for activity detection in video [47], where

the goal is to efficiently identify activities using deep net-

works while avoiding the need to process all video frames.

In that work, a recurrent “attention model” was learned

which aimed to select a small subset of the video frames for

processing, while maintaining high accuracy. The results

showed that high accuracies could be maintained while only

processing approximately 2% of the video frames. While

this result suggest that intelligent frame selection is a viable

1029

way to speedup deep architectures, the problem of activity

detection is quite different from our problem of semantic

segmentation. In particular, unlike activity detection, the

loss function for semantic segmentation is defined over all

pixels of a video and it is necessary to assign predicted val-

ues to all pixels. This raises the question of what accuracy-

time tradeoffs can be achieved for semantic segmentation.

Three Key Ideas: We extend the state of the art by de-

veloping: (1) A deep visual attention model, represented

as an LSTM network, aimed at optimally selecting only a

subset of video frames whose total time of processing by

a segmentation network would not exceed a budget con-

straint. (2) A fast interpolation model, represented by a

one-layer CNN, for efficiently labeling the remaining un-

processed frames based on neighboring frames selected for

segmentation by the attention model; and (3) Joint learning

of main components of our approach – namely, the attention

and interpolation models, such that accuracy of the resulting

video segmentation is maximized for a given budget.

Fig. 1 illustrates the two stages of our approach. In

Stage 1 (Fig. 1 left), the LSTM policy is run to select T

frames for which to apply the segmentation network f . In

Stage 2 (Fig. 1 right), the interpolation model g is applied

to the remaining video frames. As shown in Sec. 4, the total

execution time of our approach is a strictly increasing func-

tion of T . Hence, from the constraint that our total runtime

should be less than the budget B, we can easily estimate the

optimal T , by simply stopping the LSTM policy before we

exceed the budget.

Our joint training approach is based on recognizing that

our problem is inherently one of sequential decision mak-

ing. Accordingly we draw on ideas from reinforcement

learning, which is an area that focuses on learning for se-

quential decision making. In particular, we derive a policy-

gradient reinforcement learning algorithm for our problem,

which is shown to be an effective approach for training our

models.

In Sec. 5 we evaluate our approach for varying time bud-

gets and two different semantic segmentation netoworks.

Our results show that for budgets 1
4Bmax ≤ B ≤ 1

2Bmax, we

achieve semantic segmentation accuracy that is comparable

to the results obtained by directly segmenting each frame.

This shows that our approach is able to learn to speedup

the segmentation performance by a factor of four, with lit-

tle loss in accuracy. Moreover, our accuracy gracefully de-

grades for B < 1
4Bmax, which is important for applications

with very tight budget constraints.

2. Related Work

Semantic video segmentation is a long standing problem,

and a thorough review of the literature is beyond our scope.

It has been traditionally formulated as an energy minimiza-

tion of a graphical model representing supervoxels or su-

perpixels in the video [7, 6, 5, 33, 8, 29, 39, 45, 31, 20].

Except for a few empirical results of sensitivity to the to-

tal number of supervoxels [19, 28] or greedy feature selec-

tion in [17], these approaches usually do not explicitly study

trade-offs between accuracy and efficiency under varying

time constraints. Our main hypothesis is that knowing the

budget constraint in training provides additional informa-

tion which allows the learning algorithm to optimize its de-

cisions toward maximizing overall labeling accuracy. More

importantly, it is hard to adapt the approaches proposed in

[19, 28, 17] for deep learning base semantic segmentation

models.

Recent work on CNN-based semantic segmentation [2,

23, 32, 18, 35, 50, 9, 26, 36, 38] does not require unsu-

pervised segmentation in a pre-processing step, but directly

take pixels of the image as input and output a semantic seg-

mentation. These approaches first use a set of (convolution

+ pooling) layers to generate a deep feature for the entire

image. Then, they perform a sequence of deconvolution

+ upsampling operations for generating an output feature

map. As these approaches [2, 23, 32, 18, 35, 50, 9, 26, 36,

38] conduct CNN-based segmentation for every frame in-

dependently, their pixel labeling is typically not spatiotem-

porally smooth and coherent. Recently, Peng el al. [25]

propose a recurrent temporal field model which considers

smoothness of labels is space-time. Also, the runtime of

these feed-forward CNN architectures is typically 6-9 times

the video length [35].

Efficient inference under budget has recently received

much traction in many areas of computer vision [49, 24, 4,

1, 21, 22, 46, 41, 42, 37, 27, 17, 3]. These approaches typ-

ically model a utility function of their inference steps, and

economically run those steps with the maximum utility. Our

key difference is in that we directly learn a budget aware

inference policy that achieves high utility within the deep

learning framework. These approaches are not easy to gen-

eralize to the state-of-the-art CNN based semantic segmen-

tation, since such approaches do not explicitly extract fea-

tures during a preprocessing step. Unlike these approaches

we do not require extracting additional features for estimat-

ing the utility, but instead train our deep budget-aware se-

mantic segmentation model in an end-to-end fashion. Vi-

jayanarasimhan et al. [40] use the idea of informative frame

selection and label propagation to facilitate human anno-

tation in semantic video segmentation in an active learning

framework. Their work is different than ours in: 1) They ap-

proach is built on top of the traditional CRF based semantic

labeling, 2) Their full model requires solving another CRF

model which takes at least a minute itself, and 3) They are

trying to improve the human labeling time which is in the

order of 25 minutes per frame. Mahasseni et al. [3] propose

a policy based approach for (supervoxel,feature) selection

in a budgeted semantic video labeling. Our work is dif-

1030

Stage 1: Running inference policy for T steps.

