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Abstract

Human motion modelling is a classical problem at the

intersection of graphics and computer vision, with appli-

cations spanning human-computer interaction, motion syn-

thesis, and motion prediction for virtual and augmented re-

ality. Following the success of deep learning methods in

several computer vision tasks, recent work has focused on

using deep recurrent neural networks (RNNs) to model hu-

man motion, with the goal of learning time-dependent rep-

resentations that perform tasks such as short-term motion

prediction and long-term human motion synthesis. We ex-

amine recent work, with a focus on the evaluation method-

ologies commonly used in the literature, and show that, sur-

prisingly, state-of-the-art performance can be achieved by a

simple baseline that does not attempt to model motion at all.

We investigate this result, and analyze recent RNN methods

by looking at the architectures, loss functions, and training

procedures used in state-of-the-art approaches. We propose

three changes to the standard RNN models typically used

for human motion, which result in a simple and scalable

RNN architecture that obtains state-of-the-art performance

on human motion prediction.

1. Introduction

An important component of our capacity to interact with

the world resides in the ability to predict its evolution over

time. Handing an object to another person, playing sports,

or simply walking in a crowded street would be extremely

challenging without our understanding of how people move,

and our ability to predict what they are likely to do in the

following instants. Similarly, machines that are able to per-

ceive and interact with moving people, either in physical

or virtual environments, must have a notion of how people

move. Since human motion is the result of both physical

limitations (e.g. torque exerted by muscles, gravity, moment

preservation) and the intentions of subjects (how to perform
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Figure 1. Top: Mean average prediction error for different motion

prediction methods. Bottom: Ground truth passed to the network

is shown in grey, and short-term motion predictions are shown in

colour. Previous work, based on deep RNNs, produces strong dis-

continuities at the start of the prediction (middle column). Our

method produce smooth, low-error predictions.

an intentional motion), motion modeling is a complex task

that should be ideally learned from observations.

Our focus in this paper is to learn models of human mo-

tion from motion capture (mocap) data. More specifically,

we are interested in human motion prediction, where we

forecast the most likely future 3D poses of a person given

their past motion. This problem has received interest in a
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wide variety of fields, such as action prediction for socially-

aware robotics [21], 3D people tracking within computer vi-

sion [13,43], motion generation for computer graphics [22]

or modeling biological motion in psychology [42].

Traditional approaches have typically imposed expert

knowledge about motion in their systems in the form of

Markovian assumptions [25, 32], smoothness, or low di-

mensional embeddings [48]. Recently, a family of meth-

ods based on deep recurrent neural networks (RNNs) have

shown good performance on this task while trying to be

more agnostic in their assumptions. For example, [10] uses

curriculum learning and incorporates representation learn-

ing in the architecture, and [18] manually encodes the se-

mantic similarity between different body parts. These ap-

proaches benefit from large, publicly available collections

of motion capture data [16], as well as recent advances in

the optimization of time-series modelling [9].

Recent work has validated its performance via two com-

plementary methods: (1) quantitative prediction error in the

short-term, typically measured as a mean-squared loss in

angle-space, and (2) qualitative motion synthesis for longer

time horizons, where the goal is to generate feasible mo-

tion. The first evaluation metric is particularly interesting

for computer vision applications such as people tracking,

where predictions are continually matched and corrected

with new visual evidence. The second criterion, most rele-

vant for open-loop motion generation in graphics, is hard to

evaluate quantitatively, because human motion is a highly

non-deterministic process over long time horizons. This

problem is similar to the one found in recent research on

deep generative networks [41], where the numerical evalu-

ation based on the negative log-likelihood and Parzen win-

dow estimates are known to be far from perfect.

