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Abstract

Generating high-resolution, photo-realistic images has

been a long-standing goal in machine learning. Recently,

Nguyen et al. [37] showed one interesting way to synthesize

novel images by performing gradient ascent in the latent

space of a generator network to maximize the activations

of one or multiple neurons in a separate classifier network.

In this paper we extend this method by introducing an addi-

tional prior on the latent code, improving both sample qual-

ity and sample diversity, leading to a state-of-the-art gen-

erative model that produces high quality images at higher

resolutions (227 × 227) than previous generative models,

and does so for all 1000 ImageNet categories. In addition,

we provide a unified probabilistic interpretation of related

activation maximization methods and call the general class

of models “Plug and Play Generative Networks.” PPGNs

are composed of 1) a generator network G that is capable

of drawing a wide range of image types and 2) a replace-

able “condition” network C that tells the generator what

to draw. We demonstrate the generation of images condi-

tioned on a class (when C is an ImageNet or MIT Places

classification network) and also conditioned on a caption

(when C is an image captioning network). Our method also

improves the state of the art of Multifaceted Feature Visual-

ization [40], which generates the set of synthetic inputs that

activate a neuron in order to better understand how deep

neural networks operate. Finally, we show that our model

performs reasonably well at the task of image inpainting.

While image models are used in this paper, the approach is

modality-agnostic and can be applied to many types of data.

†This work was mostly performed at Geometric Intelligence, which

Uber acquired to create Uber AI Labs.

Figure 1: Images synthetically generated by Plug and Play

Generative Networks at high-resolution (227x227) for four

ImageNet classes. Not only are many images nearly photo-

realistic, but samples within a class are diverse.

1. Introduction

Recent years have seen generative models that are in-

creasingly capable of synthesizing diverse, realistic images

that capture both the fine-grained details and global coher-

ence of natural images [54, 27, 9, 15, 43, 24]. However,

many important open challenges remain, including (1) pro-

ducing photo-realistic images at high resolutions [30], (2)

training generators that can produce a wide variety of im-
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(a) Real: top 9 (b) DGN-AM [37] (c) Real: random 9 (d) PPGN (this)

Figure 2: For the “cardoon” class neuron in a pre-trained ImageNet classifier, we show: a) the 9 real training set images that

most highly activate that neuron; b) images synthesized by DGN-AM [37], which are of similar type and diversity to the

real top-9 images; c) random real training set images in the cardoon class; and d) images synthesized by PPGN, which better

represent the diversity of random images from the class. Fig. S10 shows the same four groups for other classes.

ages (e.g. all 1000 ImageNet classes) instead of only one or

a few types (e.g. faces or bedrooms [43]), and (3) producing

a diversity of samples that match the diversity in the dataset

instead of modeling only a subset of the data distribution

[14, 53]. Current image generative models often work well

at low resolutions (e.g. 32 × 32), but struggle to generate

high-resolution (e.g. 128 × 128 or higher), globally coher-

ent images (especially for datasets such as ImageNet [7] that

have a large variability [41, 47, 14]) due to many challenges

including difficulty in training [47, 41] and computationally

expensive sampling procedures [54, 55].

Nguyen et al. [37] recently introduced a technique that

produces high quality images at a high resolution. Their

Deep Generator Network-based Activation Maximization1

(DGN-AM) involves training a generator G to create realis-

tic images from compressed features extracted from a pre-

trained classifier network E (Fig. 3f). To generate images

conditioned on a class, an optimization process is launched

to find a hidden code h that G maps to an image that highly

activates a neuron in another classifier C (not necessarily

the same as E). Not only does DGN-AM produce realistic

images at a high resolution (Figs. 2b & S10b), but, with-

out having to re-train G, it can also produce interesting new

types of images that G never saw during training. For ex-

ample, a G trained on ImageNet can produce ballrooms,

jail cells, and picnic areas if C is trained on the MIT Places

dataset (Fig. S17, top).

A major limitation with DGN-AM, however, is the lack

of diversity in the generated samples. While samples may

vary slightly (e.g. “cardoons” with two or three flowers

viewed from slightly different angles; see Fig. 2b), the

whole image tends to have the same composition (e.g. a

closeup of a single cardoon plant with a green background).