Stage 2: Predicted pixel labels are propagated to

remaining M − T unlabeled frames.

Figure 1: Two stages of our approach. Given a video with M frames and time budget B, in Stage 1, LSTM-based policy

sequentially selects a subset of frames for segmentation by a CNN, f . In Stage 2, the missing pixel labels are interpolated by

a one-layer convolution filter, g, using neighboring semantic segmentations.

ferent from theirs in : 1) Unlike their approach, which is

based on CRF based supervoxel labeling along the video,

we use CNN based frame-level model aumgneted with a

label propagation network. 2) Instead of the classication-

based approximate policy iteration, we use a recurrent pol-

icy gradient method to learn the budget-aware policy.

3. Problem Formulation

Given a video, x, with M frames and budget B, our goal

is to accurately assign a label to each pixel in x in time less

than B. Let f be a segmentation function that takes the

pixels xi of frame i and returns a semantic segmentation

of xi using time cf . In particular, f(xi) gives a posterior

distribution over class labels for each individual pixel. We

specify f as a CNN following two prior approaches [2, 23].

To meet the budget constraint, we apply f to only a subset

of frames and interpolating the resulting segmentations to

other frames. For this we use a visual attention policy, π,

which sequentially selects frames for labeling by f (details

in Section 4.1). Given the output of f at the selected frames,

remaining frames are labeled by an interpolation function,

g, which uses nearby outputs of f to interpolate semantic

segmentations to yet unprocessed frames. Importantly, the

time cost of applying g, cg , is significantly smaller than the

time cost of applying f , cf , which allows for time savings

compared to labeling all frames via f .

Since the goal is to produce a segmentation within a time

budget B, we must decide when to stop selecting frames

with π in order to meet the budget constraint. For this pur-

pose, we can divide the total time required to compute an

output into two components. The first time component is

the time required to apply the policy π for T steps and also

apply f at the selected frames. Let u(T) ∈ {0, 1}M de-

note an indicator vector over video frames, where u
(T)
i = 1

means that frame i has been segmented by π, and u
(T)
i = 0,

otherwise. Also let U (T) = |u(T)| ≤ T be the number of

distinct frames selected by π, noting that this can be less that

T if π happens to select a frame twice.1 The second time

component involves applying g to frames with zero values

in u(T). If we let cπ denote the cost of applying the policy,

then the total runtime is given by:

C(T) = cπT + cfU
(T) + cg(M − U (T)) (1)

= cπT + (cf − cg)U
(T) + cgM

Using this runtime formula it is easy determine when to stop

the policy. After T policy selections, we must stop before

running step T + 1 if this could result in C(T + 1) > B.

In our work, π, g, and f will be represented via deep

neural networks. Since f is a pre-trained model, model pa-

rameters consist of the parameters of π and g, i.e. θ =
(θπ, θg). Given a video x and time budget B, we let

ŷ(x, B, θ) denote the output of the above semantic segmen-

tation process using parameters θ applied to x with budget

B. When clear from context we will denote this via ŷ. Note

that ŷi gives the posterior probability over labels for each

pixel in frame i of the video. The loss of a frame labeling

will be denoted by ∆(yi, ŷi), where yi is the ground truth

labeling for frame i and ∆ is an average cross-entropy loss

for pixels in frame i. Further, the loss over M video frames

is defines as:

Lθ(y, ŷ) =
1

M

M
∑

i=1

∆(yi, ŷi). (2)

1While π will rarely reselect a frame, we cannot rule out this possibility

since π is learned and will have some imperfections.

1031

Given a training set of N labeled videos {(xn,yn} the

goal of learning is to find θ that minimizes the following

θ∗ = argmin
θ

[

L(θ) = E(Lθ) ≈
1

N

N
∑

n=1

Lθ(y
n, ŷ

n)
]

(3)

Unfortunately, even for simple choices for π, f , and g,

the gradient of L(θ) does not have a closed form, due to the

sequential nature of the process used to construct ŷ
n

.

4. Learning and Representation

In this section, we describe our representation for π and

g, noting that we use existing image segmentation models

for f , SegNet [2] and BayesianSegNet [23], whose detailed

specification can be found in the respective references. We

then describe our approach for jointly learning these func-

tions by drawing on policy-gradient estimation techniques.

