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Abstract

Compositionality and contextuality are key building

blocks of intelligence. They allow us to compose known

concepts to generate new and complex ones. However, tra-

ditional learning methods do not model both these proper-

ties and require copious amounts of labeled data to learn

new concepts. A large fraction of existing techniques, e.g.

using late fusion, compose concepts but fail to model con-

textuality. For example, red in red wine is different from red

in red tomatoes. In this paper, we present a simple method

that respects contextuality in order to compose classifiers of

known visual concepts. Our method builds upon the intu-

ition that classifiers lie in a smooth space where composi-

tional transforms can be modeled. We show how it can gen-

eralize to unseen combinations of concepts. Our results on

composing attributes, objects as well as composing subject,

predicate, and objects demonstrate its strong generalization

performance compared to baselines. Finally, we present de-

tailed analysis of our method and highlight its properties.

1. Introduction

Imagine a blue elephant. Having never seen a sin-

gle example of such a creature, humans have no diffi-

culty imagining it, or even recognizing it. Starting from

Plato’s Theaetetus to the early nineteenth century work of

Gottlob Frege [20], compositionality is often regarded as

a hallmark of intelligence. The core idea is that a com-

plex concept can be developed by combining multiple sim-

ple concepts. In fact, the same idea has been explored in

the field of computer vision as well: in the form of at-

tributes [13, 54] or graphical models for SVOs (subject-

object-verb triplets) [53]. While the idea of building com-

plex concepts from simpler ones seems intuitive, current

state-of-the-art methods for recognition or retrieval follow

a more data-driven approach, where complex concepts are

learned using hundreds and thousands of labeled examples

instead of being composed. Why is that?

Interestingly, even in philosophy, there is clear tension

between the idea of compositionality and the principle of

contextuality. The principle of contextuality states that one

snake small snake

lemon ripe lemon

elephant small elephant

coffee ripe coffee

bike old bike laptop old laptop

Figure 1: Visual concepts like objects and attributes are

compositional. This compositionality depends on the con-

text and the particular instances being composed. A small

elephant is much larger than a small snake! Our surprisingly

simple method models both compositionality and contextu-

ality in order to learn visual classifiers. The results of our

approach show that it composes while respecting context.

cannot create a model of a simple concept without the con-

text. This has often been stated as one of the main argu-

ments against attributes: a red classifier in red wine is re-

markably different from a red classifier in red tomato or

even a red car. Figure 1 shows more such examples.

This direct tension between compositionality and con-

textuality leads to the basic exploration of this paper: do

current vision algorithms have such a compositional nature?

Can we some respect the principle of contextuality yet cre-

ate compositional visual classifiers? One approach to cap-

ture context is to use the text itself to learn how the mod-

ifiers should behave. For example, a modifier like “red”

should show similar visual modifications for related con-

cepts like tomatoes and berries. Approaches such as [38]

have tried to use text to capture this idea and compose visual

classifiers. But do we really need taxonomy and knowledge

from language to capture contextuality?

In this paper, we propose an approach that composes

classifiers by directly reasoning about them in model space.

Our intuition behind this is that the model space is smooth

and captures visual similarity, i.e., tomato classifiers are

closer to berry classifiers than cars. Thus, modifiers should

apply similarly to similar classifiers. One task we consider

is composing attribute (adjective) and object (noun) visual
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classifiers to get classifiers for (attribute, object) pairs. As

Figure 1 shows, the visual interpretation of attributes de-

pends on the objects they are coupled with, e.g., a small

elephant is still much larger than a small snake. Our ap-

proach respects such contextuality because it is conditioned

on all the visual concepts and models them together, rather

than in isolation. We show that our compositional transform

captures such relations between objects and attributes, and

can create visual classifiers for them.