It is noteworthy that the images produced by DGN-AM

1 Activation maximization is a technique of searching via optimization

for the synthetic image that maximally activates a target neuron in order to

understand which features that neuron has learned to detect [11].

closely match the images from that class that most highly

activate the class neuron (Fig. 2a). Optimization often con-

verges to the same mode even with different random initial-

izations, a phenomenon common with activation maximiza-

tion [11, 40, 59]. In contrast, real images within a class tend

to show more diversity (Fig. 2c). In this paper, we improve

the diversity and quality of samples produced via DGN-AM

by adding a prior on the latent code that keeps optimization

along the manifold of realistic-looking images (Fig. 2d).

We do this by providing a probabilistic framework in

which to unify and interpret activation maximization ap-

proaches [48, 64, 40, 37] as a type of energy-based model

[4, 29] where the energy function is a sum of multiple con-

straint terms: (a) priors (e.g. biasing images to look re-

alistic) and (b) conditions, typically given as a category

of a separately trained classification model (e.g. encour-

aging images to look like “pianos” or both “pianos” and

“candles”). We then show how to sample iteratively from

such models using an approximate Metropolis-adjusted

Langevin sampling algorithm.

We call this general class of models Plug and Play Gen-

erative Networks (PPGN). The name reflects an important,

attractive property of the method: one is free to design an

energy function, and “plug and play” with different pri-

ors and conditions to form a new generative model. This

property has recently been shown to be useful in multiple

image generation projects that use the DGN-AM genera-

tor network prior and swap in different condition networks

[66, 13]. In addition to generating images conditioned on

a class, PPGNs can generate images conditioned on text,

forming a text-to-image generative model that allows one to

describe an image with words and have it synthesized. We

accomplish this by attaching a recurrent, image-captioning

network (instead of an image classification network) to the

output of the generator, and performing similar iterative

sampling. Note that, while this paper discusses only the im-

age generation domain, the approach should generalize to
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many other data types. We publish our code and the trained

networks at http://EvolvingAI.org/ppgn.

2. Probabilistic interpretation of iterative im-

age generation methods

Beginning with the Metropolis-adjusted Langevin algo-

rithm [46, 45] (MALA), it is possible to define a Markov

chain Monte Carlo (MCMC) sampler whose stationary dis-

tribution approximates a given distribution p(x). We refer

to our variant of MALA as MALA-approx, which uses the

following transition operator:2

xt+1 = xt + ǫ12∇ log p(xt) +N(0, ǫ23) (1)

A full derivation and discussion is given in Sec. S6. Using

this sampler we first derive a probabilistically interpretable

formulation for activation maximization methods (Sec. 2.1)

and then interpret other activation maximization algorithms

in this framework (Sec. 2.2, Sec. S7).

2.1. Probabilistic framework for Activation
Maximization

Assume we wish to sample from a joint model p(x, y),
which can be decomposed into an image model and a clas-

sification model:

p(x, y) = p(x)p(y|x) (2)

This equation can be interpreted as a “product of ex-

perts” [19] in which each expert determines whether a soft

constraint is satisfied. First, a p(y|x) expert determines a

condition for image generation (e.g. images have to be clas-

sified as “cardoon”). Also, in a high-dimensional image

space, a good p(x) expert is needed to ensure the search

stays in the manifold of image distribution that we try to

model (e.g. images of faces [6, 63], shoes [67] or nat-

ural images [37]), otherwise we might encounter “fool-

ing” examples that are unrecognizable but have high p(y|x)
[38, 51]. Thus, p(x) and p(y|x) together impose a compli-

cated high-dimensional constraint on image generation.