4.1. LSTM­based Policy

Our temporal attention policy makes a sequence of frame

selections based on the local information perceived around

the most recently selected frame, which we will refer to as

the current frame. Note that the local observation input to

the policy at each step only captures part of the global state

of the inference process, st. This choice to limit the obser-

vations to only a local window around the current frame is

motivated by the desire to allow for π consider long videos

of different length and to make fast decisions, since other-

wise the intelligent selection would be too costly to pay off.

However, limiting the size of local observation window

can lead to sub-optimal decisions if optimal decisions de-

pend on a wider context. To help address this we represent

π using a recurrent neural network – namely, an LSTM,

which attempts to learn a hidden state that captures the more

global context of the inference process. Due to its ability to

memorize information from previous decisions made by π,

the LSTM has been shown to successfully model problems

with non-Markovian state transitions such as ours and have

a number of recent empirical successes in sequential deci-

sion making [34, 16, 47].

In particular, when the current frame at time t is i, the

LSTM-based policy π makes a decision based on:

1) The local information in a video neighborhood Ni

centered around i. This is captured in an observation vec-

tor ot = [zNi
, φ(Ni), lt], where zNi

is an indicator vector

that indicates whether each frame inNi has been previously

selected and processed by f , φ(Nj) is the average of per-

class confidences predicted by f in Ni (yielding one input

image per class), and lt ∈ [0, 1] is the normalized location

of the current frame at time t (e.g. the middle frame has

value 0.5). The inclusion of lt was helpful in encouraging

the policy to cover the entire video extent. The input to the

LSTM π at step t is ot.

2) The LSTM’s hidden variables ht−1, which summa-

rizes the previous observations up to time t.

To summarize, the global state at time t is approximated

by the internal state of the LSTM, ht, which depends on the

current observation ot and the previous state ht−1. Given

ht, the output of π(ht) is the location of the next observa-

tion lt+1 ∈ [0, 1]. Note that our formulation allows the pol-

icy to perform jumps forward and backward in time. Note

that π is defined as a probabilistic policy, which is a conve-

nient choice for our policy-gradient learning algorithm de-

fined later. To improve exploration at training time, instead

of using lt+1, the next location is sampled from a Gausssian

distribution with a mean equal to lt+1 and a fixed variance.

4.2. Interpolation Model

The goal of g is to estimate the pixel labels of frames not

selected by π. Efficient and reliable interpolation of labels

has been demonstrated on videos with smooth motions, i.e.,

strong correlations between neighboring frames [6, 7, 40].

Intuitively, given the posterior of class labels for frames j

in the neighborhood of frame i, and the amount of change

observed between frames i and j, our convolution filter g is

learned to estimate labels of pixels in i, i.e. to output a pos-

terior distribution over class labels for each pixel in i. The

input to g is defined as an ordered set of pixel label predic-

tions for the closest labeled frames j on two sides of frame

i along with the additional channels containing pixel-wise

frame differences between frames j and i. In our experi-

ments, g is defined as a single layer convolution filter of

size 5× 5 with 2 · (# classes + 1) input channels.

4.3. Joint Learning of the Parameters

The goal is to jointly learn the parameters of π and g

(θ = {θπ ,θg}) by minimizing the labeling loss of a se-

quence of policy actions, taken from the initial state s0
when no frames are selected until sT , when the total run-

time C(T) ≤ B ≤ C(T + 1).
Recall that ŷ

n
i is the estimated output for frame i in video

xn. Let u(t) be the indicator vector showing the selected

frames in the entire video after running the policy for t

steps. We can formally define the estimated output at each

time step t as:

ŷ
n
i (t) =

[

u
(t)
ni f(x

n
i) + (1− u

(t)
ni)g(x

n))
]

(4)

The main difficulty is that the estimated output ŷ for the

entire video, is computed through a sequence of decisions

made by the policy which results in a non-decomposable,

non-differentiable objective function. The decisions that the

policy makes at any time depends on a history of decisions

that the policy made in previous time steps and influences

1032

the decisions available to the policy in the future. This is a

long-standing problem in the study of reinforcement learn-

ing algorithms. To address this problem, the REINFORCE

algorithm [44] and the recurrent policy gradient approach

[43] approximate the gradients of the non-decomposable

objective function which helps to efficiently learn the policy

using stochastic gradient descent.

To follow the general reinforcement learning formula-

tion, let rt be the immediate reward associated with state

st. Since st ≈ ht we define rt as :

rt(ht) = Lθ(y, ŷ(t))− Lθ(y, ŷ(t− 1)), (5)

where Lθ is the labeling loss for the video defined in

eq. (2). Intuitively, eq. (5) states that the policy earns

an immediate reward equal to the decrease in labeling er-

ror achieved by selecting a frame (or pay a penalty if the

labeling error increases). Let Rt(Ht) be the discounted ac-

cumulated reward starting from state st and continuing the

policy up to final state, sT :

Rt(Ht) =

T
∑

t′=t

λt−t′rt(ht), (6)

where λ ∈ (0, 1) is the discount factor and Ht =
{ht,ht+1, ...,hT } represents a history of LSTM’s hidden

variables. H0 can be interpreted as the trajectory of obser-

vations for a sample run of the policy from the initial state.

