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Abstract

Physiological signals such as heart rate can provide

valuable information about an individual’s state and ac-

tivity. However, existing work on computer vision has not

yet explored leveraging these signals to enhance egocen-

tric video understanding. In this work, we propose a model

for reasoning on multimodal data to jointly predict activi-

ties and energy expenditures. We use heart rate signals as

privileged self-supervision to derive energy expenditure in

a training stage. A multitask objective is used to jointly op-

timize the two tasks. Additionally, we introduce a dataset

that contains 31 hours of egocentric video augmented with

heart rate and acceleration signals. This study can lead to

new applications such as a visual calorie counter.

1. Introduction

Wearable sensors such as heart rate monitors and ac-

celerometers are widespread as a way to track physical ac-

tivity and energy expenditure. To detect activities as accu-

rately as possible, these sensors are used in many combi-

nations and configurations, and they are attached to body

parts ranging from the chest to the wrist and foot. More

recently, egocentric first-person cameras have gained pop-

ularity as a new modality of wearable sensors. Activity

recognition in visual data is a widely studied problem in

computer vision [22, 63, 35, 2], and a number of works

have investigated this task in the domain of egocentric

video [48, 8, 5, 30] and in combination with other wearable

sensors [59, 44].

However, the degree to which computer vision algo-

rithms alone can be effective for energy expenditure moni-

toring remains an open question. We would also like to un-

derstand how much relevant information still requires other

sensor modalities, and how these other signals should be

best fused with vision. Pioneering works [59, 44] showed
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Figure 1. Egocentric videos augmented with heart rate and acceler-

ation signals enable us to further understand activities and energy

expenditures.

that systems of inertial measurement units, audio and ac-

celerometer sensors, could improve activity segmentation

and recognition over only egocentric cameras in indoor set-

tings. However, these works were based on relatively sim-

ple visual features such as Gist and color histograms. Fur-

thermore, they do not address energy expenditure or reason

on physiological heart rate signals.

In this work, we present a quantitative study of multi-

modal activity detection and energy expenditure estimation,

using egocentric camera data in conjunction with physio-

logical heart rate data and accelerometer data. Specifically,

we model the real-world use case and interaction of two of

the most commercially popular wearable sensors: egocen-

tric cameras and heart rate monitors (which often addition-

ally contain an accelerometer). Given a video frame and

acceleration signal, we show how to output an activity label

and energy expenditure corresponding to each frame. We

present a recurrent neural network-based model for multi-

modal activity detection and energy expenditure estimation

and analyze the contributions of the different signals. We

use heart rate signals as privileged self-supervision to de-
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rive energy expenditure in a training stage. Since we are not

aware of any available dataset that extends egocentric video

with physiological data, we introduce an egocentric multi-

modal dataset that contains 31 hours of egocentric video,

heart rate, and accelerometer data under free-living settings

(Figure 1).

2. Related Work

There is a significant body of work on egocentric vision.

Recent surveys can be found in [48, 8, 5, 30], which address

various tasks such as activity recognition, object recogni-

tion, and video summarization. Here, we focus on activity

recognition using egocentric video and wearable sensors.

Egocentric Activity Recognition Work on egocentric ac-

tivity recognition has typically taken one of three ap-

proaches: motion-based, object-based, and hybrid ap-

proaches. Motion-based approaches [33, 51, 55, 68, 57]

assume that each activity creates coherent motion patterns.

Kitani et al. [33] introduces unsupervised ego-action dis-

covery using Dirichlet processes. Poleg et al. [51] pro-

posed using cumulative motion for classifying ego-actions.

Object-based approaches [23, 20, 17, 36, 21, 12] rely on

the objects appearing in video sequences. This setting is

especially suitable for detecting activities in daily living

(ADL). [23, 20] reason about state changes in household

objects, and [17, 54] reason about human-object interac-

tions. Adding mid-level cues such as face, gaze, and hands

has also been investigated by [37, 19, 18, 49, 6]. Hybrid

approaches [43, 38, 56] utilize both object and motion in-

formation. However, most of these works do not address

datasets in diverse environments but instead focus on sin-

gle, constrained environments, e.g., kitchens, houses, and

laboratories. In contrast, we present a dataset and model

that addresses activity detection in untrimmed (hours-long)

egocentric video of diverse, natural environments including

both indoors and outdoors.