We could write a sampler for the full joint p(x, y), but

because y variables are categorical, suppose for now that

we fix y to be a particular chosen class yc, with yc either

sampled or chosen outside the inner sampling loop.3 This

leaves us with the conditional p(x|y):

2 We abuse notation slightly in the interest of space and denote as

N(0, ǫ2
3
) a sample from that distribution. The first step size is given as ǫ12

in anticipation of later splitting into separate ǫ1 and ǫ2 terms.
3 One could resample y in the loop as well, but resampling y via the

Langevin family under consideration is not a natural fit: because y values

from the data set are one-hot – and from the model hopefully nearly so –

there will be a wide small- or zero-likelihood region between (x, y) pairs

coming from different classes. Thus making local jumps will not be a good

sampling scheme for the y components.

p(x|y = yc) = p(x)p(y = yc|x)/p(y = yc)

∝ p(x)p(y = yc|x) (3)

We can construct a MALA-approx sampler for this

model, which produces the following update step:

xt+1 = xt + ǫ12∇ log p(xt|y = yc) +N(0, ǫ23)

= xt+ǫ12∇ log p(xt)+ǫ12∇ log p(y=yc|xt)+N(0, ǫ23)
(4)

Expanding the ∇ into explicit partial derivatives and decou-

pling ǫ12 into explicit ǫ1 and ǫ2 multipliers, we arrive at the

following form of the update rule:

xt+1 = xt+ǫ1
∂ log p(xt)

∂xt

+ǫ2
∂ log p(y = yc|xt)

∂xt

+N(0, ǫ23)

(5)

We empirically found that decoupling the ǫ1 and ǫ2 mul-

tipliers works better. An intuitive interpretation of the ac-

tions of these three terms is as follows:

• ǫ1 term: take a step from the current image xt toward

one that looks more like a generic image (an image

from any class).

• ǫ2 term: take a step from the current image xt toward

an image that causes the classifier to output higher con-

fidence in the chosen class. The p(y = yc|xt) term

is typically modeled by the softmax output units of a

modern convnet, e.g. AlexNet [26] or VGG [49].

• ǫ3 term: add a small amount of noise to jump around

the search space to encourage a diversity of images.

2.2. Interpretation of previous models

Aside from the errors introduced by not including a re-

ject step, the stationary distribution of the sampler in Eq. 5

will converge to the appropriate distribution if the ǫ terms

are chosen appropriately [61]. Thus, we can use this frame-

work to interpret previously proposed iterative methods for

generating samples, evaluating whether each method faith-

fully computes and employs each term.

There are many previous approaches that iteratively sam-

ple from a trained model to generate images [48, 64, 40,

37, 60, 2, 11, 63, 67, 6, 39, 38, 34], with methods de-

signed for different purposes such as activation maximiza-

tion [48, 64, 40, 37, 60, 11, 38, 34] or generating realistic-

looking images by sampling in the latent space of a gener-

ator network [63, 37, 67, 6, 2, 17]. However, most of them

are gradient-based, and can be interpreted as a variant of

MCMC sampling from a graphical model [25].

While an analysis of the full spectrum of approaches

is outside this paper’s scope, we do examine a few repre-

sentative approaches under this framework in Sec. S7. In

particular, we interpret the models that lack a p(x) image
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Figure 3: Different variants of PPGN models we tested. The Noiseless Joint PPGN-h (e), which we found empirically

produces the best images, generated the results shown in Figs. 1 & 2 & Sections 3.5 & 4. In all variants, we perform iterative

sampling following the gradients of two terms: the condition (red arrows) and the prior (black arrows). (a) PPGN-x (Sec. 3.1):

To avoid fooling examples [38] when sampling in the high-dimensional image space, we incorporate a p(x) prior modeled

via a denoising autoencoder (DAE) for images, and sample images conditioned on the output classes of a condition network

C (or, to visualize hidden neurons, conditioned upon the activation of a hidden neuron in C). (b) DGN-AM (Sec. 3.2):

Instead of sampling in the image space (i.e. in the space of individual pixels), Nguyen et al. [37] sample in the abstract,

high-level feature space h of a generator G trained to reconstruct images x from compressed features h extracted from a

pre-trained encoder E (f). Because the generator network was trained to produce realistic images, it serves as a prior on p(x)
since it ideally can only generate real images. However, this model has no learned prior on p(h) (save for a simple Gaussian

assumption). (c) PPGN-h (Sec. 3.3): We attempt to improve the mixing speed and image quality by incorporating a learned

p(h) prior modeled via a multi-layer perceptron DAE for h. (d) Joint PPGN-h (Sec. 3.4): To improve upon the poor data