For simplification purposes we use H for H0 and R for R0

in the rest of this paper. The goal is to find the parameters

θ∗, that maximizes J(θ) redefined as:

J(θ) = E[R(H)] =

∫

p(H|θ)Rθ(H)dH, (7)

where p(H|θ) is the probability of observing a sequence of

hidden states H , given a policy defined by parameters θ. It

is easy to show that minimizing L(θ) in eq. (3) is equiva-

lent to maximizing J(θ) in eq. (7). Let θπ and θg define

the gradient of the objective function J(θ) in eq. (7) with

respect to the LSTM policy and interpolation networks pa-

rameters. Although it is possible to jointly learn the param-

eters of the LSTM policy and the interpolation networks,

given the stochastic nature of the policy, in practice we ob-

served that the iterative approach works better. Alg .1 shows

our proposed training procedure:

Computing▽θπJ : The gradient with respect to the pol-

icy parameters is given by:

▽θπ J =

∫

[

▽θπp(H|θ)Rθ(H) + p(H|θ)▽θπRθ(H)
]

dH

(8)

Note that given the hidden state sequence H , which de-

termines the history of selected frames, the reward func-

tion does not depend on the policy parameters, yielding

Algorithm 1 Training procedure for our Budget-Aware se-

mantic segmentation model

Input: N Training videos

Output:Learned parameters {θπ, θg}.
1: pre-train the interpolation network, g % note: train-

ing examples are generated from uniform sampling of

frames in each video.

2: initialize the policy parameters, θπ
3: for number of iterations do

% generate trajectories to train π

4: {Hn}Nn=1 ← apply π for T steps

% interpolate labels for each video

5: {ŷn}Nn=1 ← using eq. (4)

% Update policy parameters:

6: θπ ← −▽θπ J

% generate trajectories to train g

7: {Hn}Nn=1 ← aplly π for T steps

% Update interpolation parameters:

8: θg ← −▽θg J

9: end for

▽θπRθ(H) = 0. To further simplify (8) we need to de-

fine ▽θπp(H|θ). Note that p(H|θ) can be factorized as

p(H|θ) = p(h0)
∏T

t=1 p(ht|ht−1)π(lt|ht−1, ot), where

ot = [z
(t)
Nj

, φ(f
(t)
Nj

), lt] and the same notation π is used to

denote the last softmax layer of the LSTM. From the above

we have log p(H|θ) = const +
∑T

t=0 log π(lt|ht−1, ot)
which results in the following gradient:

▽θπ log p(H|θ) =
T
∑

t=0

▽θ log π(lt|ht−1, ot)

Monte Carlo integration is used to approximate the integra-

tion over the probability of observing a sequence of hidden

states. Particularly the approximate gradient is computed

by running the current policy on N given videos to gener-

ate N trajectories which result in the following approximate

gradient:

▽θπJ ≈
1

N

N
∑

n=1

T
∑

t=0

[

▽θπ log π(lnt |h
n
t−1, o

n
t)Rt(h

n
t)
]

. (9)

Policy gradient approaches suffer from the high variance of

the gradient estimates. Following the common practice [44]

we subtract a bias from the expected reward, R. Instead of a

constant bias, we set the bias value to be the reward obtained

following a random jump policy.

Computing ▽θgJ : Analogous to eq. (8), the gradient

with respect to the interpolation parameters is defined as

▽θgJ =
∫ [

▽θgp(H|θ)Rθ(H) + p(H|θ)▽θgRθ(H)
]

dH .

Note that since g is applied after frames are selected, the

1033

hidden state probability does not depend on the interpola-

tion function, i.e. ▽θgp(H|θ) = 0 which results in:

▽θgJ =

∫

p(H|θ)▽θgRθ(H)dH. (10)

Recall that ∆ is the average cross-entropy loss for pixels in

frame i. It is easy to derive the following gradient:

▽θg Lθ(y, ŷ(t)) =
1

|u(t)|

∑

{i|u
(t)
i

=0}

▽θg∆(yi, g(x)).

(11)

Intuitively the labeling error of the frames which have

not been selected by the policy is considered in computing

the gradient with respect to the parameters of g. Given a

video x and applying (5), (7), and (11), it is easy to derive

the following:

▽θg Rθ(H) =

T
∑

t=0

λt
▽θg [Lθ(y, ŷ(t))− Lθ(y, ŷ(t− 1))]

(12)

Using the same Monte Carlo integration technique we

derive the following approximate gradient:

▽θgJ ≈
1

N

N
∑

n=1

T
∑

t=0

λt
▽θg [Lθ(y

n, ŷ
n(t))−Lθ(y

n, ŷ
n(t−1))]

(13)

5. Results

We use the following datasets: 1) CamVid [5], and 2)

KITTI [15]. Both datasets are recorded in uncontrolled en-

vironment, and present challenges in terms of occlusions,

and variations of motions, shapes, and lighting.