As our experiments show, our approach is able to gen-

eralize such compositionality and contextuality to unseen

combinations of visual concepts (Section 4. Our approach

naturally extends beyond composing two primitives. We

show results on combining subject, object and verb clas-

sifiers to unseen combinations of subject-verb-object triples

(Section 4.3). On all these tasks, our method shows general-

ization capability beyond existing methods. Section 5.5 also

shows our method’s generalization to unseen primitives. Fi-

nally, in Section 5, we analyze the various components of

our method and its various properties.

2. Related Work

Our work is heavily influenced by the principle of com-

positionality. This principle has a long standing history in

the fields of philosophy, theory of mind, neuroscience, lan-

guage, mathematics, computer science, etc. As such a broad

overview is beyond the scope of this paper, we focus on

compositionality in the case of visual recognition. In its

most basic form, the principle states that new concepts can

be constructed from primitive elements. This principle is

relevant for statistical learning as it paves the way for mod-

els that train with low sample complexity. Compositional

models can learn primitives from large amounts of samples

and then compose these primitives to learn new concepts

with limited samples [18, 23, 63, 68].

One of the earliest examples of using compositonal-

ity for visual recognition is Biederman’s Recognition-By-

Components theory [6] and Hoffman’s part theory [27].

Compositionality is an underlying principle for many mod-

ern visual recognition systems [34]. Convolutional Neural

Networks [37] have been shown to capture feature repre-

sentations at multiple semantic and part hierarchies [64].

The parts-based systems such as Deformable Part Mod-

els [15], grammars [25, 44, 59, 62, 67, 69], and AND-OR

graphs [54, 61, 66] also rely on compositionality of objects

to build recognition systems. Compositionality has also

been a key building block for systems used for visual ques-

tion answering [4, 5], handwritten digits [32, 33], zero-shot

detection [31], segmentation and pose estimation [59, 62].

In this paper, we focus on compositionality to compose

unseen combinations of primitive visual concepts. This

has been classically studied under the zero-shot Learning

paradigm [35]. Zero-shot learning tries to generalize to new

visual concepts without seeing any training examples. Gen-
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Figure 2: We assume that complex visual concepts can be

composed using primitive visual concepts. By observing

a few such complex concepts and their constituent visual

primitives, we aim to learn a compositionality transform

that can compose unseen combinations of primitives.

erally, these methods [2, 3, 9, 35, 41, 50, 65] rely on an

underlying embedding space, such as attributes, in order

to recognize unseen categories. It is assumed that the de-

scription of the unseen categories is explicitly known in the

underlying embedding space. As such explicit knowledge

is not always available, another line of work [10, 21, 38–

40, 49] relies on the finding such similarity in the linguistic

space. Specifically, they leverage distributional word rep-

resentations to capture some notion of taxonomy and simi-

larity. However, in this paper, we do not make assumptions

about the availability of such a common underlying embed-

ding or an external corpus of knowledge. Our aim is to

explore compositionality purely in the visual domain.

Another area related to our work is that of transfer learn-

ing [7–9, 45, 47, 56], feature embeddings [30, 52] and low-

shot recognition [14, 16, 17, 58]. These methods generalize

to new categories by utilizing knowledge gained from fa-

miliar categories. Like our method, they rely on the visual

similarity of unseen classes in order to generalize existing

classifiers or features. However, unlike our method, these

approaches need training examples of the ‘unseen’ classes.

We build upon the insight from [60] that meaningful trans-

formations can be learned directly in the model space with-

out external sources of knowledge.

We study compositionality in visual recognition in the

context of two well known problems - objects and at-

tributes [13, 28, 29, 46, 48], and subject-verb-object (SVO)

phrases [24, 39, 53, 57]. Both these problems capture com-

positionality of primitive visual concepts. Contextuality is

an important aspect of composing primitives in both these

problems and leads to varied visual appearance: e.g., small

elephant vs. small snake or person sitting on chair vs. per-

son sitting on sofa. As has been noted in [39, 53], annota-

tions for composite or complex visual concepts are far fewer

in number than for primitive concepts. Thus, our work has

important practical applications as it can compose visual
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Figure 3: Our method composes classifiers from different types of primitive visual concepts. At training time, we assume

access to a limited set of combinations, e.g., (large, elephant) of these primitives. We model each of these primitives

by learning linear classifiers (w) for them. We then learn a transformation network that takes these classifiers as input and

composes them to produce a classifier for their combination. At test time, we show that this transformation can generalize to

unseen combinations of primitives (Sections 4.2 and 4.3) and even unseen primitives (Section 5.5).

primitives to recognize unseen complex concepts.