Sensor-based Activity Recognition A number of works

have used non-visual wearable sensors for activity recog-

nition, including accelerometers and heart rate sensors [16,

9, 47]. Bao et al. [7] use multiple accelerometers on the

hip, wrist, arm, ankle and thigh to classify 20 classes of ev-

eryday household activities. Abdullah et al. [1] combine

smartphone accelerometers with crowd-sourcing in order

to scale activity detection. Several works have also com-

bined body sensors with egocentric cameras. Alahi et al. [4]

combine cameras with wireless signals to locate humans in

3D. Spriggs et al. [59] use an egocentric camera, inertial

measurement units (IMUs), and other sensors to classify

29 classes of kitchen activities. Maekawa et al. [44] use

a wrist-mounted camera and sensors to detect 15 classes of

ADL recognition. However, many of these works use com-

plex systems of sensors that are impractical for widespread

use. Furthermore, they do not explore the combination of

visual, heart rate, and acceleration information that is now

commonly available with popular commercial devices. In

this work, we construct a natural sensing system using a

smartphone and wrist-worn heart-rate monitor. We provide

a publicly available dataset of egocentric video augmented

with heart rate and accelerometer signals, and we investi-

gate the fusion of these signals for activity detection and

energy expenditure estimation.

Recurrent Neural Networks for Activity Recognition

Donahue et al. [15] introduced recurrent convolutional neu-

ral networks for activity recognition in video. Yeung et

al. uses recurrent neural network-based models for dense

activity recognition [66] and action detection from frame

glimpses [67]. Haque et al. [24] use a Recurrent Attention

Model (RAM) to re-identify humans. [65, 32] use recurrent

networks for single triaxial accelerometer data, [41] for a

heart rate controller, and [50] for multimodal wearable sen-

sors. To the best of our knowledge, our work is the first to

investigate the performance of recurrent neural networks for

multimodal egocentric video and physiological sensor data.

Energy Expenditure Estimation The most reliable

method for energy expenditure estimation is considered to

be direct calorimetry, which measures the production of car-

bon dioxide. However, this method is highly inconvenient.

As a proxy, measurements of acceleration and heart rate are

widely used [39], e.g., multiple accelerometers [40, 45, 11],

heart rate [10], indirect estimation from heart rate and oxy-

gen uptake relationships [34], and heart rate in combination

with accelerations [16]. However, estimating energy expen-

diture from visual data has not yet been explored. The only

work reports estimating heart rate from a head-mounted

wearable camera and sensors [26, 27]. In our work, we

show that reasoning on egocentric video data can be an ef-

fective estimate of energy expenditure under a free-living

setting.

3. Stanford-ECM Dataset

Physiological data such as heart rate is commonly used

to assess physical activity and energy expenditure. How-

ever, we are not aware of an existing dataset that supports

research in egocentric video augmented with physiological

sensors. Table 1 shows a comparison of existing egocentric

video datasets. The CMU-MMAC dataset [59] is the only

dataset that augments video with wearable sensors, but they

do not provide heart rate data.

We therefore introduce a new dataset called the egocen-

tric multimodal dataset (Stanford-ECM), which comprises
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Dataset #Subjects #Clips #Hour #Class Resolution Mount Video Acc HR Scenario Task