Implementation: The LSTM model contains two hid-

den layers of 1024 hidden units . For training, we gener-

ate sequences of continuous frames per each training video

where the sequence size is set to be 90 frames in both

datasets. Also since the video datasets for semantic seg-

mentation do not provide ground truth for all frames (e.g.

CamVid provides labels for every 30 frames), for training,

the output of f is considered as ground truth for frames

without human annotated labels. Note that since the goal is

to perform as well as a model that uses f across the entire

video, it is reasonable to consider outputs of f as the ground

truth. In our evaluation, the budget is defined in terms of the

percentage of the maximum required budget needed to ap-

ply f for all video frames. Following [14], to improve con-

vergence properties, we start with λ = 0.9 and gradually

update it after each epoch using: λe+1 = 1− 0.98(1− λe).

We implement our interpolation and policy modules in

tensorflow2 and use the publicly available code for imple-

mentations of f . Experiments are performed on an Intel

quad core-i7 CPU and 16GB RAM on a single Tesla k80.

Variations of our approach and the baselines: We de-

fine two variants for the policy: i) REG: deterministically

selects T frames uniformly starting from the first frame, ii)

LSTM: learns the proposed model in Sec. 4.1. For inter-

polation we define the following variants: i) OPT: is the

baseline approach proposed in [40] which uses dense opti-

cal flow to track the points from both forward and backward

directions and then propagates the labels from the closest

labeled points. More sophisticated label propagation ap-

proaches [30, 12, 13] are more expensive and are not suit-

able as a low-cost interpolation baseline. ii) CNN: learns the

proposed interpolation filter in Sec. 4.2. The combination of

[π = LSTM:g = CNN] is our approach and all other com-

binations are considered as baselines. We evaluate the valid-

ity of our approach on two deep semantic image segmenta-

tion models, i) SegNet[2] and ii) BayesianSegNet[23]. We

would like to reemphasize that, f is considered as a black-

box in our framework. While authors in [48, 11] reported

higher accuracy compared to [2, 23], the above two models

are only chosen because of the large variation in their accu-

racies and processing times which allows us to explore the

generalizability of our framework in various settings.

5.1. Results on CamVid

The CamVid dataset has five videos of road scenes from

a moving camera of length up to 6120 frames. Following

prior work, we focus on the 11 most common object class

labels. Ground-truth labels are available at every 30 frames.

We use the standard test-train split as in [2] and similarly

resize the frames to 360 × 480 pixels. The average per

frame inference time is 165 ms for SegNet and 1450 ms

for BayesianSegNet.

Table 1 shows the results for three different budgets

and N = 7. For B = 0.1 · Bmax and B = 0.25 ·
Bmax our [LSTM:CNN] outperforms all other variants in

both class average accuracy and mean intersection over

union 3. One interesting observation is the contribution

of each module in the accuracy. Based on the result,

although both LSTM and CNN provides slight improve-

ment in accuracy when applied independent of each other,

they improve the accuracy with a larger margin when

learned together. For B = 0.5 · Bmax, we observe a

different pattern. Although our [LSTM:CNN] provides

a better result, considering the relative accuracy between

[LSTM:OPT] and [REG:OPT] and the same comparison

between [REG:CNN] and [REG:OPT] it seems that accu-

racy boost is mostly due to the interpolation model.

2https://www.tensorflow.org/
3Intersection over Union (I/U) for one class =

tp

tp+fp+fn

1034

B Method R
o

ad

B
u

il
d

in
g

S
k
y

T
re

e

S
id

e-
W

al
k

C
ar

C
o

lu
m

n
-P

o
le

F
en

ce

P
ed

es
tr

ia
n

B
ic

y
cl

e

S
ig

n

C
la

ss
A

v
g

M
ea

n
I/

U

f = SegNet [2]

