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Abstract

We propose Dual Attention Networks (DANs) which

jointly leverage visual and textual attention mechanisms

to capture fine-grained interplay between vision and lan-

guage. DANs attend to specific regions in images and words

in text through multiple steps and gather essential informa-

tion from both modalities. Based on this framework, we

introduce two types of DANs for multimodal reasoning and

matching, respectively. The reasoning model allows visual

and textual attentions to steer each other during collabora-

tive inference, which is useful for tasks such as Visual Ques-

tion Answering (VQA). In addition, the matching model ex-

ploits the two attention mechanisms to estimate the simi-

larity between images and sentences by focusing on their

shared semantics. Our extensive experiments validate the

effectiveness of DANs in combining vision and language,

achieving the state-of-the-art performance on public bench-

marks for VQA and image-text matching.

1. Introduction

Vision and language are two central parts of human intel-

ligence to understand the real world. They are also funda-

mental components in achieving artificial intelligence, and

a tremendous amount of research has been done for decades

in each area. Recently, dramatic advances in deep learning

have broken the boundaries between vision and language,

drawing growing interest in their intersection, such as vi-

sual question answering (VQA) [3, 37, 23, 35], image cap-

tioning [33, 2], image-text matching [8, 11, 20, 30], visual

grounding [24, 9], etc.

One of the recent advances in neural networks is the at-

tention mechanism [21, 4, 33]. It aims to focus on certain

aspects of data sequentially and aggregate essential infor-

mation over time to infer the results, and has been suc-

cessfully applied to both areas of vision and language. In

computer vision, attention based methods adaptively se-

lect a sequence of image regions to extract necessary fea-

tures [21, 6, 33]. Similarly, attention models for natural

language processing highlight specific words or sentences

(a) DAN for multimodal reasoning. (r-DAN)

(b) DAN for multimodal matching. (m-DAN)

Figure 1: Overview of Dual Attention Networks (DANs)

for multimodal reasoning and matching. The brightness of

image regions and darkness of words indicate their attention

weights predicted by DANs.

to distill information from input text [4, 25, 15]. These

approaches have improved the performance of wide ap-

plications in conjunction with deep architectures including

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs).

Despite the effectiveness of attention in handling both

visual and textual data, it has been hardly attempted to es-

tablish a connection between visual and textual attention

models which can be highly beneficial in various scenar-

ios. For example, the VQA problem in Figure 1a with

the question What color is the umbrella? can

be efficiently solved by simultaneously focusing on the re-

gion of umbrella and the word color. In the example

of image-text matching in Figure 1b, the similarity between

the image and sentence can be effectively measured by at-
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tending to the specific regions and words sharing common

semantics such as girl and pool.

In this paper, we propose Dual Attention Networks

(DANs) which jointly learn visual and textual attention

models to explore the fine-grained interaction between vi-

sion and language. We investigate two variants of DANs

illustrated in Figure 1, referred to as reasoning-DAN (r-

DAN) and matching-DAN (m-DAN), respectively. The r-

DAN collaboratively performs visual and textual attentions

using a joint memory which assembles the previous atten-

tion results and guides the next attentions. It is suited to the

tasks requiring multimodal reasoning such as VQA. On the

other hand, the m-DAN separates visual and textual atten-

tion models with distinct memories but jointly trains them

to capture the shared semantics between images and sen-

tences. This approach eventually finds a joint embedding

space which facilitates efficient cross-modal matching and

retrieval. Both proposed algorithms closely connect visual

and textual attention mechanisms into a unified framework,

achieving outstanding performance in VQA and image-text

matching problems.

To summarize, the main contributions of our work are as

follows:

• We propose an integrated framework of visual and tex-

tual attentions, where critical regions and words are

jointly located through multiple steps.

• Two variants of the proposed framework are imple-

mented for multimodal reasoning and matching, and

applied to VQA and image-text matching.

• Detailed visualization of the attention results validates

that our models effectively focus on vital portions of

visual and textual data for the given task.

• Our framework demonstrates the state-of-the-art per-

formance on the VQA dataset [3] and the Flickr30K

image-text matching dataset [36].

2. Related Work

2.1. Attention Mechanisms

Attention mechanisms allow models to focus on neces-

sary parts of visual or textual inputs at each step of a task.

Visual attention models selectively pay attention to small

regions in an image to extract core features as well as re-

duce the amount of information to process. A number of

methods have recently adopted visual attention to benefit

image classification [21, 28], image generation [6], image

captioning [33], visual question answering [35, 26, 32], etc.

