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Abstract

There is a significant interest in scene reconstruction

from underwater images given its utility for oceanic re-

search and for recreational image manipulation. In this pa-

per we propose a novel algorithm for two view camera mo-

tion estimation for underwater imagery. Our method lever-

ages the constraints provided by the attenuation properties

of water and its effects on the appearance of the color to

determine the depth difference of a point with respect to the

two observing views of the underwater cameras. Addition-

ally, we propose an algorithm, leveraging the depth differ-

ences of three such observed points, to estimate the rela-

tive pose of the cameras. Given the unknown underwater

attenuation coefficients, our method estimates the relative

motion up to scale. The results are represented as a gener-

alized camera. We evaluate our method on both real data

and simulated data.

1. Introduction

The recovery of 3D scene geometry from images has al-

ways been one of the core goals of computer vision and has

progressed significantly over the last decade [19, 1, 5, 9].

One essential building block of all these system is the abil-

ity to successfully estimate the two-view geometry between

two overlapping cameras under the assumption of a cen-

tral perspective camera. This camera model though is only

valid for cameras taking photos through air. Hence, this

mode of reconstruction is not valid for cameras submerged

in water. However, 71% of the earth’s surface is covered by

oceans and with both the scientific interest in underwater

imagery and the now ubiquitous availability of underwater

cameras to users, for example through GoPro cameras, per-

forming structure from motion in underwater environments

moves into the focus of research [18, 12]. In this paper we

target the successful estimation of two-view geometry for

underwater cameras, which due to their imaging conditions

do not comply with the traditionally used pinhole camera

model [18, 22]. In this paper we propose a novel method

Figure 1. Top: Real images with a few estimated corresponding

points (green) and outliers (red) found using the Misty Three Point

algorithm (MTP) proposed in this paper. Bottom: structure and

motion estimated using MTP for a sequence (in which the top row

images are represented by blue cameras).

to enable SFM under such circumstances. In particular we

propose a novel minimal solver to enable two-view geome-

try estimation and a method for relative point depth estima-

tion.

Our proposed method leverages the observation that

when looking at photos for example of an under water ship-

wreck, one can get a sense of depth. The reason for this is

the easily observable depth dependent attenuation of light

under water, which is more significant than in air and weak-

ens as well as distorts an object’s color [15, 16, 21].We

leverage this observation along with the 2D correspon-

dences of the projections of the same 3D scene point into

two different images to deduce a novel constraint on the rel-

ative depth change of the point with respect to the two cap-

turing cameras (see Section 2.3). Given the relative depth

changes we then propose a novel three point algorithm that

leverages these changes in order to infer the relative cam-

era motion up to scale (see Section 3). In combination this

enables us to obtain the two view geometry under a gen-
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eralized camera model between two images of intrinsically

calibrated underwater cameras. Next we discuss the related

work in the area of underwater image based pose estima-

tion.

1.1. Related work

Agrawal et al. [2] present theory and methods for multi-

layer flat refractive scenes, using an arbitrary number of in-

terfaces. A method for calibrating such a system is pre-

sented, and multi-layer systems are shown to be well ap-

proximated by single/two layer systems. A similar method

for calibration is proposed by Treibiz et al. [22]

A few special cases encountered in flat refractive geome-

try are solved using polynomial solvers and geometric alge-

bra [6]. They develop near-minimal solvers for the general

calibrated and unknown focal length absolute pose cases,

i.e. for cases where the scene coordinates are assumed to

be known. In this paper we use similar polynomial solving

techniques but with unknown scene points.

In the field of underwater structure from motion, Sed-

lazeck et al. [17] have created a system for simulating

deep sea underwater images using physical models for light

attenuation, scattering and refraction. Furthermore, Sed-

lazeck et al. have shown that approximating underwater

structure from motion by pinhole cameras produces a sys-

tematic error [18]. They propose a method for underwa-

ter structure from motion using a virtual camera model

[11, 12]. Jordt-Sedlazeck [11] provides a broader overview

of the theory and the field of underwater SFM. Their pro-

posed methods uses at least five points for pose estimation

(assuming the camera is intrinsically calibrated) while our

method only uses three. This is important in a number of

scenarios – the most obvious being that our algorithm would

on average require fewer RANSAC-iterations to estimate

camera motion.