We have empirically observed that current deep RNN-

based methods have difficulty obtaining good performance

on both tasks. Current algorithms are often trained to min-

imize a quantitative loss for short-term prediction, while

striving to achieve long-term plausible motion by tweaking

the architectures or learning procedures. As a result, their

long-term results suffer from occasional unrealistic artifacts

such as foot sliding, while their short-term results are not

practical for tracking due to clear discontinuities in the first

prediction. In fact, the discontinuity problem is so severe,

that we have found that state-of-the-art methods are quan-

titatively outperformed by a range of simple baselines, in-

cluding a constant pose predictor. While this baseline does

not produce interesting motion in the long-run, it highlights

both a poor short-term performance, as well as a severe dis-

continuity problem in current deep RNN approaches. In this

work, we argue that (a) the results achieved by recent work

are not fully satisfactory for either of these problems, and

(b) trying to address both problems at once is very chal-

lenging, especially in the absence of a proper quantitative

evaluation for long-term plausibility.

We focus on short-term prediction, which is the most rel-

evant task for a visual tracking scenario. We investigate the

reasons for the poor performance of recent methods on this

task by analyzing several factors such as the network ar-

chitectures and the training procedures used in state-of-the-

art RNN methods. First, we consider the training schedule

used in [10, 18]. It is a known problem in RNNs [5] and

reinforcement learning [36] that networks cannot learn to

recover from their own mistakes if they are fed only ground-

truth during training. The authors of [10, 18] introduced in-

creasing amounts of random noise during training to com-

pensate for this effect. However, this noise is difficult to

tune, makes it harder to choose the best model based on val-

idation error, and has the effect of degrading the quality of

the prediction in the first frame. Instead, we propose a sim-

ple approach that introduces realistic error in training time

without any scheduling; we simply feed the predictions of

the net, as it is done in test time. This increases the robust-

ness of the predictions compared to a network trained only

on ground truth, while avoiding the need of a difficult-to-

tune schedule.

Unfortunately, this new architecture is still unable to ac-

curately represent the conditioning poses in its hidden rep-

resentation, which still results in a discontinuity in the first

frame of the prediction. We borrow ideas from research on

the statistics of hand motion [15], and model velocities in-

stead of absolute joint angles, while keeping the loss in the

original angle representation to avoid drift. Therefore, we

propose a residual architecture that models first-order mo-

tion derivatives, which results in smooth and much more

accurate short-term predictions.

Both of our contributions can be implemented using an

architecture that is significantly simpler than those in previ-

ous work. In particular, we move from the usual multi-layer

LSTM architectures (long short-term memory) to a single

GRU (Gated Recurrent Unit), and do not require a spatial

encoding layer. This allows us to train a single model on

the entire Human 3.6M dataset [16] in a few hours. This

differs from previous approaches [10, 18], which trained

only action-specific models from that dataset. Our approach

sets the new state of the art on short-term motion predic-

tion, and overall gives insights into the challenges of mo-

tion modelling using RNNs. Our code is publicly avail-

able at https://github.com/una-dinosauria/

human-motion-prediction.

2. Related work

Our main task of interest is human motion prediction,

with a focus on recent deep RNN architectures [10,18]. One

of our findings is that, similar to [3, 17], a family of simple

baselines outperform recent deep learning approaches. We

briefly review the literature on these topics below.
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Modelling of human motion. Learning statistical mod-

els of human motion is a difficult task due to the high-

dimensionality, non-linear dynamics and stochastic nature

of human movement. Over the last decade, and exploit-

ing the latent low-dimensionality of action-specific human

motion, most work has focused on extensions to latent-

variable models that follow state-space equations such as

hidden Markov models (HMMs) [26], exploring the trade-

offs between model capacity and inference complexity. For

example, Wang et al. [48] use Gaussian-Processes to per-

form non-linear motion prediction, and learn temporal dy-

namics using expectation maximization and Markov-chain

Monte Carlo. Taylor et al. [40] assume a binary latent space

and model motion using a conditional restricted Boltzman

machine (CRBM), which requires sampling for inference.

Finally, Lehrmann et al. [26] use a random forest to non-

linearly choose a linear system that predicts the next frame

based on the last few observations.