On the other hand, textual attention mechanisms generally

aim to find semantic or syntactic input-output alignments

under an encoder-decoder framework, which is especially

effective in handling long-term dependency. This approach

has been successfully applied to various tasks including ma-

chine translation [4], text generation [16], sentence summa-

rization [25], and question answering [15, 32].

2.2. Visual Question Answering (VQA)

VQA is a task of answering a question in natural lan-

guage regarding a given image, which requires multimodal

reasoning over visual and textual data. It has received a

surge of interest since Antol et al. [3] presented a large-

scale dataset with free-form and open-ended questions. A

simple baseline by Zhou et al. [37] predicts the answer from

a concatenation of CNN image features and bag-of-word

question features. Several methods adaptively construct a

deep architecture depending on the given question. For ex-

ample, Noh et al. [23] impose a dynamic parameter layer

on a CNN which is learned by the question, while Andreas

et al. [1] utilize a compositional structure of the question to

assemble a collection of neural modules.

One limitation of the above approaches is that they re-

sort to a global image representation which contains noisy

or unnecessary information. To address this problem, Yang

et al. [35] propose stacked attention networks which per-

form multi-step visual attention, and Shih et al. [26] use

object proposals to identify regions relevant to the given

question. Recently, dynamic memory networks [32] in-

tegrate an attention mechanism with a memory module,

and multimodal compact bilinear pooling [5] is exploited

to expressively combine multimodal features and predict

attention over the image. These methods commonly em-

ploy visual attention to find critical regions, but textual at-

tention has been rarely incorporated into VQA. Although

HieCoAtt [18] applies both visual and textual attentions,

it independently performs each step of co-attention with-

out reasoning over previous co-attention outputs. On the

contrary, our method moves and refines both attentions via

multiple reasoning steps based on the memory of previous

attentions, which facilitates close interplay between visual

and textual data.

2.3. Image­Text Matching

The core issue with image-text matching is measuring

the semantic similarity between visual and textual inputs.

It is commonly addressed by learning a joint space where

image and sentence feature vectors are directly compara-

ble. Hodosh et al. [8] apply canonical correlation analy-

sis (CCA) to find embeddings that maximize the correlation

between images and sentences, which is further improved

by incorporating deep neural networks [14, 34]. A recent

approach by Wang et al. [30] includes structure-preserving

constraints within a bidirectional loss function to make the

joint space more discriminative. In contrast, Ma et al. [19]

construct a CNN to combine an image and sentence frag-

ments into a joint representation, from which the matching
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score is directly inferred. Image captioning frameworks are

also exploited to estimate the similarity based on the inverse

probability of sentences given a query image [20, 29].

To the best of our knowledge, no study has attempted

to learn multimodal attention models for image-text match-

ing. Even though Karpathy et al. [11, 10] propose to find the

alignments between image regions and sentence fragments,

they explicitly compute all pairwise distances between them

and estimate the average or best alignment score, which

leads to inefficiency. On the other hand, our method au-

tomatically attends to the shared concepts between images

and sentences while embedding them into a joint space,

where cross-modal similarity is directly obtained by a sin-

gle inner product operation.

3. Dual Attention Networks (DANs)

We present two structures of DANs to consolidate vi-

sual and textual attention mechanisms: r-DAN for mul-

timodal reasoning and m-DAN for multimodal matching.

They share a common framework but differ in their ways

of associating visual and textual attentions. We first de-

scribe the common framework including input representa-

tion (Section 3.1) and attention mechanisms (Section 3.2).

Then we illustrate the details of r-DAN (Section 3.3) and m-

DAN (Section 3.4) applied to VQA and image-text match-

ing, respectively.

3.1. Input Representation

Image representation The image features are extracted

from 19-layer VGGNet [27] or 152-layer ResNet [7]. We

first rescale images to 448×448 and feed them into the

CNNs. In order to obtain feature vectors for different re-

gions, we take the last pooling layer of VGGNet (pool5) or

the layer beneath the last pooling layer of ResNet (res5c).

Finally the input image is represented by {v1, · · · ,vN},

where N is the number of image regions and vn is a 512

(VGGNet) or 2048 (ResNet) dimensional feature vector

corresponding to the n-th region.