Bmax All Frames 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 50.2

0.1 ·Bmax

[REG:OPT] 56.4 46.4 53.7 42.7 10.3 60.3 29.3 18.5 9.5 36.8 10.7 34.1 26.7

[REG:CNN] 57.2 47.0 51.5 43.8 11.2 60.9 28.4 19.3 9.8 37.9 11.1 34.4 26.9

[LSTM:OPT] 60.8 50.3 54.9 51.2 16.8 70.1 32.7 25.6 15.7 44.2 14.7 39.7 30.2

[LSTM:CNN] 63.4 58.8 61.9 54.9 17.3 73.9 38.1 31.3 19.5 51.7 20.8 44.7 33.8

0.25 ·Bmax

[REG:OPT] 70.4 69.1 73.2 63.8 23.6 81.9 45.4 39.1 20.9 65.9 23.8 52.5 40.2

[REG:CNN] 70.8 68.9 75.4 64.2 24.8 78.6 45.8 39.4 22.1 66.8 24.5 52.8 40.5

[LSTM:OPT] 83.4 70.4 83.7 72.3 25.4 88.1 52.3 45.2 24.6 78.6 26.8 59.2 45.4

[LSTM:CNN] 81.1 80.3 82.9 73.7 27.6 89.8 54.2 45.9 25.8 78.0 28.4 60.7 46.2

0.5 ·Bmax

[REG:OPT] 83.2 82.6 86.3 75.4 27.5 93.2 53.7 46.8 25.9 80.1 29.1 62.2 47.0

[REG:CNN] 81.6 82.1 86.0 75.7 27.4 90.8 53.1 46.9 25.8 81.4 27.6 61.7 46.9

[LSTM:OPT] 81.5 82.0 86.7 75.8 27.1 91.4 52.9 46.4 25.2 80.6 27.5 61.6 46.7

[LSTM:CNN] 84.1 83.7 87.4 76.2 27.9 93.4 54.3 46.3 26.3 80.5 29.3 62.7 47.7

f = Bayesian SegNet [23]

Bmax All Frames 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 63.1

0.1 ·Bmax

[REG:OPT] 51.6 49.3 59.6 41.9 44.7 46.9 34.4 35.8 24.5 45.2 20.7 41.3 34.8

[REG:CNN] 52.7 52.8 57.8 44.7 46.2 50.3 36.8 36.9 25.2 46.7 21.6 42.9 36.1

[LSTM:OPT] 59.2 57.8 63.2 54.9 49.1 57.6 42.4 40.1 31.3 56.7 30.5 49.3 40.8

[LSTM:CNN] 60.3 60.1 64.8 56.7 50.3 60.1 46.8 42.3 33.7 59.4 31.6 51.5 42.3

0.25 ·Bmax

[REG:OPT] 60.8 65.8 70.1 66.3 51.6 70.8 57.1 49.7 38.3 70.9 41.5 58.4 47.9

[REG:CNN] 62.5 65.2 71.5 68.4 52.3 71.2 60.3 52.2 39.9 70.4 41.9 59.6 49.3

[LSTM:OPT] 76.3 81.1 83.8 81.4 63.1 87.5 68.9 60.9 47.3 85.1 51.3 71.5 58.7

[LSTM:CNN] 76.0 80.9 85.7 82.8 64.6 88.1 70.4 61.2 48.8 84.6 52.5 72.3 59.4

0.5 ·Bmax

[REG:OPT] 75.7 80.4 83.8 82.1 64.3 89.5 69.5 60.2 48.2 86.3 51.3 71.9 59.0

[REG:CNN] 75.8 80.9 86.4 82.5 64.8 89.8 69.5 61.1 48.5 87.5 51.8 72.6 59.6

[LSTM:OPT] 75.2 80.5 85.6 82.4 63.9 89.0 70.2 60.1 47.9 85.8 51.1 72.0 58.8

[LSTM:CNN] 77.1 81.9 86.2 81.7 65.1 88.7 69.3 61.8 49.1 88.2 52.8 72.9 59.8

Table 1: Comparison with different variations of our budget-aware inference on CamVid. The budget is defined as a fraction

of the maximum budget required to run the original methods, [2, 23] for each frame, denoted as Bmax

Method Time for π Time for g Time for f Class-Avg

f = SegNet [2]

REG+CNN(0.25 ·Bmax) 0 130.4 251.3 53.5

REG+CNN(0.5 ·Bmax) 0 90.6 567.2 61.7

LSTM+CNN(0.25 ·Bmax) 23.1 125.8 256.7 61.7

LSTM+CNN(0.5 ·Bmax) 5.2 92.1 441.6 62.8

f= Bayesian SegNet [23]

REG+CNN(0.25 ·Bmax) 0 184.5 2928.4 62.3

REG+CNN(0.5 ·Bmax) 0 97.3 4170.8 72.6

LSTM+CNN(0.25 ·Bmax) 20.4 196.8 2934.7 72.3

LSTM+CNN(0.5 ·Bmax) 8.8 113.9 4181.3 73.3

Table 2: Comparison of the processing times for two varia-

tions of our framework on a sample video from CamVid.

Table 2 shows the processing time for policy execution,

label interpolation, and semantic labeling using π, g, and f

for a sample video under different budget constraints. We

observe that using f =[2], the policy selects almost 30% of

the frames when B = 0.25 · Bmax and 50% of the frames

when 0.5 · Bmax. For f =[23] which takes longer to run,

the policy selects only 15% of the frames when B = 0.25 ·
Bmax and 40% of the frames when 0.5 · Bmax. This verifies

our main hypothesis that the prior knowledge of the budget

changes the behavior of the intelligent system and helps the

intelligent agent to learn a particular frame selection pattern

that improves the labeling accuracy for that budget.

Fig. 2 shows the class-average accuracy for different

Figure 2: The class-average accuracy for different budget

constraints using [1] =[23], [2] =[2] on CamVid.

user-defined budgets. Despite a small accuracy drop, our

approach keeps a consistent level of accuracy which shows

the effectiveness of the learned frame selection and interpo-

lation when 1
4Bmax < B < 1

2Bmax.