Disney World [18] 8 113 42.0 6 1280×720 Head X - - Amusement Activity

CMU-MMAC [59] 39 175 17.0 29 800×600 Head X X - Kitchen Activity

UT Ego [36, 42] 4 4 17.0 - 480×320 Head X - - Natural Summary

HUJI EgoSeg [51] 3 44 10.5 - 1280×720 Head X - - Natural Activity

UCI ADL [23] 20 20 10.0 18 1280×720 Chest X - - House Activity

GTEA Gaze+ [19] 5 30 9.0 44 1280×960 Head X - - Kitchen Activity

MILADL [49] 20 122 6.5 23 640×360 Head/Wrist X - - House Activity

Intel-Ego [53] 2 10 2.0 - 1024×768 Head X - - Indoor Object

BEOID [12] 5 58 1.5 - 640×480 Head X - - Indoor Object

GTEA Gaze [19] 14 17 1.0 40 640×480 Head X - - Kitchen Activity

GTEA [21] 4 28 0.6 71 1280×720 Head X - - Kitchen Activity

UEC EgoAction [33] 1 2 0.5 37 840×480 Head X - - Indoor Activity

JPL-Interaction [54] 1 62 0.4 7 320×240 Head X - - Indoor Activity

PAMAP2 [52] 9 - - - - - - X X - -

Stanford-ECM (ours) 10 113 31.0 24 720×1280 Chest X X X Natural Activity

Table 1. Comparison with available egocentric datasets. ECM is the only dataset that contains video, accelerometer, and heart rate signals.

31 hours of egocentric video augmented with heart rate and

acceleration data. We label the data with temporal activity

annotations and energy expenditure, specifically metabolic

equivalents of task (MET). We believe that our dataset pro-

vides a realistic and challenging dataset for multimodal ego-

centric activity recognition and energy expenditure estima-

tion and that it can also be of interest for additional ap-

plications including video summarization. We will make

a dataset publicly available after de-identifications.

We describe data collection in Sec. 3.1, the activity

and MET annotations in Sec. 3.2, and dataset statistics in

Sec. 3.3.

3.1. Data Collection

Data was collected using a sensing system comprising a

mobile phone and a wrist-worn heart rate sensor. The mo-

bile phone was placed in the chest pocket of subjects to col-

lect egocentric video and accelerometer data, and the wrist

sensor provided corresponding heart rate data. Ten subjects

wore the sensing system, recording 113 videos for a total

of 31 hours. The lengths of the individual videos covered a

diverse range from 3 minutes to about 51 minutes in length.

Subjects were only instructed to perform daily life activities

without constraint on how, where, or in what environments

to spend time. Data collection was therefore performed un-

der natural daily conditions.

The mobile phone collected egocentric video at 720 ×
1280 resolution and 30 fps, as well as triaxial acceleration

at 30Hz. The mobile phone was equipped with a wide-

angle lens, so that the horizontal field of view was enlarged

from 45 degrees to about 64 degrees. The wrist-worn heart

rate sensor was used to capture the heart rate every 5 sec-

onds (0.2 Hz). The phone and heart rate monitor was time-

synchronized through Bluetooth, and all data was stored in

the phone’s storage. Piecewise cubic polynomial interpola-

Activity MET Activity MET

1. BicyclingUphill 14.0 13. Shopping 2.3

2. Running 8.0 14. Strolling 2.0

3. Bicycling 7.5 15. FoodPreparation 2.0

4. PlayingWithChildren 5.8 16. TalkingStanding 1.8

5. ResistanceTraining 5.0 17. TalkingSitting 1.5

6. AscendingStairs 4.0 18. SittingTasks 1.5

7. Calisthenics 3.8 19. Meeting 1.5

8. Walking 3.5 20. Eating 1.5

9. DescendingStairs 3.5 21. StandingInLine 1.3

10. Cooking 3.3 22. Riding 1.3

11. Presenting 3.0 23. Reading 1.3

12. Driving 2.5 24. Background* N/A

Table 2. Definitions activity classes and their MET values [3].

Each activity corresponds to one of four activity intensities: vigor-

ous (≥6 METs), moderate (3.0-5.9 METs), light (1.6-2.9 METs),

and sedentary (1.0-1.5 METs). * represents classes added in addi-

tion to [3].

tion was used to fill in any gaps in heart rate data. Finally,

data was aligned to the millisecond level at 30 Hz.

3.2. Activity and MET Annotations

It is challenging to define activity classes in untrimmed,

unconstrained egocentric video due to the diversity and con-

tinuity of activities that may exist, compared with most ex-

isting activity recognition datasets (e.g., ActivityNet [25],

THUMOS [29], UCF-101 [58], and Sports-1M [31]). How-

ever, an important goal of egocentric activity detection, and

the focus of our work, is physical activity and health track-

ing.