Schechner et al. [15] propose to recover the scene ob-

ject radiance, and as a by-product the relative distances in

the scene are estimated and yield range maps for the scene.

These relative distances are used as a ratio of improvement

of the visibility range achieved by the recovery method.

Furthermore, Schechner et al. [16] reconstruct dense 3-D

images of the scene using the depth map and the recov-

ered image. Their approach treats depth maps as a by-

product of estimating the scene radiance, whereas our pro-

posed method provides a fusion of their two separate meth-

ods. Lastly, Swirski and Schechner [21] propose a method

to remove another underwater disturbance – flicker.

Queiroz et al. [14] uses the same physical imaging model

as in this paper, and leverages color information to improve

dense stereo maps. However, they assume a manual pre-

calibration of all underwater imagery parameters as well as

both geometric and radiometric pre-calibration. The phys-

ical imaging model is only used for adding an automated

penalty function for the depth map estimation. The algo-

rithm is later automatized by Nascimento et al. [13], but the

physical imaging model is still not used for camera pose

estimation. Our method, however, automatically estimates

the underwater imagery parameters and uses the physical

imaging model for pose estimation.

A problem that is related to restoration of underwater

images is haze removal. Some methods propose to model

attenuation in haze using the same physical model as in this

paper. This creates an underconstrained problem in single

images. Fattal [4] proposes to assume that surface shading

is locally uncorrelated to the transmission function in order

to add constraints. A different constraint, the dark channel

prior, is proposed by He et al. [8]. Bahat and Irani pro-

pose to use the recurring patch property as a prior [3]. All

of these methods estimate depth images, but they are only

treated as by-products in the process of the image restora-

tion and not used as constraints to estimate (relative) camera

pose.

To our knowledge, optimal two-view structure-and-

motion using three points and known depth differences has

not been solved to date. Neither has the problem of two-

view generalized camera structure-and-motion using three

points and their colors.

1.2. Innovations

In particular, we propose the following novel methods:

• A minimal solver, the Three Point Delta algorithm

(TPD), for estimating the relative motion of a general-

ized camera given three pairs of point correspondences

and differences in depth for each such correspondence.

• The Three Colors Depth Difference algorithm (TCDD),

for using a physical model of light propagation under

water to estimate relative depth differences.

• The Misty Three Point algorithm (MTP), for estimating

the relative motion of a generalized camera given three

pairs of point-and-color correspondences.

Moreover, we show that the methods perform very well nu-

merically and are stable to large amounts of outliers when

implemented within a RANSAC-framework, which is en-

abled by the fact that it only requires 3 points for estimat-

ing the relative motion. Furthermore, the requirement of

only three points is also useful when there are only three or

four points available. In these cases, our proposed methods

can estimate the relative motion while previous methods can

not.

1.3. Additional applications

Although the presented minimal solver (TPD) is applied

on underwater images in this paper, we note a few more

potential areas of application. For example, it can be used
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Figure 2. Snell’s law. A ray originating from the camera center t

with direction u changes direction at P according to ρ1 sin θ1 =
ρ2 sin θ2. This causes the usually linear equations for projections,

for example, to become nonlinear and much harder to solve.

to estimate relative motion using both images and sound.

Or to estimate the relative motion of microphone arrays.

Furthermore, the system could theoretically be used in the

case of above-ground structure from motion in the presence

of fog (in which the attenuation of light can be modeled

similarly to water). It is also possible to use together with

pseudo depth estimation parts of previous methods for haze-

removal, e.g. [3]. In fact, the relative pose estimation algo-

rithms can be applied for any setting (once again assuming

pre-calibration) given three point correspondences and dis-

tance differences for each pair.

2. Estimating relative depth in underwater im-

agery

The physical conditions for imaging under water are sig-

nificantly different than in air leading to a distinct set of

challenges for computer vision methods.