Applications of human motion models. Motion is a key

part of actions; therefore, the field of action recognition

has paid special attention to models and representations

of human motion. In their seminal work, Yacoob and

Black [51] model motion with time-scale and time-shifted

activity bases from a linear manifold of visual features com-

puted with Principal Component Analysis (PCA). More

complex models like mixtures of HMMs [33, 34], latent

topic models of visual words [49] or LSTMs [29] are used

in recent methods. Although their purpose (action classi-

fication from a sequence of poses) is different from ours,

this field contains interesting insights for motion prediction,

such as the importance of a mathematically sound orienta-

tion representation [46,47] or how learned, compact motion

representations improve action recognition accuracy [30].

Another popular use of motion models, specially short-

term ones, is pose tracking. The use of simple linear Marko-

vian models [37] or PCA models [44] has evolved to lo-

cally linear ones like factor analizers [28], non-linear em-

beddings like Laplacian Eigenmaps [38], Isomap [19], dy-

namic variants of Gaussian Process Latent Variable Models

(GPLVM) [48, 52], or physics-based models [8].

In animation, similar methods have been used for the

generation of human pose sequences. Spaces of HMMs pa-

rameterised by style were used by Brand et al. [7] to gener-

ate complex motions. Arikan and Forsyth [2] collapse full

sequences into nodes in a directed graph, connected with

possible transitions between them, and in [24] cluster trees

improve the path availability. More recently, motion mod-

els based on GPLVM have been used for controlling virtual

characters in a physical simulator [27]. An overview of mo-

tion generation for virtual characters can be found in [45].

Deep RNNs for human motion. Our work focuses on re-

cent approaches to motion modelling that are based on deep

RNNs. Fragkiadaki et al. [10] propose two architectures:

LSTM-3LR (3 layers of Long Short-Term Memory cells)

and ERD (Encoder-Recurrent-Decoder). Both are based

on concatenated LSTM units, but the latter adds non-linear

space encoders for data pre-processing. The authors also

note that, during inference, the network is prone to accumu-

late errors, and quickly produces unrealistic human motion.

Therefore, they propose to gradually add noise to the input

during training (as is common in curriculum learning [6]),

which forces the network to be more robust to prediction er-

rors. This noise scheduling makes the network able to gen-

erate plausible motion for longer time horizons, specially

on cyclic walking sequences. However, tuning the noise

schedule is hard in practice.

More recently, Jain et al. [18] introduced structural

RNNs (SRNNs), an approach that takes a manually de-

signed graph that encodes semantic knowledge about the

RNN as input, and creates a bi-layer architecture that as-

signs individual RNN units to semantically similar parts

of the data. The authors also employ the noise scheduling

technique introduced by Fragkiadaki et al., and demonstrate

that their network outperforms previous work both quan-

titatively in short-term prediction, as well as qualitatively.

Interestingly, SRNNs produce plausible long-term motion

for more challenging, locally-periodic actions such as eat-

ing and smoking, and does not collapse to unrealistic poses

in aperiodic “discussion” sequences.

Revisiting baselines amid deep learning. The rise and

impressive performance of deep learning methods in clas-

sical problems such as object recognition [23] has encour-

aged researchers to attack both new and historically chal-

lenging problems using variations of deep neural networks.

For example, there is a now a large body of work on vi-

sual question answering (VQA), i.e. the task of answering

natural-language questions by looking at images, based al-

most exclusively on end-to-end trainable systems with deep

CNNs for visual processing and deep RNNs for language

modelling [31, 35, 50]. Recently, however, Zhou et al. [53]

have shown that a simple baseline that concatenates features

from questions’ words and CNN image features performs

comparably to approaches based on deep RNNs. Moreover,

Jabri et al. [17] have shown competitive performance on

VQA with a simple baseline that does not take images into

account, and state-of-the-art performance with a baseline

that is trained to exploit the correlations between questions,

images and answers.

Our work is somewhat similar to that of Jabri et al. [17],

in that we have found a very simple baseline that outper-

forms sophisticated state-of-the-art methods based on deep

RNNs for short-term motion prediction. In particular, our

baseline outperforms the ERD and LSTM-3LR models by

Fragkiadi et al. [10], as well as the structural RNN (SRNN)

method of Jain et al. [18]. Another example of baselines

2893



outperforming recent work in the field of pose models can

be found in [25], where a Gaussian pose prior outperforms

the more complicated GPLVM.