3. Approach

Our goal is to compose a set of visual concept primitives

to get a complex visual concept as output. As a simple ex-

ample, shown in Figure 2, consider the complex concepts

spanned by combinations of attributes and objects. Given

existing classifiers for an attribute large and an object

elephant, we want to learn to compose them to get a clas-

sifier for the (attribute, object) pair of large elephant.

We represent our visual primitives by classifiers trained

to recognize them. We then learn a transformation of these

input visual classifiers to get a classifier that represents

the complex visual concept. As shown in Figure 3, we

parametrize our transformation by a deep network which

accepts linear classifiers of the primitives as inputs and pro-

duces a linear classifier of the complex visual concept as

output. As multi-layered networks can capture complex

non-linear functions, we hope that such a network can learn

to compose visual primitives while capturing contextuality.

We show that such a network can generalize to unseen com-

binations of visual primitives and compose them.

3.1. Intuition

Evidence for visual compositionality exists in neuro-

science and has been widely studied [1, 19]. Our intuition

behind composing directly in the classifier space is that clas-

sifiers themselves represent visual similarity, e.g., a classi-

fier of an elephant is closer to an animal classifier rather

than a plate classifier. Thus, classifiers of ‘unseen’ com-

binations of classes can be composed by looking at ‘seen’

combinations using this visual similarity in classifier space.

3.2. Approach Details

We now describe our approach on how to compose com-

plex visual classifiers from two or more simple visual classi-

fiers. Without loss of generality, we will explain the details

of our approach for the case of combining two classifiers

but our approach can generalize to combine more types of

primitives as demonstrated in our experiments.

Let us assume that we want to combine two different

types of primitives. We represent these sets of primitives

by (Va,Vb). These primitives are composed to form a com-

plex primitive represented as Vab. As an example, consider

Va as the set of attributes and Vb as objects and thus Vab

consists of complex concepts formed by attribute, object

pairs. We use a, b, (a, b) to denote elements in Va,Vb,Vab

respectively. Continuing our analogy of attributes and ob-

jects, a, b, (a, b) can represent large, elephant, and

(large, elephant). We assume our vocabulary con-

sists of M primitives of first type (Va) and N primitives of

second type (Vb). We also assume we have training data for

some K complex concepts which combine one of M and N

primitives.

We first train a linear classifier (SVM) for every type of

primitive. Therefore, the primitive is parametrized by the

weight vector for the linear classifier. Using the training

data, we obtain weight vectors of M +N primitives. Let us

represent the weight vector for primitives a ∈ Va, b ∈ Vb as

wa, wb. We can also train SVMs wab for complex concepts

(a, b) ∈ Vab using the training data available. However,

since the training data for (a, b) pairs is limited compared

to training data for a and b individually, directly training

individual wab classifiers is difficult (see Section 4 for ex-

periments). Instead, we want to use wa and wb to directly

learn about the complex concept (a, b) without looking at

wab.

As Figure 3 shows, we want to learn a function T such

that it transforms the weights of two primitives (wa, wb) and

outputs the weight of the complex concept (a, b):

ŵab = T (wa, wb). (1)

Our training data contains the pairs (wa, wb). However,

at training time, we do not have all possible combinations

of (a, b) but very few combinations (K << MN ). In order

to detect unseen combinations at test time, we want to use

compositionality and learn to combine two different primi-

tives a and b to get the combinations (a, b).
We use a multi-linear perceptron to parameterize the

function T and describe the architecture and the loss func-
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tion.