modeling of the DAE in PPGN-h, we experiment with treating G + E1 + E2 as a DAE that models h via x. In addition, to

possibly improve the robustness of G, we also add a small amount of noise to h1 and x during training and sampling, treating

the entire system as being composed of 4 interleaved models that share parameters: a GAN and 3 interleaved DAEs for x,

h1 and h, respectively. This model mixes substantially faster and produces better image quality than DGN-AM and PPGN-h
(Fig. S14). (e) Noiseless Joint PPGN-h (Sec. 3.5): We perform an ablation study on the Joint PPGN-h, sweeping across noise

levels or loss combinations, and found a Noiseless Joint PPGN-h variant trained with one less loss (Sec. S9.4) to produce the

best image quality. (f) A pre-trained image classification network (here, AlexNet trained on ImageNet) serves as the encoder

network E component of our model by mapping an image x to a useful, abstract, high-level feature space h (here, AlexNet’s

fc6 layer). (g) Instead of conditioning on classes, we can generate images conditioned on a caption by attaching a recurrent,

image-captioning network to the output layer of G, and performing similar iterative sampling.

prior, yielding adversarial or fooling examples [51, 38] as

setting (ǫ1, ǫ2, ǫ3) = (0, 1, 0); and methods that use L2 de-

cay during sampling as using a Gaussian p(x) prior with

(ǫ1, ǫ2, ǫ3) = (λ, 1, 0). Both lack a noise term and thus

sacrifice sample diversity.

3. Plug and Play Generative Networks

Previous models are often limited in that they use hand-

engineered priors when sampling in either image space or

the latent space of a generator network (see Sec. S7). In

this paper, we experiment with 4 different explicitly learned

priors modeled by a denoising autoencoder (DAE) [57].

We choose a DAE because, although it does not allow

evaluation of p(x) directly, it does allow approximation of

the gradient of the log probability when trained with Gaus-

sian noise with variance σ2 [1]; with sufficient capacity and

training time, the approximation is perfect in the limit as

σ → 0:

∂ log p(x)

∂x
≈

Rx(x)− x

σ2
(6)

where Rx is the reconstruction function in x-space repre-

senting the DAE, i.e. Rx(x) is a “denoised” output of the

autoencoder Rx (an encoder followed by a decoder) when

the encoder is fed input x. This term approximates exactly

the ǫ1 term required by our sampler, so we can use it to

define the steps of a sampler for an image x from class c.
Pulling the σ2 term into ǫ1, the update is:

xt+1 = xt+ǫ1
(

Rx(xt)−xt

)

+ǫ2
∂ log p(y = yc|xt)

∂xt

+N(0, ǫ23)

(7)
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3.1. PPGNx: DAE model of p(x)

First, we tested using a DAE to model p(x) directly

(Fig. 3a) and sampling from the entire model via Eq. 7.

However, we found that PPGN-x exhibits two expected

problems: (1) it models the data distribution poorly; and

(2) the chain mixes slowly. More details are in Sec. S11.

3.2. DGNAM: sampling without a learned prior

Poor mixing in the high-dimensional pixel space of

PPGN-x is consistent with previous observations that mix-

ing on higher layers can result in faster exploration of the

space [5, 33]. Thus, to ameliorate the problem of slow

mixing, we may reparameterize p(x) as
∫

h
p(h)p(x|h)dh

for some latent h, and perform sampling in this lower-

dimensional h-space.

While several recent works had success with this ap-

proach [37, 6, 63], they often hand-design the p(h) prior.

Among these, the DGN-AM method [37] searches in the

latent space of a generator network G to find a code h such

that the image G(h) highly activates a given neuron in a tar-

get DNN. We start by reproducing their results for compari-

son. G is trained following the methodology in Dosovitskiy

& Brox [9] with an L2 image reconstruction loss, a Genera-

tive Adversarial Networks (GAN) loss [14], and an L2 loss

in a feature space h1 of an encoder E (Fig. 3f). The last loss

encourages generated images to match the real images in a

high-level feature space and is referred to as “feature match-

ing” [47] in this paper, but is also known as “perceptual sim-

ilarity” [28, 9] or a form of “moment matching” [31]. Note

that in the GAN training for G, we simultaneously train a

discriminator D to tell apart real images x vs. generated

images G(h). More training details are in Sec. S9.4.