3. Method

Recent deep learning methods for human pose predic-

tion [10,18] offer an agnostic learning framework that could

potentially be integrated with video data [10] or used for

other forecasting applications [18]. However, for the spe-

cific task of motion forecasting, we note that they have a

few common pitfalls that we would like to improve.

3.1. Problems

First frame discontinuity. While both methods generate

continuous motion, a noticeable jump between the condi-

tioning ground truth and the first predicted frame is present

in their results (see Figure 1). This jump is particularly

harmful for tracking applications, where short-term predic-

tions are continuously updated with new visual evidence.

Hyper-parameter tuning. These methods add to the typ-

ical set of network hyper-parameters an additional one, par-

ticularly hard to tune: the noise schedule.

In time series modelling, it is often necessary to model

noise as part of the input, in order to improve robustness

against noisy observations. For example, in Kalman filter-

ing, a small amount of Gaussian noise is modelled explic-

itly as part of the standard state-space equations. In appli-

cations such as motion synthesis, exposing the method to

the errors that the network will make at test time is crucial

to prevent the predicted poses from leaving the manifold of

plausible human motion. Algorithms like DAGGER [36],

used in reinforcement learning, use queries to an “expert”

during training so that the predictor learns how to correct

its own errors. It is, however, not straightforward how one

would use this approach for pose prediction.

The basic architectures that we use, RNNs, typically

do not consider this mismatch between train and test in-

put, which makes them prone to accumulate errors at in-

ference time. To alleviate this problem, Fragkiadaki et al.

propose to use noise scheduling; that is, to inject noise of

gradually increasing magnitude to the input in training time

(see Fig. 2, left), which corresponds to a type of curricu-

lum learning. Jain et al. [18] similarly adopt this idea,

and have found that it helps stabilizing long-term motion

synthesis. The downsides are, (1) that both noise distri-

bution and magnitude scheduling are hard to tune, (2) that

while this noise improves long-term predictions, it tends to

hurt performance in short-term predictions, as they become

discontinuous from previous observations, and (3) that the

common rule for choosing the best model, based on low-

est validation error, is not valid anymore, since lowest val-

idation error typically corresponds to the validation epoch

without injected noise.

Depth and complexity of the models. LSTM-3LR, ERD

and SRNN use more than one RNN in their architectures,

stacking two or three layers for increased model capac-

ity. While deeper models have empirically shown the best

performance on a series of tasks such as machine transla-

tion [39], deep networks are known to be hard to train when

data is scarce (which is the data regime for action-specific

motion models). Moreover, recent work has shown that

shallow RNNs with minimal representation processing can

achieve very competitive results in tasks such as the learn-

ing of sentence-level embeddings [20], as long as a large

corpus of data is available. Finally, deeper models are com-

putationally expensive, which is an important factor to con-

sider in the context of large-scale training datasets.

Action-specific networks. Although the vision commu-

nity has recently benefited from large-scale, publicly avail-

able datasets of motion capture data [16], motion modelling

systems have been typically trained on small action-specific

subsets. While restricting the training data to coherent sub-

sets makes modelling easier, it is also well-known that deep

networks work best when exposed to large and diverse train-

ing datasets [20,23]. This should specially apply to datasets

like Human3.6M, where different actions contain large por-

tions of very similar data (e.g. sitting or walking).

3.2. Solutions

Sequence-to-sequence [39] architecture. We address

short-term motion prediction as the search for a function

that maps an input sequence (conditioning ground truth)

to an output (predicted) sequence. In this sense, the prob-

lem is analogous to machine translation, were sequence-to-

sequence (seq2seq) architectures are popular. In seq2seq,

two networks are trained; (a) an encoder that receives the

inputs and generates an internal representation, and (b), a

decoder network, that takes the internal state and produces

a maximum likelihood estimate for prediction. Unlike the

common practice in machine translation, we enforce the en-

coder and the decoder to share weights, which we found to

accelerate convergence. A benefit of this architecture is that

the encoding-decoding procedure during training is more

similar to the protocol used at test-time. Moreover, there

are multiple variations of seq2seq architectures (e.g., with

attention mechanisms [4], or bi-directional encoders [35]),

that could potentially improve motion prediction.