Qualitative results on the CamVid dataset are shown in

Fig .3. The columns represent four consecutive frames of a

sample video.

Results on KITTI: The KITTI dataset consists of videos

from road scenes where eight class labels, (Building, Tree,

Sign, Road, Fence, Pole, Sidewalk), are annotated in a sub-

set of frames. Since the number of ground-truth annotations

is much less than the number total of frames in videos. In-

stead of comparing with ground truth, for evaluating KITTI,

1035

input

[23]

ours

Figure 3: Frame samples from CamVid dataset. The top row shows the input and the middle row shows the result of applying

[23] on individual frames. The bottom row shows the outputs of our LSTM:CNN approach. While only the frame in the

second column is selected in our approach, qualitatively the results look very similar for other frames.

Budget Method Building Tree Sign Road Fence Pole Sidewalk Class Avg

0.25 ·Bmax

[REG:OPT] 89.7 81.2 74.2 83.3 61.5 72.2 85.3 78.2

[REG:CNN] 90.5 82.3 77.4 86.9 67.3 74.7 86.8 80.8

[LSTM:OPT] 91.2 86.8 80.2 90.2 71.2 78.4 89.2 83.9

[LSTM:CNN] 91.9 92.1 89.5 93.5 78.3 83.2 90.2 88.4

0.5 ·Bmax

[REG:OPT] 92.2 91.2 91.8 95.8 88.9 87.5 93.9 91.6

[REG:CNN] 94.4 90.6 91.1 94.1 89.7 87.1 91.8 91.3

[LSTM:OPT] 93.7 89.3 90.8 93.7 89.7 86.6 90.3 90.6

[LSTM:CNN] 93.0 94.1 92.6 96.1 90.2 89.1 94.0 92.7

Table 3: Comparison of different variation of our budget-

aware inference on KTTI. The budget is defined as a frac-

tion of the maximum budget required to run the original

method, [2] for each frame, denoted as Bmax.

we compare our approach with a method which applies f

on all video frames. Considering the fact that we are ulti-

mately upper-bounded by the accuracy of the full run of f

on the entire video, this is a reasonable evaluation. Note that

during training we also use the very same outputs from ap-

plying f as the ground truth for training the policy and the

interpolation network. We only re-train the last layer of the

SegNet [2] to adjuect it for KITTI. Table 3 shows the per-

class and class-average accuracy compared to results obtain

from f . For B = 0.25 · Bmax our budget-aware inference

achieves 88.4% accuracy and for B = 0.5 ·Bmax we achieve

90% accuracy. For a 4-fold speed up we have an accuracy

reduction of only 11.5%.

6. Conclusion

We have addressed the problem of budgeted semantic

video segmentation, where pixels of a video must be labeled

within a time budget. We have specified a budget-aware in-

ference for this problem that intelligently selects a subset

of frames to run a deep CNN for semantic segmentation.

Since CNN computation often dominates the cost of infer-

ence, our framework can provide substantial time savings in

a principled manner. For selecting the subset of frames, we

have formulated a visual-attention policy within the MDP

framework, and used an LSTM as the policy model. We

have also specified a new segmentation propagation func-

tion to label the unselected frames as a one-layer CNN. Our

experiments show that our approach significantly improves

on the accuracies of several strong baselines. The results

also demonstrate that we can optimally adapt our method,

from operating with no time bound to varying time budgets,

such that it yields satisfactory performance for one-forth

of the maximum budget, while maintaining an accuracy as

close as possible to its performance for no time bound.

Acknowledgement

This work was supported in part by DARPA XAI, NSF
RI1302700, and NSF IIS1619433.

References

[1] M. Amer, D. Xie, M. Zhao, S. Todorovic, and S.-C. Zhu.

Cost-sensitive top-down/bottom-up inference for multiscale

activity recognition. In ECCV, 2012.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015.

[3] A. F. Behrooz Mahasseni, Sinisa Todorovic. Approximate

policy iteration for budgeted semantic video segmentation.

CoRR, abs/1607.07770, 2016.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. PAMI, 23(11):1222–1239,

2001.

1036

[5] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV, 2008.

[6] I. Budvytis, V. Badrinarayanan, and R. Cipolla. Label prop-

agation in complex video sequences using semi-supervised

learning. In BMVC, 2010.

[7] A. Y. Chen and J. J. Corso. Propagating multi-class pixel

labels throughout video frames. In WNYIPW, 2010.

[8] A. Y. Chen and J. J. Corso. Temporally consistent multi-

class video-object segmentation with the video graph-shifts

algorithm. In WACV, 2011.

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. arXiv preprint

arXiv:1412.7062, 2014.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016.

[11] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[12] J. Fauqueur, G. Brostow, and R. Cipolla. Assisted video ob-

ject labeling by joint tracking of regions and keypoints. In

2007 IEEE 11th International Conference on Computer Vi-

sion, pages 1–7. IEEE, 2007.

[13] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

arXiv preprint arXiv:1504.06852, 2015.