Architecture: The transformation network T is a feedfor-

ward network with three fully connected layers. We use the

LeakyReLU [26] non-linearity in between the layers. Given

n SVMs (for n primitive concepts) each of dimensionality

D as input, the output sizes of the three layers are (n+1)D,

(n+ 1
2 )D and D.

Loss Function: We compute the score between the output

of the transformation T and the input image features φ(I).

p = sigmoid
(

T (wa, wb)
⊤φ(I)

)

This score reflects the compatibility between the model

transformation and the image. We want this score to be

high only if the image contains the complex concept (a, b)
and low otherwise. As an example, we want the score to

be high only for (large, elephant) and want it to be

low for an image containing either elephant or large

(not both), or neither of the two concepts.

We train the parameters of the transformation network T

to minimize the binary cross entropy loss

L(I, wa, wb) = y log(p) + (1− y) log(1− p), (2)

where the image label y is 1 only if the image has the com-

plex concept (a, b) present. During training, we train a sin-

gle transformation network using positive/negative images

from various combinations of the primitives.

3.3. Implementation Details

We use linear SVMs, e.g., wa, wb trained on fc7 layer

representations from the VGG-M-1024 [55] ConvNet. This

ConvNet was pre-trained on the ImageNet dataset [51]. The

input classifiers are 1024 dimensional each. The trans-

formation network T consists of 3 fully connected layers

with LeakyReLU [26] non-linearities. We set the slope of

LeakyReLU to 0.1. We do not update the weights of the

ConvNet to ensure a fair comparison to the baselines.

At test time, we first feed in the primitive tuples and

cache the classifiers of the complex concepts. Given an im-

age, we then run a single forward pass to get the image fea-

tures and compute the scores using the cached classifiers.

4. Experiments

We now quantify the performance of our method on

benchmark datasets. We do so in two settings - 1)

compose object and attribute classifiers on the MITStates

dataset [28]; and 2) compose three primitives subject, predi-

cate and object classifiers on the Stanford VRD dataset [39].

4.1. Common Setup

We first describe the common experimental setup used

for these set of experiments.

Metrics: Following [35], we measure the multi-class clas-

sification accuracy over the classes in the test split. Exist-

ing datasets are not exhaustively labeled [39, 43] in terms of

combinations of visual concepts, i.e., a modern city can

also have narrow streets and one or both of these la-

bels can be missing. To account for this, we follow [51] and

use the top-k classification accuracy metric. We also report

mean Average Precision [11] (mAP) by computing average

precision for each of the classes and taking the mean.

Features and Classifiers: We use the fc7 representation

from the VGG-M-1024 network [55] pre-trained on Ima-

geNet [51]. We learn our base visual classifiers (wa, wb) as

linear SVMs on these fc7 features and choose SVM pa-

rameters by 4 fold cross-validation using liblinear [12].

Training Details: We describe the architecture for the

transform network T in Section 3.3. We train it for 220k
iterations with a mini-batch size of 256 and momentum 0.9,

with a learning rate of 0.01 dropping by a factor of 10 af-

ter 200k iterations. We form each minibatch with a ratio of

25% positive examples sampled uniformly in the space of

the complex visual concepts. The ConvNet weights are not

updated for fair comparison. The supplementary material

contains additional experiments with end-to-end learning.

Evaluation Setting: As our method does not assume prior

knowledge about unseen primitives or complex objects, it is

not possible to compare against traditional zero-shot learn-

ing methods similar to [35]. Instead, we compare against

methods that can directly ‘compose’ in zero-shot settings

without knowing relations to unseen classes at training time.

Baselines without compositionality or contextuality:

These baselines do not model compositionality or contex-

tuality explicitly and work directly on the predictions of the

base classifiers wa, wb. We denote them as:

• Individual: This set of baselines does not use composi-

tionality. The probability of the complex concept (a, b)
being present in an image is considered to be the proba-

bility of only one of the primitives a or b, i.e. p(a, b) =
p(a) or p(a, b) = p(b). For three primitives a, b, c we can

also consider pairs formed by leaving one primitive out,

e.g., p(a, b, c) = p(a)p(b) etc.