The directed graphical model interpretation of DGN-AM

is h → x → y (see Fig. 3b) and the joint p(h, x, y) can be

decomposed into:

p(h, x, y) = p(h)p(x|h)p(y|x) (8)

where h in this case represents features extracted from

the first fully connected layer (called fc6) of a pre-trained

AlexNet [26] 1000-class ImageNet [7] classification net-

work (see Fig. 3f). p(x|h) is modeled by G, an upconvolu-

tional (also “deconvolutional”) network [10] with 9 upcon-

volutional and 3 fully connected layers. p(y|x) is modeled

by C, which in this case is also the AlexNet classifier. The

model for p(h) was an implicit unimodal Gaussian imple-

mented via L2 decay in h-space [37].

Since x is a deterministic variable, the model simplifies

to:

p(h, y) = p(h)p(y|h) (9)

From Eq. 5, if we define a Gaussian p(h) centered at

0 and set (ǫ1, ǫ2, ǫ3) = (λ, 1, 0), pulling Gaussian con-

stants into λ, we obtain the following noiseless update rule

in Nguyen et al. [37] to sample h from class yc:

ht+1 = (1− λ)ht + ǫ2
∂ log p(y = yc|ht)

∂ht

= (1− λ)ht + ǫ2
∂ logCc(G(ht))

∂G(ht)

∂G(ht)

∂ht

(10)

where Cc(·) represents the output unit associated with class

yc. As before, all terms are computable in a single forward-

backward pass. More concretely, to compute the ǫ2 term,

we push a code h through the generator G and condition

network C to the output class c that we want to condition

on (Fig. 3b, red arrows), and back-propagate the gradient

via the same path to h. The final h is pushed through G to

produce an image sample.

Under this newly proposed framework, we have success-

fully reproduced the original DGN-AM results and their is-

sue of converging to the same mode when starting from dif-

ferent random initializations (Fig. 2b). We also found that

DGN-AM mixes somewhat poorly, yielding the same image

after many sampling steps (Figs. S13b & S14b).

3.3. PPGNh: Generator and DAE model of p(h)

We attempt to address the poor mixing speed of DGN-

AM by incorporating a proper p(h) prior learned via a DAE

into the sampling procedure described in Sec. 3.2. Specifi-

cally, we train Rh, a 7-layer, fully-connected DAE on h (as

before, h is a fc6 feature vector). The size of the hidden lay-

ers are respectively: 4096− 2048− 1024− 500− 1024−
2048− 4096. Full training details are provided in S9.3.

The update rule to sample h from this model is similar to

Eq. 10 except for the inclusion of all three ǫ terms:

ht+1 = ht+ǫ1(Rh(ht)−ht)+ǫ2
∂ logCc(G(ht))

∂G(ht)

∂G(ht)

∂ht

+N(0, ǫ23) (11)

Concretely, to compute Rh(ht) we push ht through the

learned DAE, encoding and decoding it (Fig. 3c, black ar-

rows). The ǫ2 term is computed via a forward and backward

pass through both G and C networks as before (Fig. 3c, red

arrows). Lastly, we add the same amount of noise N(0, ǫ23)
used during DAE training to h. Equivalently, noise can also

be added before the encode-decode step.

We sample4 using (ǫ1, ǫ2, ǫ3) = (10−5, 1, 10−5) and

show results in Figs. S13c & S14c. As expected, the chain

mixes faster than PPGN-x, with subsequent samples ap-

pearing more qualitatively different from their predecessors.

However, the samples for PPGN-h are qualitatively similar

to those from DGN-AM (Figs. S13b & S14b). Samples still

lack quality and diversity, which we hypothesize is due to

the poor p(h) model learned by the DAE.

4 If faster mixing or more stable samples are desired, then ǫ1 and ǫ3
can be scaled up or down together. Here we scale both down to 10−5.
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3.4. Joint PPGNh: joint Generator and DAE

The previous result suggests that the simple multi-layer

perceptron DAE poorly modeled the distribution of fc6 fea-

tures. This could occur because the DAE faces the gener-

ally difficult unconstrained density estimation problem. To

combat this issue, we experiment with modeling h via x
with a DAE: h → x → h. Intuitively, to help the DAE bet-

ter model h, we force it to generate realistic-looking images

x from features h and then decode them back to h. One can

train this DAE from scratch separately from G (as done for

PPGN-h). However, in the DGN-AM formulation, G mod-

els the h → x (Fig. 3b) and E models the x → h (Fig. 3f).