One of the main differences is the nonlinear geometry

[2, 12, 11] - as cameras usually need to be enclosed in pro-

tective housing, which changes the direction of the light

rays. In air, rays from the source travel in straight lines to

the camera lens. In water, rays are refracted at the surface of

the (usually flat) port of the underwater housing. Given that

the orientation and position of the refractive surface relative

to the camera is known, Snell’s law (see Fig 2) can be used

to determine the outgoing rays from a point on the camera

sensor. It states that the angle θ1, relative to the normal of

the interface, of an incident ray is related to the angle of the

refracted ray θ2 by the equation

ρ1 sin θ1 = ρ2 sin θ2, (1)

where ρ1 and ρ2 are the refractive indices of the two media.

The fact that this equation is nonlinear is one of the main

causes of the challenge in the field of underwater structure

from motion. For example, finding the ray in the scene cor-

responding to an observed pixel is not much more difficult

than for regular cameras. Note, though, that it requires that

the intrinsics of the camera and the relation to and geometry

of the underwater housing is known. However, the reversed

problem of finding the projection of a point in space on the

image plane is significantly more challenging than for reg-

ular cameras.

O

(U1,E1)

(U2,E2)
(U3,E3)

t

(p11, I11)

(p21, I21)

z11

z21

Figure 3. The relative pose problem solved in this paper. Two

cameras positioned at the origin and t, respectively, are observing

three points of unknown position and unknown color. Note that we

are not only using the position and direction (p
ik
,uik) from each

observed point, but also the observed color. The relative depths

∆zk = z2 − z1 are also crucial parts of this method. In the left

cameras, with larger distance to the objects, the colors look very

similar. In the right camera, however, the observed colors are more

similar to the actual color of the object. These differences is what

enables the estimation of depth differences.

Another significant difference is the appearance - colors

look different under water than when imaged through air

[10, 15, 16]. A visualization of this is presented in Fig. 4.

There are two sources of light that can be observed: light

from the scene object and light as part of the ambient light.

The observed ambient light part will be termed the veiling

light. In this paper, the observation of the veiling light is

caused by ambient light being scattered towards the cameras

line of sight by the particles in the water. The light signal

from the scene object can by itself be seen as composed of

two components - direct transmission and forward scatter-

ing. Whereby the direct transmission is the signal after los-

ing energy due to particles absorbing and scattering (in all

directions) the light from the scene object, causing an expo-

nential decrease in energy. The forward scattering is caused

by particles scattering the light in small angles relative to

the line of sight, causing a blur as well a decrease in energy.

A crucial part regarding attenuation is that different wave-

lengths are attenuated at different rates - red is absorbed 10

times faster than green, which in pure water is absorbed ap-

proximately twice as fast as blue. This causes the natural

ambient light to be blue/green since the red/yellow compo-

nents of the natural sunlight are absorbed too quickly to be

perceived.

In the remainder of this section, we will present our

novel method for taking advantage of this difference in ob-

served color, by assuming that a scene object will have the

same unknown radiance when viewed in different images.

We then introduce how the observed difference in color be-

tween observations of a scene point can be used to estimate

differences in distance to the point.

2.1. The physical model

The Jaffe-McGlamery equation is a commonly used

equation that models the effect of absorption and scatter-
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Original image Simulated attenuation

Figure 4. A visualization of the imagery effects of attenuation. The

left image shows a generated scene, and the right image shows the

same scene after simulating attenuation of colors by Eq. (2).

ing [10]. In this paper, a simplified version of the equation

(Eq. (2)) is used, which does not take the forward scatter-

ing into account. The forward scattering can be neglected

as the dominant cause for image contrast degradation is the

veiling light [15, 16], and furthermore a large part of the for-

ward scattering can be seen as attenuation, which is already

captured in the simplified model (Eq. (2)).

First, we introduce our notation. The point in space with

index k is represented by (Uk,Ek), where the three-vector

Uk is the position and the three-vector Ek = (Er
k, E

g
k , E

b
k)

is the radiance of the object in the color channels λ ∈
{r, g, b}. The observation of the point with index k in cam-

era i is represented in the coordinate system of camera i by

(uik, Iik,pik), where uik is the direction of the ray in wa-

ter, pik is a point on the ray and Iik = (Irik, I
g
ik, I

b
ik) is the

observed color. Note that in the case of the pinhole camera

model, all pik = 0, and in the case of the generalized cam-

era model to account for refractions, the pik are points on

the refractive plane. The depths zik denote the Euclidean

distance from pik to Uk, i.e. zik = ‖pik − (RUk −Rt)‖2,

where R is a rotation matrix and t a translation vector that

together transform scene points to the local coordinate sys-

tem of the camera.