We therefore define the activity classes as subsets of a

compendium of physical activities [3]. Each of these classes

is associated with a metabolic equivalent of task (MET)
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Figure 2. Statistics of dataset. (a) Number of instances, (b) acceleration variance for each activity, (c) average heart rate for each activity,

(d) scatter plot of heart rate and acceleration variance, and (e) MET distribution for heart rate and acceleration variance.

measure [3]. MET is a physiological measure defined rel-

ative to the resting metabolic rate and expresses the energy

cost of physical activities. For instance, quiet sitting is con-

sidered to be 1.0 MET, walking to be 3.0 MET, and bicy-

cling to be 7.5 MET (kcal · kg−1 · h−1). MET is a simple

and practical measure and is widely used to quantify energy

expenditure.

For the first release of a dataset, we temporally annotated

a total of 24 MET-associated activities. We selected 23 ac-

tivity classes from a compendium [3] and added 1 additional

class, background, that corresponds to miscellaneous activ-

ities such as taking pictures, riding an elevator, and parking

a bicycle. A single activity can co-occur at the same time.

Table 2 shows the definition and MET value of each class.

3.3. Dataset Statistics

Figure 2(a) shows the number of video instances depict-

ing each activity. Walking appears in the greatest number of

videos; more than 63 of the 113 videos contain some walk-

ing. Running and calisthenics appears in the fewest number

of videos. The average number of distinct activity types per

video is 4.1, and there are often multiple occurrences of the

same activity in a video. The durations span a range from

several seconds to a half hour. The longest duration is meet-

ing, which occurred for 2,498 seconds in a single video. The

shortest duration is an instance of ascending stairs which

occurred for 1.4 seconds. This variety presents challenging

scenarios for activity detection.

Figure 2(b) shows the distribution of acceleration vari-

ance measurements by activity class in log scale, and Fig-

ure 2(c) shows the distribution of heart rate measurements

by activity class. Both classes with higher heart rate and

higher acceleration variance tend to have higher MET val-

ues, indicating their usefulness for predicting physical ac-

tivity and MET. Several classes such as walking, talking-

sitting, riding, and meeting display higher variance due to

frequent co-occurrence. This suggests that the sensor data

alone is insufficient for accurate prediction.

Figure 2(d) shows a scatter plot of median heart rate and

acceleration variance per class. This plot quantifies the cor-

relation between heart rate and acceleration variance, which

has a correlation coefficient of r = 0.56. Finally, Figure

2(e) visualizes the MET distribution for heart rate and ac-

celeration variance, and shows that both heart rate and ac-

celeration are strong indicators of MET.

4. Model

In this section, we describe our model for joint activity

detection and energy expenditure regression. We formulate
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Figure 3. EnergyRCN: a model for joint activity detection and en-

ergy expenditure regression from egocentric multimodal signals.

The model takes as input multimodal video and acceleration fea-

tures from long, untrimmed sequences. A multi-task loss is used

to jointly optimize activity detection y
a
t and energy expenditure

regression y
e
t at each timestep. The heart rate signal is used as a

self-supervision to derive energy expenditure.

our model as a recurrent long short-term memory (LSTM)

neural network that takes as input a multimodal feature rep-

resentation of video and acceleration signals and outputs an

activity label and energy expenditure corresponding to each

frame (overview in Figure 3). In the following, we describe

how we adapt this model for our multimodal input and how

we use heart rate as a self-supervised signal for energy ex-

penditure regression.

4.1. Feature Representation

The input to our model is a sequence of video frames

V = {v1,v2, ...,vT } and a sequence of triaxial acceler-

ation signals A = {a1,a2, ...,aT }. In the following, we

describe our corresponding feature representations x
v
t and

x
a
t for each of the signals.

Visual features Motivated by the recent success of recur-

rent convolutional neural networks (CNN) for video anal-

ysis [15], we visually represent each video frame using

frame-level CNN features xv
t = CNNθc(vt). Here, CNNθc

uses a convolutional neural network to transform video

frame vt at time t into a M -dimensional feature vector.