Text representation We employ bidirectional LSTMs to

generate text features as depicted in Figure 2. Given one-hot

encoding of T input words {w1, · · · ,wT }, we first embed

the words into a vector space by xt = Mwt, where M is

an embedding matrix. Then we feed the vectors into the

bidirectional LSTMs:

h
(f)
t = LSTM(f)(xt,h

(f)
t−1), (1)

h
(b)
t = LSTM(b)(xt,h

(b)
t+1), (2)

where h
(f)
t and h

(b)
t represent the hidden states at time

t from the forward and backward LSTMs, respectively.

By adding the two hidden states at each time step, i.e.

Figure 2: Bidirectional LSTMs for text encoding.

ut = h
(f)
t + h

(b)
t , we construct a set of feature vectors

{u1, · · · ,uT } where ut encodes the semantics of the t-th

word in the context of the entire sentence. Note that the

models discussed here including the word embedding ma-

trix and the LSTMs are trained end-to-end.

3.2. Attention Mechanisms

Our method performs visual and textual attentions simul-

taneously through multiple steps and gathers necessary in-

formation from both modalities. In this section, we explain

the underlying attention mechanisms employed at each step,

which serve as building blocks to compose the entire DANs.

For simplicity, we shall omit the bias term b in the follow-

ing equations.

Visual Attention. Visual attention aims to generate a con-

text vector by attending to certain parts of the input image.

At step k, the visual context vector v(k) is given by

v(k) = V Att({vn}
N
n=1,m

(k−1)
v

), (3)

where m
(k−1)
v is a memory vector encoding the informa-

tion that has been attended until step k − 1. Specifically,

we employ the soft attention mechanism where the context

vector is obtained from a weighted average of input feature

vectors. The attention weights {α
(k)
v,n}Nn=1 are computed by

a 2-layer feed-forward neural network (FNN) and the soft-

max function:

h(k)
v,n = tanh

(

W(k)
v

vn

)

⊙ tanh
(

W(k)
v,m m(k−1)

v

)

, (4)

α(k)
v,n = softmax

(

W
(k)
v,h h(k)

v,n

)

, (5)

v(k) = tanh

(

P(k)
N
∑

n=1

α(k)
v,n vn

)

, (6)

where W
(k)
v , W

(k)
v,m, and W

(k)
v,h are the network parame-

ters, h
(k)
v,n is a hidden state, and ⊙ is element-wise multipli-

cation. In Equation 6, we introduce an additional layer with
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the weight matrix P(k) in order to embed visual context

vectors into a compatible space with textual context vectors,

as we use pretrained image features vn.

Textual Attention. Textual attention computes a textual

context vector u(k) by focusing on specific words in the in-

put sentence every step:

u(k) = T Att({ut}
T
t=1,m

(k−1)
u

), (7)

where m
(k−1)
u is a memory vector. The textual attention

mechanism is almost identical to the visual attention mech-

anism. In other words, the attention weights {α
(k)
u,t}

T
t=1 are

obtained from a 2-layer FNN and the context vector u(k) is

calculated by weighted averaging:

h
(k)
u,t = tanh

(

W(k)
u

ut

)

⊙ tanh
(

W(k)
u,m m(k−1)

u

)

, (8)

α
(k)
u,t = softmax

(

W
(k)
u,h h

(k)
u,t

)

, (9)

u(k) =
∑

t

α
(k)
u,t ut. (10)

where W
(k)
u , W

(k)
u,m, and W

(k)
u,h are the network parame-

ters, h
(k)
u,t is a hidden state. Unlike the visual attention, it

does not need an additional layer after the last weighted

averaging because the text features ut are already trained

end-to-end.

3.3. r­DAN for Visual Question Answering

VQA is a representative problem which requires joint

reasoning over multimodal data. For this purpose, the r-

DAN maintains a joint memory vector m(k) which accu-

mulates the visual and textual information that has been at-

tended until step k. It is recursively updated by

m(k) = m(k−1) + v(k) ⊙ u(k), (11)

where v(k) and u(k) are the visual and textual context vec-

tors obtained from Equation 6 and 10, respectively. This

joint representation concurrently guides the visual and tex-

tual attentions, i.e. m(k) = m
(k)
v = m

(k)
u , which allows the

two attention mechanisms to closely cooperate with each

other. The initial memory vector m(0) is defined based on

global context vectors v(0) and u(0) as

m(0) = v(0) ⊙ u(0), (12)

where v(0) = tanh

(

P(0) 1

N

∑

n

vn

)

, (13)

u(0) =
1

T

∑

t

ut. (14)

By repeating the dual attention (Equation 3 and 7) and

memory update (Equation 11) for K steps, we effectively

Figure 3: r-DAN in case of K = 2.

focus on the key portions in the image and question, and

gather relevant information for answering the question. Fig-

ure 3 illustrates the overall architecture of r-DAN in case of

K = 2.