• Visual Product: This baseline is inspired from the Vi-

sualOnly method from [39]. It does not model contex-

tuality and just ‘composes’ outputs of classifiers for the

primitives, by computing their product, i.e., p(a, b) =
p(a)p(b). It can be thought of as late fusion. Unfortu-

nately, since the detectors or training code for [39] were

not available at the time of submission, we are unable to

directly compare against their implementation/results.

Baselines composing without visual classifiers: These

baselines use word embeddings to capture visual similarity,

e.g., word embedding of animal is closer to elephant

than paper. They compose using word embeddings of la-

bels, rather than visual classifiers.

• Label Embeddings (LE): This baseline is inspired from

the work of [10, 38]. To implement this method, we mod-

ify our approach to compute the transform T on embed-
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Figure 4: We show the top retrievals on the MITStates dataset [28]. These retrievals are computed on unseen combinations

of (attribute, object) pairs. We see that our method learns to compose attributes and objects while respecting their context.

The last row shows some failure cases of our method.

dings of the visual primitives, rather than the classifiers.

We use the exact same network to compute T (ea, eb),
where ea is an embedding of the primitive a. We use a

300 dimensional word embedding [42] learned using an

external corpus (Google News).

• Label Embeddings Only Regression (LEOR): This

baseline is inspired from the work of [10, 53, 60]. It is

implemented similar to Label Embeddings, except for the

loss function. We implement the loss function as a regres-

sion to the classifier for the complex visual concept, e.g.,

a SVM trained on (attribute, object) pairs. Thus trans-

form T (ea, eb) is trained to minimize the euclidean dis-

tance to the classifier wab where wab is the SVM trained

directly on (a, b) pairs.

• Label Embeddings With Regression (LE+R): This

baseline combines the loss function from the LE and

LEOR baselines and can be viewed as a variation of [10].

4.2. Composing objects and attributes

In this section, we learn the transformation on two sets

of visual primitives: objects and attributes on the MITStates

dataset [28]. We first describe more details about the exper-

imental setup and then present results.

Task: We consider the task of predicting a relevant (at-

tribute, object) pair for a given image in the test set, in an

image classification setting. Our test set has (attribute, ob-

ject) pairs that have never been seen together in the training

set. We ensure that all objects and attributes appear individ-

ually in the training split. We use the unseen (attribute, ob-

ject) pairs for evaluation using Average Precision and top-k

accuracy as described in Section 4.1.

Dataset: We use the MITStates Dataset [28] which has

pairs of (attribute, object) labels for images (one label per

image). It has 245 object classes, 115 attribute classes and

about 53k images. We randomly split the dataset into train

and test splits such that both splits have non-overlapping

(attribute, object) pairs. The training split consists of 1292

pairs with 34k images, and the test set has 700 pairs with

19k images. Thus, the training and test set have non-

overlapping combinations of visual concepts (∼ 35% un-

seen concepts) and are suitable for ‘zero-shot’ learning. We
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Table 1: Evaluating on unseen (attribute, object) pairs on

the MITStates Dataset [28]. We evaluate on 700 unseen

(attribute, object) pairs on 19k images.

AP Top-k Accuracy

k → 1 2 3

Chance - 0.14 0.28 0.42

Indiv. Att. 2.2 - - -

Indiv. Obj. 9.2 - - -

Visual Product 8.8 9.8 16.1 20.6

Label Embed (LE) 7.9 11.2 17.6 22.4

LE Only Reg. (LEOR) 4.1 4.5 6.2 11.8

LE+Reg. (LE+R) 6.7 9.3 16.3 20.8

Ours 10.4 13.1 21.2 27.6

provide more details in the supplementary material.

Baselines: We use the baselines described in Section 4.1.

We denote the ‘Individual’ baselines for attributes and ob-

jects as ‘Indiv Att.’ and ‘Indiv Obj.’ respectively.