In our experiments, we use an Inception network [60] pre-

trained on ImageNet [14] and extract pool 5 features, such

that xv
t ∈ R

1024.

Acceleration features Acceleration features are directly

extracted from the time-series of the raw signals. We fol-

lowed the standard time-domain and frequency-domain fea-

tures [39] using the sliding window of the most recent ob-

servations. For time-domain features, we compute mean,

standard deviation, skewness, kurtosis, percentiles (10th,

25th, 50th, 75th, 90th), and acceleration counts for each

axis. Also, we add the correlation coefficients between each

axis at = {axt
, ayt

, azt}. For frequency-domain features,

we use the spectral entropy J , where

J = −

N/2
∑

i=0

P̄i · log2 P̄i. (1)

Here, P̄i is the normalized power spectral density computed

from a short-time Fourier transform (STFT). We use a tem-

poral pooling [55] of four types of windows (1, 3, 5, and 10

seconds). All features are concatenated so that the acceler-

ation feature vector has dimension x
a
t ∈ R

144.

Multimodal fusion We adopt an early fusion scheme.

The above mentioned features are concatenated into a sin-

gle feature vector xt = (xv
t ,x

a
t )

⊤
to produce the input to

the LSTM network at each time step. Therefore, the final

feature vector is a dimension of xt ∈ R
1168.

4.2. Multitask Training with Self­supervision

Our intuition is that the tasks of activity detection and en-

ergy expenditure estimation are highly related and that pro-

viding a network with additional supervision in the form of

energy expenditure will help the network achieve stronger

performance for activity detection as well. We therefore in-

troduce a multi-task training objective to jointly optimize

the tasks of activity detection and energy expenditure re-

gression.

Multitask loss Given training data in the form of

(xt, y
a
t , y

e
t ) for each frame, where xt ∈ R

d is the input

feature vector, yat ∈ R
24 is the ground truth activity label,

and yet ∈ R is the derived energy expenditure, we optimize

the following multi-task loss.

L = Lact + λLEE (2)

Here the first term Lact is a cross-entropy loss for activity

detection. The second term LEE is a Huber loss for energy

expenditure regression

LEE (r) =

{

1

2
r2 if |r| ≤ δ

δ
(

|r| − 1

2
δ
)

otherwise
, (3)

where r = yet − ŷet . Since derived energy expenditures

have outliers, we handle them by using a robust Huber loss

function. λ controls the trade-off between the two tasks.

Energy expenditure Utilizing linear relationships be-

tween heart rate (HR) and oxygen uptake (VO2) [28], we

estimate energy expenditure by using HR signals:

yet = αHRt + βweight + γHRtweight, (4)

where yet is the energy expenditure (kcal · min−1) at frame

t. We set as α = 4.56, β = 0.0265, γ = 0.1506, and body

weight as 60 kg. We also apply a moving average of 10

seconds centered at each frame t to smooth HR signals.
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5. Experiments

We evaluated our model on the dataset for two tasks: ac-

tivity detection and energy expenditure regression. We de-

scribe the results for each of these in this section.

5.1. Setup

All videos were down-sampled to 1 fps and resized to

227×227. Horizontal reflection and random cropping were

performed for data augmentation during the training phase.

The training set consisted of 91,043 images and the test

set of 30,930 images. The test set contained two unknown

(zero-shot) subjects that were not contained in the training

set. The EnergyRCN model was trained using truncated

BPTT (Back-Propagation Through Time) [46]. The RM-

SProp [13] per-parameter adaptive update rule was used

with a base learning rate of 2 × 10−5 and decay of 0.95.

Hyperparameters were set via cross-validation; the LSTM

consisted of 2 hidden layers with 2048 hidden units. λ was

set to 1.0. The sequence length was 10 frames (10 seconds),

and the batch size was 60 sequences. Chainer [61] was used

for implementation.

5.2. Activity Detection

In this task, the input was untrimmed, egocentric se-

quences of video and acceleration, and the output was the

activity labels of each frame. Performance was evalu-

ated using mean average precision (mAP). We compare our

model with different baseline models explained below1.