The final answer is predicted by multi-way classification

to the top C frequent answers. We employ a single-layer

softmax classifier with cross-entropy loss where the input is

the final memory m(K):

pans = softmax
(

Wans m
(K)
)

, (15)

where pans represents the probability over the candidate an-

swers.

3.4. m­DAN for Image­Text Matching

Image-text matching tasks usually involve comparison

between numerous images and sentences, where effective

and efficient computation of cross-modal similarities is cru-

cial. To achieve this, we aim to learn a joint embedding

space which satisfies the following properties. First, the em-

bedding space encodes the shared concepts that frequently

co-occur in image and sentence domains. Moreover, im-

ages and sentences are autonomously embedded into the

joint space without being paired, so that arbitrary image and

sentence vectors in the space are directly comparable.

Our m-DAN jointly learns visual and textual attention

models to capture the shared concepts between the two

modalities, but separates them at inference time to pro-

vide generally comparable representations in the embed-

ding space. Contrary to the r-DAN which uses a joint mem-

ory, the m-DAN maintains separate memory vectors for vi-

sual and textual attentions as follows:

m(k)
v

= m(k−1)
v

+ v(k), (16)

m(k)
u

= m(k−1)
u

+ u(k), (17)
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Figure 4: m-DAN in case of K = 2.

which are initialized to v(0) and u(0) defined in Equation 13

and 14, respectively. At each step, we compute the similar-

ity s(k) between visual and textual context vectors by their

inner product:

s(k) = v(k) · u(k). (18)

After performing K steps of the dual attention and memory

update, the final similarity S between the given image and

sentence becomes

S =

K
∑

k=0

s(k). (19)

The overall architecture of this model when K = 2 is de-

picted in Figure 4.

This network is trained with bidirectional max-margin

ranking loss, which is widely adopted for multimodal sim-

ilarity learning [11, 10, 13, 30]. For each correct pair of an

image and a sentence (v,u), we additionally sample a neg-

ative image v− and a negative sentence u− to construct two

negative pairs (v−,u) and (v,u−). Then, the loss function

becomes:

L =
∑

(v,u)

{

max
[

0,m− S(v,u) + S(v−,u)
]

+max
[

0,m− S(v,u) + S(v,u−)
]

}

, (20)

where m is a margin constraint. By minimizing this func-

tion, the network is trained to focus on the common se-

mantics that only appears in correct image-sentence pairs

through visual and textual attention mechanisms.

At inference time, an arbitrary image or sentence is em-

bedded into the joint space by concatenating its context vec-

tors:

zv = [v(0); · · · ;v(K)], (21)

zu = [u(0); · · · ;u(K)], (22)

where zv and zu are the representations for image v and

sentence u, respectively. Note that these vectors are ob-

tained via separate pipelines of visual and textual attentions,

i.e. learned shared concepts are revealed from an image or

sentence itself, not from an image-sentence pair. The simi-

larity between two vectors in the joint space is simply com-

puted by their inner product, e.g. S(v,u) = zv · zu, which

is equivalent to the output of the network in Equation 19.

4. Experiments

4.1. Experimental Setup

We fix all the hyper-parameters applied to both r-DAN

and m-DAN. The number of attention steps K is set to 2

which empirically shows the best performance. The di-

mension of every hidden layer—including word embed-

ding, LSTMs, and attention models—is set to 512. We train

our networks by stochastic gradient descent with a learning

rate 0.1, momentum 0.9, weight decay 0.0005, dropout ra-

tio 0.5, and gradient clipping at 0.1. The network is trained

for 60 epochs, where the learning rate is dropped to 0.01

after 30 epochs. A minibatch for r-DAN and m-DAN con-

sists of 128 pairs of 〈image, question〉 and 128 quadruplets

of 〈positive image, positive sentence, negative image, neg-

ative sentence〉, respectively. The number of possible an-

swers C for VQA is set to 2000, and the margin m for the

loss function in Equation 20 is set to 100.