[14] V. François-Lavet, R. Fonteneau, and D. Ernst. How to dis-

count deep reinforcement learning: Towards new dynamic

strategies. arXiv preprint arXiv:1512.02011, 2015.

[15] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, pages 3354–3361. IEEE, 2012.

[16] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. Draw:

A recurrent neural network for image generation. arXiv

preprint arXiv:1502.04623, 2015.

[17] A. Grubb, D. Munoz, J. A. Bagnell, and M. Hebert. Speed-

machines: Anytime structured prediction. arXiv preprint

arXiv:1312.0579, 2013.

[18] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, pages 447–456, 2015.

[19] A. Jain, S. Chatterjee, and R. Vidal. Coarse-to-fine semantic

video segmentation using supervoxel trees. In ICCV, 2013.

[20] A. Kae, B. Marlin, and E. Learned-Miller. The shape-time

random field for semantic video labeling. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 272–279, 2014.

[21] J. Kappes, M. Speth, G. Reinelt, and C. Schnorr. Towards ef-

ficient and exact map-inference for large scale discrete com-

puter vision problems via combinatorial optimization. In

CVPR, 2013.

[22] S. Karayev, M. Fritz, and T. Darrell. Anytime recognition of

objects and scenes. In CVPR, 2014.

[23] A. Kendall, V. Badrinarayanan, , and R. Cipolla. Bayesian

segnet: Model uncertainty in deep convolutional encoder-

decoder architectures for scene understanding. arXiv

preprint arXiv:1511.02680, 2015.

[24] P. Krähenbühl and V. Koltun. Efficient inference in fully con-

nected CRFs with gaussian edge potentials. In NIPS, 2012.

[25] P. Lei and S. Todorovic. Recurrent temporal deep field for

semantic video labeling. In European Conference on Com-

puter Vision, pages 302–317. Springer, 2016.

[26] M. Liang, X. Hu, and B. Zhang. Convolutional neural net-

works with intra-layer recurrent connections for scene label-

ing. In NIPS, pages 937–945, 2015.

[27] B. Liu and X. He. Multiclass semantic video segmentation

with object-level active inference. In CVPR, pages 4286–

4294, 2015.

[28] B. Liu and X. He. Learning dynamic hierarchical models for

anytime scene labeling. ECCV, 2016.

[29] B. Liu, X. He, and S. Gould. Multi-class semantic video seg-

mentation with exemplar-based object reasoning. In WACV,

2015.

[30] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-

ing: Label transfer via dense scene alignment. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on, pages 1972–1979. IEEE, 2009.

[31] X. Liu, D. Tao, M. Song, Y. Ruan, C. Chen, and J. Bu.

Weakly supervised multiclass video segmentation. In CVPR,

2014.

[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[33] O. Miksik, D. Munoz, J. A. Bagnell, and M. Hebert. Efficient

temporal consistency for streaming video scene analysis. In

ICRA, 2013.

[34] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of

visual attention. In NIPS, pages 2204–2212, 2014.

[35] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. CoRR, abs/1505.04366,

2015.

[36] P. H. Pinheiro and R. Collobert. Recurrent convolu-

tional neural networks for scene parsing. arXiv preprint

arXiv:1306.2795, 2013.

[37] G. Roig, X. Boix, R. D. Nijs, S. Ramos, K. Kuhnlenz, and

L. V. Gool. Active MAP inference in CRFs for efficient se-

mantic segmentation. In ICCV, 2013.

[38] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell. Clock-

work convnets for video semantic segmentation. ECCV,

2016.

[39] B. Taylor, A. Ayvaci, A. Ravichandran, and S. Soatto. Se-

mantic video segmentation from occlusion relations within

a convex optimization framework. In Energy Minimization

Methods in Computer Vision and Pattern Recognition, pages

195–208. Springer, 2013.

[40] S. Vijayanarasimhan and K. Grauman. Active frame selec-

tion for label propagation in videos. In European Conference

on Computer Vision, pages 496–509. Springer, 2012.

1037

[41] D. Weiss, B. Sapp, and B. Taskar. Dynamic structured model

selection. In ICCV, 2013.

[42] D. J. Weiss and B. Taskar. Learning adaptive value of infor-

mation for structured prediction. In NIPS, 2013.

[43] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Re-

current policy gradients. Logic Journal of IGPL, 18(5):620–

634, 2010.

[44] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992.

[45] C. Wojek and B. Schiele. A dynamic conditional random

field model for joint labeling of object and scene classes. In

ECCV, 2008.

[46] T. Wu and S.-C. Zhu. Learning near-optimal cost-sensitive

decision policy for object detection. In ICCV, 2013.

[47] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-

to-end learning of action detection from frame glimpses in

videos. arXiv preprint arXiv:1511.06984, 2015.

[48] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

[49] Y. Zhang and T. Chen. Efficient inference for fully-

connected CRFs with stationarity. In CVPR, 2012.

[50] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional ran-

dom fields as recurrent neural networks. arXiv preprint

arXiv:1502.03240, 2015.

1038