Sampling-based loss. While it is often common in RNNs

to feed the ground truth at each training time-step to the

network, this approach has the downside of the network not

being able to recover from its own mistakes. Previous work

has addressed this problem by scheduling the rate at which

the network sees either the ground truth or its own predic-

tions [5], or by co-training and adversarial network to force
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Figure 2. Training procedure as done in previous work, and our proposed sequence-to-sequence residual architecture. Green stick figures

represent ground truth, and blue stick figures represent predictions. Left: LSTM-3LR architecture, introduced by Fragkiadaki et al. [10].

During training, ground truth is fed to the network at each time-step, and noise is added to the input. Right: Our sequence-to-sequence

architecture; During training, the ground truth is fed to an encoder network, and the error is computed on a decoder network that feeds its

own predictions. The decoder also has a residual connection, which effectively forces the RNN to internally model angle velocities.

the internal states of the RNN to be similar during train and

test time [11]. These approaches, however, rely heavily on

hyper-parameter tuning, which we want to avoid. Striving

for simplicity, during training we let the decoder produce a

sequence by always taking as input its own samples. This

approach requires absolutely no parameter tuning. Another

benefit of this approach is that we can directly control the

length of the sequences that we train on. As we will see,

training to minimize the error on long-term motions results

in networks that produce plausible motion in the long run,

while training to minimize error the short-term reduces the

error rate in the first few predicted frames.

Residual architecture. While using a seq2seq architec-

ture trained with a sampling-based loss can produce plau-

sible long-term motion, we have observed that there is still

a strong discontinuity between the conditioning sequence

and prediction. Our main insight is that motion continuity,

a known property of human motion, is easier to express in

terms of velocities than in poses. While it takes consider-

able modelling effort to represent all possible conditioning

poses so that the first frame prediction is continuous, it only

requires modeling one particular velocity (zero, or close to

zero velocity) to achieve the same effect. This idea is simple

to implement in current deep learning architectures since it

translates into adding a residual connection between the in-

put and the output of each RNN cell (see Fig. 2, right). We

note that, although residual connections have been shown

to improve performance on very deep convolutional net-

works [14], in our case they help us model prior knowledge

about the statistics of human motion.

Multi-action models. We also explore training a single

model to predict motion for multiple actions, in contrast

to previous work [10, 18], which has focused on building

action-specific models. While modelling multiple actions

is a more difficult task than modelling single-action sets,

it is now a common practice to train a single, conditional

model, on multiple data modalities, as this allows the net-

work to exploit regularities in large datasets [12]. Semantic

knowledge about each activity can be easily incorporated

using one-hot vectors; i.e., concatenating, in the input, a 15-

dimensional vector that has zeros everywhere, but a value of

one in the index of the indicated action.

4. Experimental setup

We consider three main sets of experiments to quantify

the impact of our contributions:

1. Seq2seq architecture and sampling-based loss.

First, we train action-specific models using our pro-

posed sequence-to-sequence architecture with sampling-

based loss, and compare it to previous work, which uses

noise scheduling, and to a baseline that feeds the ground

truth at each time-step. The goal of these experiments is to

verify that using a sampling-based loss, which does not re-

quire parameter tuning, performs on par with previous work

on short-term motion prediction, while still producing plau-

sible long-term motion. In these experiments, the network

is trained to minimize the loss over 1 second of motion.

2. Residual architecture. The second set of experiments

explore the effects of using a residual architecture that mod-

els first-order motion derivatives, while keeping the loss in

the original angle space. Here, we are interested in learning

whether a residual architecture improves short term predic-

tion; therefore, in these experiments, the network is trained
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Figure 3. Error curves comparing ERD [10], LSTM-3LR [10],

SRNN [18] and our method (Residual sup. (MA) in Table 1) with

residual connections, sampling-based loss and trained on multiple

actions, as well as a zero-velocity baseline.

to minimize the prediction error over 400 milliseconds.