4.2. Evaluation on Visual Question Answering

4.2.1 Dataset and Evaluation Metric

We evaluate the r-DAN on the Visual Question Answering

(VQA) dataset [3], which contains approximately 200K real

images from MSCOCO dataset [17]. Each image is associ-

ated with three questions, and each question is labeled with

ten answers by human annotators. The dataset is typically

divided into four splits: train (80K images), val (40K im-

ages), test-dev (20K images), and test-std (20K images). We

train our model using train and val, validate with test-dev,

and evaluate on test-std. There are two forms of tasks, open-

ended and multiple-choice, which require to answer each

question without and with a set of candidate answers, re-

spectively. For both tasks, we follow the evaluation metric

used in [3] as

Acc(â) = min

{

#humans that labeled â

3
, 1

}

, (23)

where â is a predicted answer.

4.2.2 Results and Analysis

The performance of r-DAN compared with state-of-the-art

VQA systems is presented in Table 1, where our method
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Table 1: Results on the VQA dataset compared with state-of-the-art methods.

Test-dev Test-standard

Open-Ended MC Open-Ended MC

Method Y/N Num Other All All Y/N Num Other All All

iBOWIMG [37] 76.5 35.0 42.6 55.7 61.7 76.8 35.0 42.6 55.9 62.0

DPPnet [23] 80.7 37.2 41.7 57.2 62.5 80.3 36.9 42.2 57.4 62.7

VQA team [3] 80.5 36.8 43.1 57.8 62.7 80.6 36.5 43.7 58.2 63.1

SAN [35] 79.3 36.6 46.1 58.7 - - - - 58.9 -

NMN [1] 81.2 38.0 44.0 58.6 - - - - 58.7 -

ACK [31] 81.0 38.4 45.2 59.2 - 81.1 37.1 45.8 59.4 -

DMN+ [32] 80.5 36.8 48.3 60.3 - - - - 60.4 -

MRN (ResNet) [12] 82.3 38.8 49.3 61.7 66.2 82.4 38.2 49.4 61.8 66.3

HieCoAtt (ResNet) [18] 79.7 38.7 51.7 61.8 65.8 - - - 62.1 66.1

RAU (ResNet) [22] 81.9 39.0 53.0 63.3 67.7 81.7 38.2 52.8 63.2 67.3

MCB (ResNet) [5] 82.2 37.7 54.8 64.2 68.6 - - - - -

DAN (VGG) 82.1 38.2 50.2 62.0 67.0 - - - - -

DAN (ResNet) 83.0 39.1 53.9 64.3 69.1 82.8 38.1 54.0 64.2 69.0

Q: What is the man

on the bike holding

on his right hand?

A: leash

Q: What is the man

on the bike holding

on his right hand?

Q: What is the man

on the bike holding

on his right hand?

Q: How many

horses are in the

picture?

A: 2

Q: How many

horses are in the

picture?

Q: How many

horses are in the

picture?

Q: What color are

the cows?

A: brown and white

Q: What color are

the cows?

Q: What color are

the cows?

Q: What is on his

wrist?

A: watch

Q: What is on his

wrist?

Q: What is on his

wrist?

Figure 5: Qualitative results on the VQA dataset with attention visualization. For each example, the query image, question,

and the answer by DAN are presented from top to bottom; the original image (question), the first and second attention maps

are shown from left to right. The brightness of images and darkness of words represent their attention weights.

achieves the best performance in both open-ended and

multiple-choice tasks. For fair evaluation, we compare

single-model accuracies obtained without data augmenta-

tion, even though [5] reported better performance using

model ensembles and additional training data. Figure 5 de-

scribes the qualitative results from our approach with vi-

sualization of the attention weights. Our method produces

correct answers to challenging problems which require fine-

grained reasoning, as well as successfully attends to the spe-

cific regions and words which facilitate answering the ques-

tions. Specifically, the first and fourth examples in Figure 5

illustrate that the r-DAN moves its visual attention to the

proper regions indicated by the attended words, while the

second and third examples show that it moves its textual at-

tention to divide a complex task into sequential subtasks—

finding target objects and extracting certain attributes.
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Table 2: Bidirectional retrieval results on the Flickr30K dataset compared with state-of-the-art methods.

Image-to-Text Text-to-Image

Method R@1 R@5 R@10 MR R@1 R@5 R@10 MR

DCCA [34] 27.9 56.9 68.2 4 26.8 52.9 66.9 4

mCNN [19] 33.6 64.1 74.9 3 26.2 56.3 69.6 4

m-RNN-VGG [20] 35.4 63.8 73.7 3 22.8 50.7 63.1 5

GMM+HGLMM FV [14] 35.0 62.0 73.8 3 25.0 52.7 66.0 5

HGLMM FV [24] 36.5 62.2 73.3 - 24.7 53.4 66.8 -

SPE [30] 40.3 68.9 79.9 - 29.7 60.1 72.1 -

DAN (VGG) 41.4 73.5 82.5 2 31.8 61.7 72.5 3

DAN (ResNet) 55.0 81.8 89.0 1 39.4 69.2 79.1 2

(+) A woman in a

brown vest is

working on the

computer.