The equation used for modeling the physical effects to-

wards the observed colors is the simplified version of the

Jaffe-McGlamery equation

Iλik = αλ

(

Eλ
k e

−ηλzik +Bλ
∞(1− e−ηλzik)

)

+ βλ, (2)

where Iλik is the pixel value in color channel λ for camera

i and point k, αλ and βλ are color correction coefficients

[11], Eλ
k is the ”true” but unknown color of point k, ηλ is

the attenuation coefficient of the water, zik is the distance

from the outer refraction plane of camera i to point k and

Bλ
∞ is the ”veiling light”. This is a convex combination of

the true color and the veiling light, with added color correc-

tion. Note that we here assume that the two cameras have

the same color correction coefficients. The equation can be

reformulated to:

Iλik = αλ

(

Eλ
k −Bλ

∞

)

e−ηλzik + γλ, (3)

where γλ = αλB
λ
∞ + βλ is the observation of the veiling

light. Given observations {Iλ
1k} and {Iλ

2k}, λ ∈ {g, b}, of

the color of point k in cameras 1 and 2 at depth z1k and z2k,

the equation can be reduced to

Iλ
1k − γλ
Iλ
2k − γλ

=
αλ

(

Eλ
k −Bλ

∞

)

e−ηλz1k

αλ

(

Eλ
k −Bλ

∞

)

e−ηλz2k
= eηλ∆zk . (4)

2.2. Estimating the constant parameters

The red color channel is not used due to the fact that in

practical applications the red colors are by practical means

completely absent, as discussed in Section 2. Accordingly,

there are 4 unknown constant parameters to estimate, and

each pairwise correspondence introduces 1 unknown vari-

able (∆zk) and provides two constraints by using only the

green and blue color channels in Eq. (4). This means that to

solve for all 4+n unknown constants and variables, at least

n = 4 pairwise correspondences are needed. However, a

scale ambiguity exists, thus ηλ and zik can be redefined as

η̂λ = ηλ/ηg and ẑik = ηgzik. Thus for each point corre-

spondence we have the constraints

Ig
1k − γg = (Ig

2k − γg)e
∆ẑk ,

Ib1k − γb = (Ib2k − γb)e
η̂b∆ẑk .

(5)

Furthermore, solving for γλ and reformulating Eq. (5) leads

to

γλ = Iλ2k +
1

1− eη̂b∆ẑk

(

Iλ1k − Iλ2k
)

, (6)

which is monotonous in ∆ẑk. This monotony can be used

to show that there does not always exist a real solution

(∆ẑk, γg, γb, η̂b).

2.3. The Three Colors Depth Difference algorithm

After introducing the obtained constraint for each point

correspondence we now introduce our proposed depth es-

timation. We define the underwater error function for the

color channel λ as (rewritten from Eq. (4))

rλ(γλ, ηλ,∆zk) = Iλ1k − γλ − (Iλ2k − γλ)e
ηλ∆zk , (7)

and the combined error function for the green and blue

channel as r(γ,η,∆zk) = r2g + r2b . The Jacobian for

r(γ,η,∆zk) is computed and used in a Gauss-Newton al-

gorithm to find the parameters for which the error is mini-

mized.

Note that if Iλ
1k − γλ has a different sign than Iλ

2k − γλ
there is no solution to rλ = 0 (since ex > 0), and the min-

imum is found at ∆zk = 0. This would correspond to a

point being observed beyond infinity. Thus it can be con-

cluded that

min
∆z

r2λ(γλ, ηλ,∆z) ≥ (Iλ1k − γλ)
2 (8)

This means that a point in one camera with, for example,

green intensity larger than γg will still have green intensity
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larger than γg when observed in another camera. This lower

bound will later be used for fast outlier rejection when im-

plementing the three-point relative pose algorithm within

RANSAC (see Section 4.1).