3. Multi-action models. Our last round of experiments

quantifies the benefits of training our architecture on the en-

tire Human 3.6M dataset, as opposed to building action-

specific models. We consider both a supervised and an un-

supervised variant. The supervised variant enhances the

input to the model by concatenating one-hot vectors with

the 15 action classes. In contrast, the unsupervised variant

does not use one-hot input during training nor prediction.

In these experiments we also train the network to minimize

the prediction error over the next 400 milliseconds.

Dataset and data pre-processing. Following previous

work, we use the Human 3.6M (H3.6M) dataset by

Ionescu et al. [16], which is currently the largest publicly

available dataset of motion capture data. H3.6M includes

seven actors performing 15 varied activities such as walk-

ing, smoking, engaging in a discussion, taking pictures, and

talking on the phone, each in two different trials. For a fair

comparison, we adopt the pose representation and evalu-

ation loss from [10, 18]. Pose is represented as an expo-

nential map representation of each joint, with a special pre-

processing of global translation and rotation (see [40] for

more details). For evaluation, similar to [10, 18], we mea-

sure the Euclidean distance between our prediction and the

ground truth in angle-space for increasing time horizons.

We report the average error on eight randomly sampled test

sequences, and use the sequences of subject five for testing,

while the rest of the sequences are used for training.

A scalable seq2seq architecture. In all our experiments,

we use a single gated recurrent unit [9] (GRU) with 1024

units, as a computationally less-expensive alternative to

LSTMs, and we do not use any time-independent layers

for representation learning. Experimentally, we found that

stacking recurrent layers makes the architecture harder to

train, while it also makes it slower; we also found that the

best performance is obtained without a spatial encoder. We

do, however, use a spatial decoder to back-project the 1024-

dimensional output of the GRU to 54 dimensions, the num-

ber of independent joint angles provided in H3.6M.

We use a learning rate of 0.005 in our multi-action ex-

periments, and a rate of 0.05 in our action-specific experi-

ments; in both cases, the batch size is 16, and we clip the

gradients to a maximum L2-norm of 5. During training as

well as testing, we feed 2 seconds of motion to the encoder,

and predict either 1 second (for long-term experiments) or

400 milliseconds (for short-term prediction) of motion from

the decoder. We implemented our architecture using Ten-

sorFlow [1], which takes 75ms for forward processing and

back-propagation per iteration on an NVIDIA Titan GPU.

Baselines. We compare against two recent approaches to

human motion prediction based on deep RNNs: LSTM-

3LR and ERD by Fragkiadaki et al. [10], and SRNN by

Jain et al. [18]. To reproduce previous work, we rely on the

pre-trained models and implementations of ERD, LSTM-

3LR and SRNN publicly available 1. These implementa-

tions represent the best efforts of the SRNN authors to re-

produce the results of the ERD and LSTM-3LR models re-

ported by Fragkiadaki et al. [10], as there is no official pub-

lic implementation for that work. We found that, out of the

box, these baselines produce results slightly different (most

often better) from those reported by Jain et al. [18].

We also consider an agnostic zero-velocity baseline

which constantly predicts the last observed frame. For com-

pleteness, we also consider running averages of the last two

and four observed frames. While these baselines are very

simple to implement, they have not been considered in re-

cent work that uses RNNs to model human motion.

5. Results

Figure 3 shows a summary of the results obtained by

ERD, LSTM-3LR and SRNN, as well as a zero-velocity

baseline and our method, on four actions of the Human 3.6

dataset. Tables 1 and 2 describe these results in more de-

tail, and include results on the rest of the actions. In the

remainder of the section we analyze these results.