• Liu et al. [40]: an acceleration-based baseline, which

combines an RBF kernel SVM with acceleration fea-

tures xa
t .

• Inception [60]: a frame-level baseline, which uses an

RBF kernel SVM trained on top of InceptionNet.

• LRCN [15]: a temporal baseline that combines CNN

and naive LSTM. We do not back-propagate into the

CNN layers.

• C3D [62]: a spatial-temporal CNN baseline, which

is combined with a linear SVM. A publicly available

model that was pre-trained on Sports-1M was used.

• iDT+FV [64]: a non-deep learning based baseline.

The hand-crafted features (HOG+HOF+MBH+Traj)

are first dimensions reduced by a factor of 6 with

PCA and then encoded with a Gaussian mixture model

(GMM) and Fisher vectors (FV).

Table 3 summarizes detection results at activity intensi-

ties. Each column corresponds to one of four activity in-

tensities: vigorous, moderate, light, and sedentary. Fusing

modalities together achieved comparable or the highest per-

formance for all activity intensities, but the difference was

1We used the original video frame rate of 30 fps for [62][64]

Method Vig Mod Lig Sed All

Liu et al. [40] 68.0 76.9 52.7 39.7 53.9

Inception [60] 80.9 86.1 72.4 66.6 73.2

LRCN [15] 84.9 92.3 76.6 61.2 72.9

C3D [62] 82.0 80.6 65.7 58.0 66.3

iDT+FV [64] 80.8 72.8 59.8 49.7 59.8

EnergyRCN (A)* 58.1 71.9 49.4 42.4 52.3

EnergyRCN (V)* 82.3 89.9 70.5 71.0 76.2

EnergyRCN (V+A)* 82.2 92.1 78.3 70.8 78.1

Table 3. Activity detection results (mAP). Each column corre-

sponds to activity intensity. Vig: vigorous (≥6 METs), Mod:

moderate (3.0-5.9 METs), Lig: light (1.6-2.9 METs), and Sed:

sedentary (1.0-1.5 METs). Only our method jointly predicts activ-

ity detection and energy expenditure estimation (denoted as *) (A:

acceleration feature, V: visual feature).

not huge, illustrating the strength of vision models for ac-

tivity detection.

Activities belonging to vigorous and moderate can be

distinguished by motion patterns (see Fig. 2(b)), which lead

to higher success rate of motion-based method (e.g., iDT,

C3D, and Liu et al.). On the other hand, large-variance

movements under light activities lead to a drop in mAP. Vi-

sual features show effectiveness for improving performance

in that case.

Figure 4(a) shows the confusion matrix of an

acceleration-based baseline. Significant ambiguities can be

seen, especially for light activities (right hand side in the

matrix), whereas Figure 4(c) shows that adding visual fea-

tures make it possible to resolve confusion between many

classes such as meeting, sitting tasks, and standing in line,

which are all fairly sedentary.

5.3. Energy Expenditure Regression

We also show the results for our model on the task of

energy expenditure regression. We compare our model with

an additional baseline of MET-based regression. The MET

values can be used to compute energy expenditure using the

formula

EE = α

K
∑

k=1

dkmk, (5)

where mk is the MET value of detected activity k, dk is the

activity’s duration in hours, and α is a constant defined as

body weight × 1.05. The constant 1.05 represent a resting

energy expenditure (kcal ·METs−1 · kg−1 · h−1) defined by

American College of Sports Medicine (ACSM). EE is the

energy expenditure (kcal · h−1).

Table 4 shows the ability of our model to estimate en-

ergy expenditures. Since the baselines did not estimate both

activity and energy expenditures simultaneously, we trained
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Figure 4. Confusion matrices of activity detection: (a) acceleration-based baseline, (b) Inception network, and (c) EnergyRCN (V+A).

Significant ambiguities can be seen in (a), which used only acceleration signals.