Thus, the composition G(E(.)) can be considered an AE

h → x → h (Fig. 3d).

Note that G(E(.)) is theoretically not a formal h-DAE

because its two components were trained with neither noise

added to h nor an L2 reconstruction loss for h [37] (more

details in Sec. S9.4) as is required for regular DAE train-

ing [57]. To make G(E(.)) a more theoretically justifiable

h-DAE, we add noise to h and train G with an additional re-

construction loss for h (Fig. S9c). We do the same for x and

h1 (pool5 features), hypothesizing that a little noise added

to x and h1 might encourage G to be more robust [57]. In

other words, with the same existing network structures from

DGN-AM [37], we train G differently by treating the entire

model as being composed of 3 interleaved DAEs that share

parameters: one each for h, h1, and x (see Fig. S9c). Note

that E remains frozen, and G is trained with 4 losses in to-

tal i.e. three L2 reconstruction losses for x, h, and h1 and a

GAN loss for x. See Sec. S9.5 for full training details. We

call this the Joint PPGN-h model.

We sample from this model following the update rule in

Eq. 11 with (ǫ1, ǫ2) = (10−5, 1), and with noise added to

all three variables: h, h1 and x instead of only to h (Fig. 3d

vs e). The noise amounts added at each layer are the same

as those used during training. As hypothesized, we observe

that the sampling chain from this model mixes substan-

tially faster and produces samples with better quality than

all previous PPGN treatments (Figs. S13d & S14d) includ-

ing PPGN-h, which has a multi-layer perceptron h-DAE.

3.5. Ablation study with Noiseless Joint PPGNh

While the Joint PPGN-h outperforms all previous treat-

ments in sample quality and diversity (as the chain mixes

faster), the model is trained with a combination of four

losses and noise added to all variables. This complex train-

ing process can be difficult to understand, making further

improvements non-intuitive. To shed more light into how

the Joint PPGN-h works, we perform ablation experiments

which later reveal a better-performing variant.

Noise sweeps. To understand the effects of adding noise

to each variable, we train variants of the Joint PPGN-h (1)

with different noise levels, (2) using noise on only a single

variable, and (3) using noise on multiple variables simulta-

neously. We did not find these variants to produce qualita-

tively better reconstruction results than the Joint PPGN-h.

Interestingly, in a PPGN variant trained with no noise at all,

the h-autoencoder given by G(E(.)) still appears to be con-

tractive, i.e. robust to a large amount of noise (Fig. S16).

This is beneficial during sampling; if “unrealistic” codes

appear, G could map them back to realistic-looking im-

ages. We believe this property might emerge for multiple

reasons: (1) G and E are not trained jointly; (2) h features

encode global, high-level rather than local, low-level infor-

mation; (3) the presence of the adversarial cost when train-

ing G could make the h → x mapping more “many-to-one”

by pushing x towards modes of the image distribution.

Combinations of losses. To understand the effects of

each loss component, we repeat the Joint PPGN-h training

(Sec. 3.4), but without noise added to the variables. Specif-

ically, we test different combinations of losses and compare

the quality of images G(h) produced by pushing the codes

h of real images through G (without MCMC sampling).

First, we found that removing the adversarial loss from

the 4-loss combination yields blurrier images (Fig. S8c).

Second, we compare 3 different feature matching losses:

fc6, pool5, and both fc6 and pool5 combined, and found

that pool5 feature matching loss leads to the best image

quality (Sec. S8). Our result is consistent with Dosovitskiy

& Brox [9]. Thus, the model that we found empirically to

produce the best image quality is trained without noise and

with three losses: a pool5 feature matching loss, an adver-

sarial loss, and an image reconstruction loss. We call this

variant “Noiseless Joint PPGN-h”: it produced the results

in Figs. 1 & 2 and Sections 3.5 & 4.