Quantitative Results: We summarize the results for our

method and the baselines on the MITStates dataset in Ta-

ble 1. We use the unseen attribute, object pairs for eval-

uation. The ‘Indiv’ baseline methods that do not model

both compositionality or contextuality show poor perfor-

mance. This is to be expected as predicting a (large,

elephant) using only one of large or elephant is

rather ill-posed. The Indiv Att. baseline performs the worst.

We believe the reason is that attribute images are visually

very diverse compared to objects (also noted in [48]).

Table 1 also shows that the Visual Product baseline gives

strong performance in AP, but does not perform well on top-

k accuracy. The LE baseline, has the opposite behavior,

which suggests that using multiple metrics for evaluation is

helpful. We observed that methods with high AP/low accu-

racy tend to get the object correct while methods with high

accuracy/low AP tend to get (attribute, object) pairs correct

but generally get objects wrong. Our method shows signifi-

cant improvement over baselines across all metrics.

We also see that the LEOR and LE+R baselines both

have worse performance than the LE baseline. This sug-

gests that using regression to wab in the loss function is

not optimal. On further inspection, we found that the

wattribute,object are poorly trained because of the very few

positive examples for (attribute, object) pairs, compared to

the larger number examples available for attributes and ob-

jects individually. Thus, regressing to these poorly trained

classifiers hurts performance. We further explore this in

Section 5.1.

Qualitative Results: Figure 4 shows some qualitative re-

sults of our method. For the unseen pairs of attributes and

objects, we use our transformation T to predict a classi-

fier and retrieve the top results on the test set. Our model

shows both compositionality and contextuality for these

concepts. It also shows that our model understands the dif-

Table 2: Evaluating subject-predicate-object predictions on

unseen tuples. We use the StanfordVRD Dataset [39] with

1029 unseen tuples over 1000 images for evaluation.

AP Top-k Accuracy

k → 1 2 3

Chance - 0.09 0.18 0.27

Indiv. Sub. 2.9 - - -

Indiv Pred. 0.4 - - -

Indiv. Ob. 3.7 - - -

Indiv Sub. Pred. 2.9 - - -

Indiv Pred. Ob. 3.6 - - -

Indiv Sub. Ob. 4.9 - - -

Visual Product 4.9 3.2 5.6 7.6

Label Embed (LE) 4.3 4.1 7.2 10.6

LE Only Reg.(LEOR) 0.9 1.1 1.3 1.3

LE+Reg. (LE+R) 3.9 3.9 7.1 10.4

Ours 5.7 6.3 9.2 12.7

ferent ‘modes’ of appearances for objects. Additional qual-

itative results are presented in the supplementary material.

We present further results (combining unseen primitives

etc.) and analysis of our method on this dataset in Section 5.

4.3. Beyond two primitives: Composing subject,
predicate and objects

In this section, we learn our transformation on three sets

of visual primitives: subject, predicate and object. We first

present additional details on the experimental setup.

Task: We predict a relevant (subject, predicate, object) tu-

ple for a given (ground truth) bounding box from an image.

The test set has unseen tuples which are used for evaluation.

We use the metrics of Average Precision and top-k accuracy

as described in Section 4.1.

Dataset: We use the recently published StanfordVRD [39]

dataset. We use their provided train/test splits of 4k/1k

images. The dataset contains SPO subject-predicate-

object (generalization of subject-verb-object, SVO) anno-

tations, e.g., man sitting on a chair in which the

subject-predicate-object tuple is (man, sitting on,

chair). In our notation, this dataset consists of three

types of visual primitives (Va,Vb,Vc) as (subject, predicate,

object) respectively. The dataset has 7701 such tuples of

which 1029 occur only in the test set. The dataset has 100

subjects and objects, and 70 predicates. We use the ground-

truth bounding boxes and treat the problem as classification

into SPO tuples rather than detection.

Baselines: We use the baselines described in Section 4.1.