Zero-velocity baseline. The first striking result is the

comparatively good performance of the baselines, specially

1https://github.com/asheshjain399/RNNexp
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Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ERD [10] 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76

LSTM-3LR [10] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23

SRNN [18] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93

Running avg. 4 0.64 0.87 1.07 1.20 0.40 0.59 0.77 0.88 0.37 0.58 1.03 1.02 0.60 0.90 1.11 1.15

Running avg. 2 0.48 0.74 1.02 1.17 0.32 0.52 0.74 0.87 0.30 0.52 0.99 0.97 0.41 0.74 0.99 1.09

Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04

Zero noise (SA) 0.44 0.71 1.16 1.34 0.39 0.65 1.13 1.36 0.51 0.83 1.48 1.62 0.57 1.47 2.08 2.30

Sampling-based loss (SA) 0.92 0.98 1.02 1.20 0.98 0.99 1.18 1.31 1.38 1.39 1.56 1.65 1.78 1.80 1.83 1.90

Residual (SA) 0.34 0.60 0.95 1.09 0.30 0.53 0.92 1.13 0.36 0.66 1.17 1.27 0.44 0.93 1.45 1.60

Residual unsup. (MA) 0.27 0.47 0.70 0.78 0.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12

Residual sup. (MA) 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.23 0.39 0.62 0.76 0.31 0.68 1.01 1.09

Untied (MA) 0.33 0.54 0.78 0.91 0.28 0.45 0.65 0.83 0.35 0.62 1.03 1.14 0.35 0.71 1.01 1.09

Table 1. Detailed results for motion prediction, measured in mean angle error for walking, eating, smoking and discussion activities of the

Human 3.6M dataset. The top section corresponds to previous work based on deep recurrent neural networks. “Zero noise” is a model

trained by feeding ground truth at each time step. “Sampling-based loss” is trained by letting the decoder feed its own output. SA stands

for “Single action”, and MA stands for “Multi-action”. Finally “Untied” is the same model as Residual sup (MA), but with untied weights

between encoder and decoder.

Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity 0.25 0.44 0.61 0.68 0.80 1.23 1.81 1.87 0.80 1.23 1.81 1.87 0.32 0.63 1.16 1.45 0.72 1.03 1.46 1.49 0.43 1.12 1.41 1.58

Res. (SA) 0.44 0.95 1.27 1.55 0.87 1.40 2.19 2.26 0.31 0.57 0.88 1.04 0.50 0.96 1.64 1.96 0.74 1.60 1.57 1.72 0.44 1.05 1.51 1.69

Res. unsup. (MA) 0.27 0.47 0.73 0.87 0.77 1.18 1.74 1.84 0.24 0.43 0.68 0.83 0.40 0.77 1.32 1.62 0.62 1.10 1.07 1.14 0.68 1.04 1.43 1.65

Res. sup. (MA) 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63

Untied (MA) 0.31 0.52 0.77 0.89 0.79 1.19 1.72 1.83 0.27 0.46 0.68 0.85 0.42 0.77 1.29 1.58 0.52 1.01 1.07 1.16 0.51 1.13 1.56 1.74

Sitting down Taking photo Waiting Walking Dog Walking together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Zero-velocity 0.27 0.54 0.93 1.05 0.22 0.47 0.78 0.89 0.27 0.49 0.96 1.12 0.60 0.96 1.27 1.33 0.33 0.60 0.96 1.03 0.42 0.74 1.12 1.20

Res. (SA) 0.38 0.77 1.36 1.59 0.37 0.66 1.30 1.70 0.36 0.73 1.31 1.51 0.62 1.02 1.55 1.65 0.44 0.81 1.25 1.36 0.46 0.88 1.35 1.54

Res. unsup. (MA) 0.41 0.80 1.43 1.63 0.27 0.56 0.98 1.16 0.32 0.62 1.13 1.30 0.58 0.95 1.37 1.45 0.35 0.62 0.87 0.87 0.39 0.72 1.08 1.22

Res. sup. (MA) 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15

Untied (MA) 0.47 0.89 1.57 1.72 0.30 0.56 0.95 1.12 0.38 0.64 1.18 1.41 0.61 0.98 1.42 1.54 0.40 0.69 0.98 1.03 0.42 0.74 1.11 1.26

Table 2. Prediction results for our zero-velocity baseline and our main prediction methods on the remainder 11 actions of the H3.6m dataset.

the zero-velocity one. They clearly outperform state-of-the-

art results, highlighting the severity of the discontinuities

between conditioning and prediction in previous work. The

good performance of the baseline also means that determin-

istic losses are not suitable to evaluate motion forecasting

with a long time horizon.