Noiseless Joint PPGN-h. We sample from this model

with (ǫ1, ǫ2, ǫ3) = (10−5, 1, 10−17) following the same up-

date rule in Eq. 11 (we need noise to make it a proper sam-

pling procedure, but found that infinitesimally small noise

produces better and more diverse images, which is to be

expected given that the DAE in this variant was trained

without noise). Interestingly, the chain mixes substantially

faster than DGN-AM (Figs. S13e & S13b) although the

only difference between two treatments is the existence of

the learned p(h) prior. Overall, the Noiseless Joint PPGN-

h produces a large amount of sample diversity (Fig. 2).

Compared to the Joint PPGN-h, the Noiseless Joint PPGN-

h produces better image quality, but mixes slightly slower

(Figs. S13 & S14). Sweeping across the noise levels dur-

ing sampling, we noted that larger noise amounts often re-

sults in worse image quality, but not necessarily faster mix-

ing speed (Fig. S15). Also, as expected, a small ǫ1 mul-

tiplier makes the chain mix faster, and a large one pulls

the samples towards being generic instead of class-specific

(Fig. S23).

Evaluations. Evaluating image generative models is
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challenging, and there is not yet a commonly accepted

quantitative performance measure [53]. We qualitatively

evaluate sample diversity of the Noiseless Joint PPGN-h
variant by running 10 sampling chains, each for 200 steps,

to produce 2000 samples, and filtering out samples with

class probability of less than 0.97. From the remaining,

we randomly pick 400 samples and plot them in a grid

t-SNE [56] (Figs. S12 & S11). More examples for the

reader’s evaluation of sample quality and diversity are pro-

vided in Figs. S21, S22 & S25. To better observe the mixing

speed, we show videos of sampling chains (with one sam-

ple per frame; no samples filtered out) from within classes

and between 10 different classes at https://goo.gl/

36S0Dy. In addition, Table S3 provides quantitative com-

parisons between PPGN, auxiliary classifier GAN [41] and

real ImageNet images in image quality (via Inception score

[47] & Inception accuracy [41]) and diversity (via MS-

SSIM metric [41]).

While future work is required to fully understand why

the Noiseless Joint PPGN-h produces high-quality images

at a high resolution for 1000-class ImageNet more success-

fully than other existing latent variable models [41, 47, 43],

we discuss possible explanations in Sec. S12.

4. Additional results

In this section, we take the Noiseless Joint PPGN-h
model and show its capabilities on several different tasks.

4.1. Generating images with different condition
networks

A compelling property that makes PPGN different from

other existing generative models is that one can “plug and

play” with different prior and condition components (as

shown in Eq. 2) and ask the model to perform new tasks,

including challenging the generator to produce images that

it has never seen before. Here, we demonstrate this feature

by replacing the p(y|x) component with different networks.

Generating images conditioned on classes

Above we showed that PPGN could generate a diversity

of high quality samples for ImageNet classes (Figs. 1 & 2

& Sec. 3.5). Here, we test whether the generator G within

the PPGN can generalize to new types of images that it has

never seen before. Specifically, we sample with a differ-

ent p(y|x) model: an AlexNet DNN [26] trained to clas-

sify 205 categories of scene images from the MIT Places

dataset [65]. Similar to DGN-AM [37], the PPGN generates

realistic-looking images for classes that the generator was

never trained on, such as “alley” or “hotel room” (Fig. 4).

A side-by-side comparison between DGN-AM and PPGN

are in Fig. S17.

Generating images conditioned on captions

Figure 4: Images synthesized conditioned on MIT Places

[65] classes instead of ImageNet classes.

Instead of conditioning on classes, we can also condition

the image generation on a caption (Fig. 3g). Here, we swap

in an image-captioning recurrent network (called LRCN)

from [8] that was trained on the MS COCO dataset [32] to

predict a caption y given an image x. Specifically, LRCN is

a two-layer LSTM network that generates captions condi-

tioned on features extracted from the output softmax layer

of AlexNet [26].

Figure 5: Images synthesized to match a text description.