For the ‘Individual’ baselines we explicitly mention which

primitives were used, e.g., ‘Indiv Predicate’ denotes that

only predicate was used, or ‘Indiv Pred. Ob.’ denotes that

product of predicate and object was used.

Quantitative Results: The results for our method and base-

lines are summarized in Table 2. We evaluate all methods

on the unseen subject, predicate, object tuples on the test
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set. Following the trend observed in Section 4.2, the ‘Indiv’

baseline methods show poor performance. Unsurprisingly,

predicting a (subject, predicate, object) tuple by consider-

ing predictions of only one or two of the primitives does not

perform well. We also see that the Indiv. Sub. Ob. baseline

shows strong performance, while Indiv. Pred. shows very

weak performance. Predicates show higher visual diversity

than either subjects or objects and are much more difficult

to capture in visual models [39, 53].

Additionally, in Table 2, the Indiv Sub. Ob. and Vi-

sual Product baselines show similar performance. It again

suggests that predicate classifiers do not generalize. Simi-

lar to Section 4.2, we see that the LEOR and LE+R base-

lines both have worse performance than the LE baseline.

The regression loss used in both these methods regresses

to a wsubject,predicate,object classifier. As there are lim-

ited examples available for (subject, predicate, object) tu-

ples (compared to examples available individually for the

concepts), these classifiers show poor performance (as also

noted by [39]). Our method shows improvement over all

baseline methods across all metrics, suggesting that the

transformation T has some generalization.

5. Detailed Analysis

We now present detailed analysis of our approach and

quantify our architectural design decisions. We also analyze

other interesting properties of our learned transform T . For

all these experiments, we use the MITStates [28] dataset

and follow the experimental setup from Section 4.2. We

report the results on the 700 unseen pairs from the test set.

5.1. Architectural decisions

We analyze the impact of our design decisions on perfor-

mance of the transformation network T .

Choice of Loss Function: In Section 3, we described the

Cross Entropy (CE) loss function (Equation 2). Here, we

explore a few more choices for training our method:

• Regression: This loss function is inspired from the work

of [10, 60] (also used in Section 4). The transform

T (wlarge, welephant) is trained to minimize the euclidean

Table 3: We analyze the effect of varying the loss function

and initialization used to train the transform network T . We

test the network on the 700 unseen combinations

Loss Init Performance

AP Top-k Accuracy

k → 1 2 3

Cross Entropy Gauss. 9.8 10.5 17.4 23.3

Regression Gauss. 3.1 2.4 3.8 5.1

Cross Ent.+Reg. Gauss. 7.6 10.2 17.0 22.1

Cross Entropy Xavier 9.9 10.1 17.2 22.3

Cross Entropy Identity 10.4 13.2 21.2 27.6

Table 4: Evaluating on unseen (attribute, object) pairs on

the MITStates Dataset [28]. We vary the ratio of unseen

pairs to seen pairs and evaluate our method.

Unseen Ratio AP Top-k Accuracy

k → 1 2 3

0.1 Chance - 1.5 3.0 4.5

0.1 Visual Product 28.7 48.6 58.1 66.2

0.1 Label Embed (LE) 29.2 49.7 59.2 69.1

0.1 Ours 29.8 51.4 59.6 68.9

0.3 Chance - 0.1 0.3 0.4

0.3 Visual Product 8.8 9.8 16.1 20.6

0.3 Label Embed (LE) 7.9 11.1 17.6 22.4

0.3 Ours 10.4 13.2 21.2 27.6

0.5 Chance - 0.1 0.2 0.3

0.5 Visual Product 5.9 6.2 8.8 10.5

0.5 Label Embed (LE) 5.9 7.8 12.6 16.9

0.5 Ours 8.2 10.4 17.8 23.1

distance to the classifier w(large, elephant).

• Regression+CE: We combine the Cross Entropy and Re-

gression Loss functions (with a loss weight of 1 each).

Initialization: We found that using standard initialization

methods like random gaussian or xavier [22] gave low per-

formance for our transformation network T .