Sampling-based loss. In Table 1, using our sampling-

based loss consistently achieves motion prediction error

competitive with or better than the state of the art. More-

over, since we have trained our model to minimize the error

over a 1-second time horizon, the network retains the abil-

ity to generate plausible motion in the long run. Figure 4

shows a few qualitative examples of long-term motion using

this approach. Given that our proposed sampling-based loss

does not require any hyper-parameter tuning, we would ar-

gue that this is a fast-to-train, interesting alternative to pre-

vious work for long-term motion generation using RNNs.

Residual architecture and multi-action models. Fi-

nally, we report the performance obtained by our archi-

tecture with sampling-based loss, residual connections and

trained on single (SA) or multiple actions (MA) in the bot-

tom subgroup of Table 1. We can see that using a resid-

ual connection greatly improves performance and pushes

our method beyond the state of the art, which highlights

the fact that velocity representations are easier to model

by our network. Importantly, our method obtains its best

performance when trained on multiple actions; this result,

together with the simplicity of our approach, uncovers the
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Walking

Smoking

Eating

Discussion

Figure 4. Qualitative long-term motion generation, showing two seconds of motion prediction on different activities. The gray top sequence

corresponds to ground truth and the red one to SRNN. The first dark blue sequence corresponds to our method, trained on specific actions,

and without residual connection, but using sampling-based loss (Sampling-based loss (SA) on Table 1). This model produces plausible

motion in the long term, but does suffer from discontinuities in short-term predictions. The last blue sequence corresponds to our full

model, including residual connections, and trained on multiple actions (Residual sup. (MA) on Table 1); this model produces smooth,

continuous predictions in the short term, but converges to a mean pose.

importance of large amounts of training data when learn-

ing short-term motion dynamics. We also note that highly

aperiodic classes such as discussion, directions and sitting

down remain very hard to model.

Moreover, we observe that adding semantic information

to the network in the form of action labels helps in most

cases, albeit by a small margin. Likely, this is due to the fact

that, for short-term motion prediction, modelling physical

constraints (e.g. momentum preservation) is more important

than modelling high-level semantic intentions.

When analysing Fig. 4, it becomes obvious that the best

numerical results do not correspond to the best qualitative

long-term motion – a result that persists even when trained

to minimize loss over long horizons (e.g. 1 second). One

can hardly blame the method though, since our network is

achieving the lowest loss in an independent validation set.

In other words, the network is excelling in the task that

has been assigned to it. In order to produce better qualita-

tive results, we argue that a different loss that encourages

other similarity measures (e.g. adversarial, entropy-based

etc.) should be used instead. Our results suggest that it is

inherently hard to produce both accurate short-term predic-

tions – which are relatively deterministic and seem to be

properly optimized with the current loss – and long-term

forecasting using RNNs.

6. Conclusions and future work

We have demonstrated that previous work on human mo-

tion modelling using deep RNNs has harshly neglected the

important task of short-term motion prediction, as we have

shown that a zero-velocity prediction is a simple but hard-

to-beat baseline that largely outperforms the state of the art.

Based on this observation, we have developed a sequence-

to-sequence architecture with residual connections which,

when trained on a sample-based loss, outperforms previous

work. Our proposed architecture, being simple and scal-

able, can be trained on large-scale datasets of human mo-

tion, which we have found to be crucial to learn the short-

term dynamics of human motion. Finally, we have shown

that providing high-level supervision to the network in the

form of action labels improves performance, but an unsu-

pervised baseline is very competitive nonetheless. We find

this last result particularly encouraging, as it departs from

previous work in human motion modelling which has typi-

cally worked on small, action-specific datasets. Future work

may focus on exploring ways to use even larger datasets of

motion capture in an unsupervised manner.
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