(+) A woman in a

brown vest is

working on the

computer.

(+) A woman in a

brown vest is

working on the

computer.

(+) A man in a

white shirt stands

high up on

scaffolding.

(+) A man in a

white shirt stands

high up on

scaffolding.

(+) A man in a

white shirt stands

high up on

scaffolding.

(+) A woman in a

red vest working at

a computer.

(+) A woman in a

red vest working at

a computer.

(+) A woman in a

red vest working at

a computer.

(+) Man works on

top of scaffolding.

(+) Man works on

top of scaffolding.

(+) Man works on

top of scaffolding.

(+) Two boys

playing together at a

playground.

(+) Two boys

playing together at a

playground.

(+) Two boys

playing together at a

playground.

(-) A man wearing a

red t shirt sweeps

the sidewalk in front

of a brick building.

(-) A man wearing a

red t shirt sweeps

the sidewalk in front

of a brick building.

(-) A man wearing a

red t shirt sweeps

the sidewalk in front

of a brick building.

(-) The two kids are

playing at the

playground.

(-) The two kids are

playing at the

playground.

(-) The two kids are

playing at the

playground.

(+) Boy in red shirt

and black shorts

sweeps driveway.

(+) Boy in red shirt

and black shorts

sweeps driveway.

(+) Boy in red shirt

and black shorts

sweeps driveway.

Figure 6: Qualitative results from image-to-text retrieval with attention visualization. For each example, the query image and

the top two retrieved sentences are shown from top to bottom; the original image (sentence), the first and second attention

maps are shown from left to right. (+) and (-) indicate ground-truth and non ground-truth sentences, respectively.

4.3. Evaluation on Image­Text Matching

4.3.1 Dataset and Evaluation Metric

We employ the Flickr30K dataset [36] to evaluate the m-

DAN for multimodal matching. It consists of 31,783 real

images with five descriptive sentences for each, and we fol-

low the public splits by [20]: 29,783 training, 1,000 valida-

tion and 1,000 test images. We report the performance of m-

DAN in bidirectional image and sentence retrieval using the

same metrics as previous work [34, 19, 20, 30]. Recall@K

(K=1, 5, 10) represents the percentage of the queries where

at least one ground-truth is retrieved among the top K re-

sults and MR measures the median rank of the top-ranked

ground-truth.
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out of the window
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A boy is hanging
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of a yellow taxi.
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bike.
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bike.
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striped outfit on a
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some trees.
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some trees.

A group of people

standing on a

sidewalk under

some trees.

Figure 7: Qualitative results from text-to-image retrieval with attention visualization. For each example, the query sentence

and the top two retrieved images are shown from top to bottom; the original sentence (image), the first and second attention

maps are shown from left to right. Green and red boxes indicate ground-truth and non ground-truth images, respectively.

4.3.2 Results and Analysis

Table 2 presents the quantitative results on the Flickr30K

dataset, where the proposed method outperforms other re-

cent approaches in all measures. The qualitative results

from image-to-text and text-to-image retrieval are also il-

lustrated in Figure 6 and Figure 7, respectively, with vi-

sualization of attention outputs. At each step of attention,

the m-DAN effectively discovers the essential semantics ap-

pearing in both modalities. It tends to capture the main

subjects (e.g. woman, boy, people, etc.) at the first

step, and figure out relevant objects, backgrounds or actions

(e.g. computer, scaffolding, sweeps, etc.) at the

second step. Note that this property solely comes from the

training stage where visual and textual attention models are

jointly learned, while images and sentences are processed

independently at inference time.

5. Conclusion

We propose Dual Attention Networks (DANs) to bridge

visual and textual attention mechanisms. We present two ar-

chitectures of DANs for multimodal reasoning and match-

ing. The first model infers the answers collaboratively from

images and sentences, while the other one embeds them

into a common space by capturing their shared semantics.

These models demonstrate the state-of-the-art performance

in VQA and image-text matching, showing their effective-

ness in extracting essential information via the dual atten-

tion mechanism. The proposed framework can be poten-

tially generalized to various tasks at the intersection of vi-

sion and language, such as image captioning, visual ground-

ing, video question answering, etc.
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