Inspired from [36], we initialize the weights of our net-

work as block diagonal identity matrices. This has the desir-

able property that immediately from initialization, the net-

work can ‘copy’ its inputs to produce a reasonable output.

Table 3 summarizes the results for both these choices.

We notice that the Regression loss performs poorly by itself.

As noted in Sections 4.2 and 4.3, this is because it tries to

mimic individual classifiers trained for each complex con-

cept, e.g., (large elephant). These classifiers have

little data available to train. Among initialization methods,

our identity initialization improves performance.

Depth of network: We found that increasing the number of

layers in the transformation network T did not give signif-

icant improvements. We opted for the minimal design that

gave the best results.

5.2. Does the transform ‘copy’ the inputs?

We compute the distance between the inputs to the

transformation network T and the produced output, i.e.,

d(wa, T (wa, wb)). We compute this distance over the un-

seen combinations for the MITStates dataset and show it

(after sorting) in Figure 6. We see that the transformation

changes both inputs and does not just ‘copy’ them. In the

supplementary material, we show that the predicted ‘un-

seen’ pairs are different from the ‘seen’ pairs.

5.3. Which classes gain the most?

Figure 5 shows the top classes for which our method im-

proves over the Visual Product baseline. We see that the im-

provement for objects is across both man-made and natural

objects. Similarly, the attributes improved by our method
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Figure 5: We show the top classes and the gain in AP over the Visual Product baseline on the MITStates dataset. We show

the gain for (attribute, object) pairs, and for individual objects and attributes (after averaging across pairs).
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Figure 6: We show the distance between the inputs of the

transformation network and its output for the unseen pairs.

For visualization, we sort this distance individually for both

attribute and object inputs. We provide distance between

classifiers across 3 pairs of known classes for reference. We

see that the transformation modifies all the inputs.

have diverse visual interpretations. The pairs for which the

baseline is better are generally those where just predicting

the object for the (attribute, object) pair gives the best per-

formance, i.e., attributes do not model much information

about the object appearance.

5.4. Varying the ratio of seen/unseen concepts

We evaluate the effect of decreasing the training data

for our transformation network. We vary the ratio of

seen/unseen (attribute, object) pairs on MITStates from

[0.1, 0.3, 0.5], and train our network for each setting. We

compare to the Visual Product and LE baselines from Sec-

tion 4.1. Table 4 summarizes the results. We see that our

algorithm is sensitive to the amount of training data avail-

able. It also shows improvement over baseline methods in

all these settings. Comparing the performance for unseen

ratios of 0.1 to 0.5, we see that our method’s gain over base-

lines increases as we reduce the training data.

Table 5: We evaluate our method by composing unseen

attributes and objects to form unseen combinations (at-

tributes, objects). We use the MITStates dataset.

AP Top-k Accuracy

k → 1 2 3

Chance - 0.7 1.3 2.0

Visual Product 6.4 7.1 8.6 9.1

Label Embed (LE) 8.4 8.2 12.3 17.4

Ours 9.6 10.1 18.3 22.9

5.5. Moving from unseen combinations of primi-
tives to unseen primitives

In this set of experiments, we randomly drop a set of

object and attribute primitives from the training set of our

transform network T . The network never sees these clas-

sifiers at training time. At test time, we evaluate on the

attribute, object pairs formed by these ‘dropped’ primi-

tives. Concretely, we randomly drop 20% of objects and

attributes: 49 of the 245 objects and 23 of the 115 attributes.

We evaluate on 142 (attribute, object) pairs formed by these

dropped primitives. We report these results in Table 5. Our

method is able to generalize to these unseen input primitives

and combine them to form the unseen pairs of concepts.

6. Conclusion
We presented a simple approach to compose classifiers

to generate classifiers for new complex concepts. Our ex-

periments on composing attributes and objects show that

our method respects contextuality. We also show that our

method can compose multiple primitives, and can general-

ize not only to unseen combinations of primitives, but also

unseen primitives. It consistently gives better results than

the baselines across different metrics and datasets.
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