3. The Three Point Delta algorithm

In this section we propose a novel method to compute

the relative motion between two intrinsically calibrated gen-

eralized cameras given image point observations of three

scene points in both cameras, as well as the differences in

distance from the cameras to the scene points. We formu-

late the problem as a system of polynomial equations in the

unknown absolute distances to the first camera. This system

is solved by the action matrix method (see e.g. [20]), which

entails reformulating the system as an eigenvalue equation.

Code for this is provided in the supplementary material.

Once the absolute distances to the first camera have been

computed, the scene points can be reconstructed in the lo-

cal coordinate system. Then the pose of the second camera

is computed by the three point resection method [7]. The

details of our method are outlined in the following.

3.1. The algorithm

Assume that three pairs of point correspondences, {x1k}
and {x2k}, in two intrinsically calibrated cameras are given.

The relation between the local coordinate system of the first

camera and the global coordinate system can w.l.o.g. be

fixed to (I,0). Then the relative pose of the second cam-

era is described by the sought rigid transformation (R, t).
This means that for each observed scene point Uk, we have

the ray parametrizations

p1k + z1ku1k, z1k ∈ R,

R⊤(p2k + z2ku2k) + t, z2k ∈ R,
(9)

where p1k, p2k, u1k and u2k are known since the cameras

are intrinsically calibrated, and z1k, z2k, R and t are the

sought parameters. Furthermore, we assume that the dif-

ference in distance to each scene point Uk, i.e. ∆zk =
‖Uk − p1k‖ − ‖Uk − (R⊤p2k + t)‖, is known.

Note that in the particular case where the generalized

camera is a pinhole camera, an unknown scale of depth

differences simply gives a scale ambiguity in the solution.

In the general case, an unknown scale of depth differences

make the solution non-existing or invalid. Furthermore,

note that in the case where the generalized cameras are cam-

eras enclosed in underwater housings, the p1k’s and p2k’s

are points on the outer surfaces of the underwater housing

ports, and the u1k’s and u2k’s are the directions into the

water.

Since we assume that x1k and x2k correspond to the

same scene point, there exists z1k and z2k such that p1k +

z1ku1k = R⊤(p2k + z2ku2k) + t (using the parametriza-

tion from Eq. (9)). The unknown depths z2k can be reduced

by substituting z2k = z1k + ∆zk, which gives the sets of

equations

p1k + z1ku1k = R⊤(p2k + (z1k +∆zk)u2k) + t,

k = 1, 2, 3,
(10)

where depths z1k and the relative pose (R, t) of the second

camera are the unknown variables that are sought. We pro-

pose to parametrize R using quaternions q = (s,v), where

s is scalar and v is a three-vector,

R = 2(vv⊤ − s[v]×) + (s2 − v⊤v)I, (11)

and adding the constraint s2 + v⊤v = 1 to ensure that the

determinant is one, gives a total of 10 equations in 10 un-

knowns.

The equations are solved by noting that the points Uk =
p1k + z1ku1k and U ′

k = p2k +(z1k +∆zk)u2k are related

by a rigid transform. Thus the Gramians for the two sets of

points, {Uk} and {U ′

k}, are equal [23]. The Gramian for

U is defined as V ⊤V , where

V =
[

U2 −U1, U3 −U1

]

. (12)

Inserting the expressions for the Uk’s and U ′

k’s gives the

Gramians

V =

[

z12u
⊤
12 − z11u

⊤
11 + p⊤

12 − p⊤
11

z13u
⊤
13 − z11u

⊤
11 + p⊤

13 − p⊤
11

]⊤

,

V ′=

[

(z12+∆z2)u
⊤
22 − (z11+∆z1)u

⊤
21 + p⊤

22 − p⊤
21

(z13+∆z3)u
⊤
23 − (z11+∆z1)u

⊤
21 + p⊤

23 − p⊤
21

]⊤

.

(13)

Thus the constraint that the Gramians are equal amounts to

V ⊤V − (V ′)⊤(V ′) = 0, (14)

and provides three equations that are quadratic in the three

unknowns z1k.