Method µerr ± σerr ρ

METGT (upper bound) 6.84 ± 3.92 N/A

Liu et al. [40] 0.74 ± 0.29 0.346

Inception [60] 0.72 ± 0.24 0.341

LRCN [15] 0.73 ± 0.28 0.365

EnergyRCN (A)* 0.77 ± 0.36 0.386

EnergyRCN (V)* 0.75 ± 0.29 0.382

EnergyRCN (V+A)* 0.70 ± 0.27 0.407

Table 4. Results of energy expenditure regression. µerr and σerr

are absolute errors and standard deviations, respectively (kcal ·
m−1). ρ are cross correlation coefficients between true and esti-

mated energy expenditures. METGT utilizes ground-truth activity

labels to determine energy expenditure, while our method jointly

predicts the activity and energy expenditure (denoted as *).

individual regression models to output energy expenditures.

Namely, SVR and LSTMR were trained for [40][60][15].

EnergyRCN (V) could predict energy expenditure with

similar error rate while outperforming activity detection

baselines. Visual features were again a good individual fea-

ture, but the gap between visual features and acceleration

was smaller for energy expenditure regression than for ac-

tivity detection. This also demonstrates that acceleration

signals alone bring benefits to estimating energy expendi-

tures. This was backed up with dataset statistics, in which

the acceleration correlated to MET value.

5.4. Ablation study

To understand how well multi-task training helps to im-

prove the performance, we compared with the single task

model as well as feature combinations (Table 5). Multi-task

training consistently improved the mAP for activity detec-

tion. Also, the performances of energy expenditure regres-

sion are comparable with a single task, showing that our

model learned the shared representations for both tasks.

Finally, qualitative results of energy expenditure regres-

sion are shown in Figure 5. MET-based regression utilizes

ground-truth activity labels; however, expenditure estima-

Detection Regression

A V V+A A V V+A

Single-task 51.9 72.9 76.7 0.771 0.732 0.699

Multi-task 52.3 76.2 78.1 0.768 0.751 0.696

Table 5. Results of ablation study. Multi-task training improved

activity detection performance (mAP) and also achieved compara-

ble errors of energy expenditure regression (kcal · m−1).

tion performance is worse than our model since the discrete

outputs are poor in accuracy.

5.5. Discussion

The power of vision Through comprehensive study on

multimodal activity detection and energy expenditure re-

gression, we achieve greater understanding of the power of

visual information. Intuitively, multimodal data can provide

additional rich information not contained in vision, for both

activity detection and energy expenditure regression. Our

experimental results quantify this gain, but also show that

visual information alone can also be a powerful signal for

these tasks. This insight leads us to new applications such

as a visual calorie counter.

Activity quantification We introduce models for esti-

mating energy expenditure with vision alone, and also uti-

lizing METs associated with vision. To the best of our

knowledge, these methods are novel and enable us to rea-

son on activities in a way that quantifies physical work-

load. Activity recognition itself does not provide such inter-

nal/invisible states, so our work brings the benefits of fur-

ther understanding activities.

Future work Physiological signals can encode informa-

tion not only about physical activities but also mental activ-

ities. Distinguishing and characterizing these will provide

rich information that can be used for tasks such as video

segmentation and video summarization. Further exploration

of this will enable a deeper understanding of human activity.
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Figure 5. Examples of EnergyRCN predictions. EnergyRCN estimates activities (bottom figures) and energy expenditures (above graph

by kcal · min−1) simultaneously. In the above graph, the red line is the ground truth, the blue line is EnergyRCN estimates, and the green

line is the METGT estimates. While METGT only produces discrete values with large errors, our model can produce continuous energy

expenditures accurately. The bottom examples represent hard cases for energy expenditure regression that have relatively large differences.

6. Conclusion

In this paper, we introduced the task of energy expendi-

ture estimation from an egocentric video perspective. To

address this task, we first constructed the Stanford-ECM

dataset of egocentric video augmented with heart rate and

acceleration signals. We explored the statistics of the

dataset and presented a recurrent neural network architec-

ture for reasoning on egocentric multimodal data. Our En-

ergyRCN model jointly predicts energy expenditures and

activities, achieving state-of-the-art results. We believe this

work will lead to new directions of research on various as-

pects of egocentric video understanding, ranging from ac-

tivity detection to video summarization.
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Laukkanen, and A. T. Mänttäri. Use of heart rate to predict

energy expenditure from low to high activity levels. Inter-

national Journal of Sports Medicine, 24(05):332–336, 2003.