A PPGN containing the image captioning model from [8]

can generate reasonable images that differ based on user-

provided captions (e.g. red car vs. blue car, oranges vs.

a pile of oranges). For each caption, we show 3 images

synthesized starting from random codes (more in Fig. S18).

We found that PPGN can generate reasonable images in

many cases (Figs. 5 & S18), although the image quality is

lower than when conditioning on classes. In other cases, it

also fails to generate high-quality images for certain types

of images such as “people” or “giraffe”, which are not cate-

gories in the generator’s training set (Fig. S18). We also ob-

serve “fooling” images [38]—those that look unrecogniz-

able to humans, but produce high-scoring captions. More

results are in Fig. S18. The challenges for this task could be:

(1) the sampling is conditioned on many (10− 15) words at

the same time, and the gradients backpropagated from dif-
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ferent words could conflict with each other; (2) the LRCN

captioning model itself is easily fooled, thus additional pri-

ors on the conversion from image features to natural lan-

guage could improve the result further; (3) the depth of the

entire model (AlexNet and LRCN) impairs gradient propa-

gation during sampling. In the future, it would be interest-

ing to experiment with other state-of-the-art image caption-

ing models [12, 58]. Overall, we have demonstrated that

PPGNs can be flexibly turned into a text-to-image model

by combining the prior with an image captioning network,

and this process does not even require additional training.

Generating images conditioned on hidden neurons

PPGNs can perform a more challenging form of acti-

vation maximization called Multifaceted Feature Visualiza-

tion (MFV) [40], which involves generating the set of inputs

that activate a given neuron. Instead of conditioning on a

class output neuron, here we condition on a hidden neuron,

revealing many facets that a neuron has learned to detect

(Fig. 6).

Figure 6: Images synthesized to activate a hidden neuron

(number 196) previously identified as a “face detector neu-

ron” [64] in the fifth convolutional layer of the AlexNet

DNN trained on ImageNet. The PPGN uncovers a large

diversity of types of inputs that activate this neuron, thus

performing Multifaceted Feature Visualization [40], which

sheds light into what the neuron has learned to detect. The

different facets include different types of human faces (top

row), dog faces (bottom row), and objects that only barely

resemble faces (e.g. the windows of a house, or something

resembling green hair above a flesh-colored patch). More

examples and details are shown in Figs. S19 & S20.

4.2. Inpainting

Because PPGNs can be interpreted probabilistically, we

can also sample from them conditioned on part of an image

(in addition to the class condition) to perform inpainting—

filling in missing pixels given the observed context regions

[42, 3, 63, 54]. The model must understand the entire image

to be able to reasonably fill in a large masked out region

that is positioned randomly. Overall, we found that PPGNs

are able to perform inpainting suggesting that the models

do “understand” the semantics of concepts such as junco

or bell pepper (Fig. 7) rather than merely memorizing the

images. More details and results are in Sec. S10.

Figure 7: We perform class-conditional image sampling to

fill in missing pixels (see Sec. 4.2). In addition to con-

ditioning on a specific class (PPGN), PPGN-context also

constrains the code h to produce an image that matches the

context region. PPGN-context (c) matches the pixels sur-

rounding the masked region better than PPGN (b), and se-

mantically fills in better than the Context-Aware Fill feature

in Photoshop (d) in many cases. The result shows that the

class-conditional PPGN does understand the semantics of

images. More PPGN-context results are in Fig. S24.

5. Conclusion

The most useful property of PPGN is the capability of

“plug and play”—allowing one to drop in a replaceable

condition network and generate images according to a con-

dition specified at test time. Beyond the applications we

demonstrated here, one could use PPGNs to synthesize im-

ages for videos or create arts with one or even multiple con-

dition networks at the same time [13]. Note that DGN-AM

[37]—the predecessor of PPGNs—has previously enabled

both scientists and amateurs without substantial resources

to take a pre-trained condition network and generate art [13]

and scientific visualizations [66]. An explanation for why

this is possible is that the fc6 features that the generator was

trained to invert are relatively general and cover the set of

natural images. Thus, there is great value in producing flex-

ible, powerful generators that can be combined with pre-

trained condition networks in a plug and play fashion.
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[67] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image mani-

fold. In European Conference on Computer Vision, pages

597–613. Springer, 2016. 3, 13

114477