It turns out that the coefficients for all z2
1k terms are zero

since the u1k’s and u2k’s are normalized. Thus the equa-

tions are of the form










A11xy +A14x+A15y +A17=0,

A21xy+A22xz+A23yz+A24x+A25y+A26z+A27=0,

A32xz +A34x +A36z+A37=0,
(15)

where x, y and z correspond to z1, z2 and z3. The sys-

tem of equation (15) can be represented as a matrix-vector

multiplication Av = 0, where

A =





A11 0 0 A14 A15 0 A17

A21 A22 A23 A24 A25 A26 A27

0 A32 0 A34 0 A36 A37



 , (16)
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and v is the vector of monomials

v = (xy, xz, yz, x, y, z, 1). (17)

By performing row-operations on the system, it can be sim-

plified to the form Âv = 0, where

Â =





1 0 0 Â14 Â15 0 Â17

0 1 0 Â24 0 Â26 Â27

0 0 1 0 Â35 Â36 Â37



 . (18)

To solve the system, x times the third equation, y times the

second equation and z times the third equation are added,

i.e. the equations











xyz + C14xz +C15yz + C17z = 0,

xyz + C24xy +C26yz + C27y = 0,

xyz + C35xy +C36xz + C37x = 0,

(19)

are added. Since Eq. (18) gives reductions from xy, xz and

yz to x, y and z, xyz can also be reduced to x, y and z.

Thus the system can be formulated as











M11y +M12z +M13 = xy,

M21y +M22z +M23 = xz,

M31y +M32z +M33 = x,

(20)

i.e. as the eigenvalue equation

M
[

y z 1
]⊤

= x
[

y z 1
]⊤

. (21)

Thus the depth z11 is an eigenvalue of M , and z12 and z13
are the two first elements of the corresponding eigenvector

after normalizing with the third element. Since M is a 3 by

3 matrix, three solutions are found and need to be evaluated

by Eq. (15).

Assuming that one solution (z11, z12, z13) to Eq. (15)

was found, the z2k’s can be computed by z2k = z1k +∆zk.

Now that all depths are known, the Uk’s can be computed

from the z1k’s as in Uk = p1k + z1ku1k. Eq. (10) gives

that Uk = R⊤(p2k + z2ku2k) + t where R and t are the

only remaining unknowns, which means that the remain-

ing problem is now to find a projective transformation from

Uk to p2k + z2ku2k. This problem is solved by the three

point resection method [7], providing up to four solutions

for (R, t). All solutions (R, t) that give negative depths

when projecting the Uk’s are rejected. Then the distance

from each point p2k to the corresponding transformed scene

point RUk −Rt is computed as

z′2k = ‖(RUk −Rt)− p2k‖2. (22)

If the relative pose (R, t) is valid, then z2k = z′
2k must hold.

Thus, for each solution (z11, z12, z13) to Eq. (15) there are

at most four solutions (R, t), which makes a total of up to

twelve solutions to be evaluated as described.

In conclusion, we have shown how given only three pairs

of corresponding points and their difference in distance to

the camera, first the absolute distances can be found and

subsequently the object and the relative motion. Further-

more, by combining this method with the method for esti-

mating relative depths given the colors of three pairs of cor-

responding points, we have found a method for estimating

relative motion of a generalized camera given three corre-

sponding points with their associated colors in the images.

4. Robust estimation with the Misty Three

Point algorithm

In this section we show how the Misty Three Point algo-

rithm (MTP) can be embedded in a RANSAC-framework

using a sequencing of the algorithm that enables fast re-

jection of an estimate as well as fast rejection of outliers.

Given a set of inliers, we also show how the solution can be

optimized for all parameters while taking both reprojection

errors and the physical model for underwater imaging into

account.