5

[29] H. Idrees, A. R. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev,

R. Sukthankar, and M. Shah. The THUMOS chal-

lenge on action recognition for videos ”in the wild”. In

arXiv:1604.06182, 2016. 3

[30] T. Kanade and M. Hebert. First-person vision. Proc. IEEE,

100(8):2442–2453, 2012. 1, 2

[31] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 3

[32] A. M. Khan, Y. K. Lee, S. Y. Lee, and T. S. Kim.

A triaxial accelerometer-based physical-activity recognition

via augmented-signal features and a hierarchical recog-

nizer. IEEE Trans. Information Technology in Biomedicine,

14(5):1166–1172, 2010. 2

[33] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast un-

supervised ego-action learning for first-person sports videos.

In CVPR, 2011. 2, 3

[34] A. Kurpad, R. Raj, K. Maruthy, and M. Vaz. A sim-

ple method of measuring total daily energy expenditure and

physical activity level from the heart rate in adult men. Eu-

ropean Journal of Clinical Nutrition, 60(1):32–40, 2006. 2

[35] G. Lavee, E. Rivlin, and M. Rudzsky. Understanding video

events: a survey of methods for automatic interpretation

1876



of semantic occurrences in video. IEEE Trans. Systems,

Man and Cybernetics Part C: Applications and Reviews,

39(5):489–504, 2009. 1

[36] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important

people and objects for egocentric video summarization. In

CVPR, 2012. 2, 3

[37] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in

egocentric video. In CVPR, 2013. 2

[38] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric actions.

In CVPR, 2015. 2

[39] S. Liu, R. Gao, and P. Freedson. Computational methods for

estimating energy expenditure in human physical activities.

Medicine and Science in Sports and Exercise, 44(11):2138–

2146, 2013. 2, 5

[40] S. Liu, R. X. Gao, D. John, J. W. Staudenmayer, and P. S.

Freedson. Multisensor data fusion for physical activity as-

sessment. IEEE Trans. Biomedical Engineering, 59(3):687–

696, 2012. 2, 6, 7

[41] C.-H. Lu, W.-C. Wang, C.-C. Tai, and T.-C. Chen. Design of

a heart rate controller for treadmill exercise using a recurrent

fuzzy neural network. Computer Methods and Programs in

Biomedicine, 128:27–39, 2016. 2

[42] Z. Lu and K. Grauman. Story-driven summarization for ego-

centric video. CVPR, 2013. 3

[43] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-

person activity recognition. In CVPR, 2016. 2

[44] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro,

K. Kamei, Y. Sakurai, and T. Okadome. Object-based ac-

tivity recognition with heterogeneous sensors on wrist. In

Pervasive, 2010. 1, 2

[45] B. Mortazavi, N. Alsharufa, S. I. Lee, M. Lan, M. Sar-

rafzadeh, M. Chronley, and C. K. Roberts. MET calculations

from on-body accelerometers for exergaming movements. In

IEEE Conf. Body Sensor Networks (BSN), 2013. 2

[46] M. C. Mozer. A focused backpropagation algorithm for

temporal pattern recognition. Complex Systems, 3:349–381,

1989. 6

[47] M. Nakanishi, S. Izumi, S. Nagayoshi, H. Sato,

H. Kawaguchi, M. Yoshimoto, T. Ando, S. Nakae,

C. Usui, T. Aoyama, and S. Tanaka. Physical activity group

classification algorithm using triaxial acceleration and heart

rate. In EMBC, 2015. 2

[48] T. H. C. Nguyen, J. C. Nebel, and F. Florez-Revuelta. Recog-

nition of activities of daily living with egocentric vision: A

review. Sensors, 16(1), 2016. 1, 2

[49] K. Ohnishi, A. Kanehira, A. Kanezaki, and T. Harada. Rec-

ognizing activities of daily living with a wrist-mounted cam-

era. In CVPR, 2016. 2, 3
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