4.1. RANSAC

Since the Three Point Delta algorithm (TPD) introduced

in Section 3 uses relative depths as input, the Three Colors

Depth Difference algorithm (TCDD) defined in Section 2.3

must be the first step of relative pose estimations. In gen-

eral, the underwater imaging parameters that TCDD pro-

vides are not necessarily feasible for all points, giving an

opportunity to ignore those points in the following steps. In

addition, there is not always a solution to the depth differ-

ence problem, in those cases the estimate based on those

points can be instantly rejected. Assuming that the algo-

rithm found feasible parameters, TPD is then used to esti-

mate the relative pose. At this point, the scene points are

reconstructed by triangulation, and the reprojection errors

are computed and used to evaluate how well the estimated

pose fits the dataset. Furthermore, the depth differences are

also estimated for all feasible points, adding one more mea-

sure of how well the estimate fits the dataset.

4.2. Bundle Adjustment

The results from the RANSAC method are optimized in

a bundle adjustment algorithm that seeks to minimize the er-

rors both for the reprojections and the underwater imagery

equations using all variables. In particular, it optimizes for

the relative motion of the generalized cameras and the 3-D

points. We define the residual vector, whose norm is the tar-

get for minimization, by combining the reprojection errors
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with Eq. (3):

r(x,θ) =
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(23)

where radiance Êλ
k = α(Eλ

k −Bλ
∞) and R is parametrized

as in Eq. (11). The partial derivatives of r are computed

analytically and are used for minimizing ‖r(x,θ)‖ using

Gauss-Newton’s method with respect to x.

5. Experiments

We evaluate our method on simulated and real data.

First, we show that the Three Point Delta algorithm (TPD;

see Section 3) is numerically stable with respect to estimat-

ing the depth. Secondly, we show that the Three Colors

Depth Difference algorithm (TCDD; see Section 2.3) is nu-

merically stable. Thirdly, we show that the Misty Three

Point Algorithm (MTP; see Section 4), which is the sequen-

tial combination of TCDD and TPD, is also numerically sta-

ble. Lastly, we show that the RANSAC-based algorithm

introduced in Section 4.1 handles outliers well.

The simulated experiments are then complemented with

real data experiments. Comparisons are made with a man-

ually obtained baseline. In addition, real experiments are

presented where we do not have ground truth to compare

with, hence, we compare them only qualitatively.

5.1. Synthetic data

In order to test the system, we generate an underwater

scene and observe it by two cameras. That is, the pose of

the first camera is fixed to (I,0) random values are gen-

erated for: the relative pose (R, t) of the second camera,

three 3D-points with RGB-colors and underwater imaging

parameters ((γg, γb, η̂b); described in Section 2). The 3D-

points were projected into the cameras and the known dis-

tances from the 3D-points to the cameras were used to find

the attenuated colors according to Eq. (2).

The generated underwater scene was used to test the ac-

curacy of the proposed methods (MTP, TPD and TCDD) as

follows. MTP was used to estimate the relative pose, using

the projected points and the observed colors. The relative

translational error and the relative angular error for the esti-

mate were computed and are presented in Fig 5. Similarly,

TPD was used to estimate the relative pose using the pro-

jected points and the given difference in depth, the results

of which are also presented in Fig 5. These results show

−15 −10 −5 0
log10(relative error)

Abs. dist. (TPD)

−15 −10 −5 0
log10(relative error)

Cam. trans. (TPD)

−15 −10 −5 0
log10(relative error)

Cam. angle (TPD)

−15 −10 −5 0
log10(relative error)

Depth diff. (TCDD)

−15 −10 −5 0
log10(relative error)

Abs. dist. (MTP)

−15 −10 −5 0
log10(relative error)

Cam. trans. (MTP)

−15 −10 −5 0
log10(relative error)

Cam. angle (MTP)

−15 −10 −5 0
log10(relative error)

U-W param. (TCDD)

Figure 5. Distribution of solver error relative to ground truth, com-

puted over 10000 random problem instances. The top row shows

the relative error in estimated distances for the Three Point Delta

algorithm (TPD) and the Misty Three Point algorithm (MTP). The

second row shows the relative error in estimated camera direc-

tion for TPD and MTP. The third row shows the relative error in

estimated camera translation for TPD and MTP. Lastly, the bot-

tom row presents the relative errors in estimated depth difference

(left) and underwater imaging parameters (right) performed by the

Three Colors Depth Difference algorithm (TCDD).
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Figure 6. The performance of inlier/outlier classification of the

system given a varying number of outliers, while the number of

inliers is fixed to 10. In the left figure, the number of classified

inliers from the true inlier group (green) and the outlier group(red)

is shown. In the right figure, the rate of classifying outliers as out-

liers (red) and inliers as inliers (green) is plotted. The test for each

inlier ratio was repeated 50 times, each of which consisted of 1000

RANSAC iterations, and the plotted lines are the mean values over

those tests.

that we can accurately estimate the camera motion. Fur-

thermore, MTP was used to estimate the absolute distance
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Figure 7. Median of angular error in degrees as a function of noise

variance. For each noise level x, 1000 random problem instances

were generated, and normal distributed noise with zero mean and

x2 variance was added to the generated points.

Figure 8. Real evaluation data. Two cameras are fixed in relation

to each other, and observe a checkerboard-like planar object from

multiple angles and distances, both in air and in water. This fig-

ure shows an image from one of the two cameras, taken in water,

where ground truth data is plotted as green circles and reprojec-

tions are red asterisks. Note that the second camera can be seen in

the lower left part of the image, where also its estimated pose is

projected and plotted in red.

0 20 40
error(degrees)

Rotational error

0 20 40
error(degrees)

Translational error

Figure 9. Evaluation of accuracy of Misty Three Point (MTP) rela-

tive motion estimates in real experiments, compared to in-air esti-

mated ground truth. The left histogram shows the rotational error

in degrees and the right histogram the translational error in de-

grees, in 1000 repetitions of a 100-iterations RANSAC procedure

on data similar to Fig. 8, contaminated to 50% outliers.

given the three projected points and their colors, and TPD

provided estimates using the three projected points and the

given change in depth. The relative errors of the estimates

are presented in Fig 5. The numerical accuracy of TCDD

was tested by providing the observed colors of the three

points. The estimated difference in depth as well as the un-

derwater imaging parameters are compared to the ground

truth in Fig 5.

5.2. Real data

The practical performance of the method was evaluated

by fixing two cameras in relation to each other, record

videos, and compare the results of the Misty Three Point al-

gorithm (MTP) in water to the best estimate produced by the

five-point relative pose algorithm in air. This was achieved

Figure 10. Some examples of images and corresponding points

(inliers are green, outliers are red) found using the Misty Three

Point algorithm.

by recording videos of a planar calibration pattern at differ-

ent orientations and distances both in water and in air. First,

the relative pose was estimated with high precision on in-air

images, to create ground truth. Then, MTP was applied on

in-water images (see Fig. 8).

The performance of MTP was evaluated by repeating

RANSAC procedures of 100 iterations on data that contain

50% outliers. Then, the estimated relative poses of the sec-

ond camera were compared to ground truth by measuring

the differences in rotation and translation (see Fig. 9). Note

that the bins at 50 degrees contain all estimates that produce

errors of 50 degrees or larger. This evaluation clearly shows

that MTP delivers quantitatively accurate relative pose esti-

mates in a real application.

Further proof-of-concept is provided by qualitatively an-

alyzing the performance of the method applied to an un-

derwater video downloaded from YouTube. The video was

captured using a GoPro camera enclosed in a flat port pro-

tective underwater housing, with unknown intrinsic cali-

bration. Fig. 1 and Fig. 10 shows that MTP succeeds in

finding qualitatively correct corresponding points. Further-

more, Fig. 1 shows that MTP successfully estimates a qual-

itatively correct sequence of motion.

6. Conclusion

We have proposed a novel method for estimating relative
motion given three points and their colors. Using physi-
cal models for underwater imaging, we have shown that the
depth information that is present in the observed colors can
be estimated and used in practice. We also demonstrate that
our algorithms perform quantitatively well in the synthetic
experiments when compared to ground truth (see Fig 5),
when exposed to noise (see Fig 7), and in a RANSAC-
framework when exposed to high ratios of outliers (see
Fig 6). Furthermore, we have shown that the system per-
forms reasonably well in estimating structure and motion in
a real application (see Fig. 9). Lastly, we have shown quali-
tatively promising results on YouTube video data (Fig. 10).
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