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Abstract

In this paper, we introduce robust and synergetic hand-

crafted features and a simple but efficient deep feature from

a convolutional neural network (CNN) architecture for de-

focus estimation. This paper systematically analyzes the ef-

fectiveness of different features, and shows how each fea-

ture can compensate for the weaknesses of other features

when they are concatenated. For a full defocus map esti-

mation, we extract image patches on strong edges sparsely,

after which we use them for deep and hand-crafted feature

extraction. In order to reduce the degree of patch-scale de-

pendency, we also propose a multi-scale patch extraction

strategy. A sparse defocus map is generated using a neural

network classifier followed by a probability-joint bilateral

filter. The final defocus map is obtained from the sparse de-

focus map with guidance from an edge-preserving filtered

input image. Experimental results show that our algorithm

is superior to state-of-the-art algorithms in terms of defocus

estimation. Our work can be used for applications such as

segmentation, blur magnification, all-in-focus image gener-

ation, and 3-D estimation.

1. Introduction

The amount of defocus represents priceless information

can be obtained from a single image. If we know the amount

of defocus at each pixel in an image, higher level infor-

mation can be inferred based on defocus values such as

depth [43], salient region [13] and foreground and back-

ground of a scene [26] and so on. Defocus estimation, how-

ever, is a highly challenging task, not only because the es-

timated defocus values vary spatially, but also because the

estimated solution contains ambiguities [17], where the ap-

pearances of two regions with different amounts of defocus

can be very similar. Conventional methods [2, 35, 42] rely

on strong edges to estimate the amount of defocus. Deter-

mining the amount of defocus only based on the strength

of strong edges, however, may lead to overconfidence and

(a) Image (b) Defocus Map (c) Refocused

Figure 1: Our defocus estimation result and a digital refo-

cusing application example.

misestimations. Thus, we need a more reliable and robust

defocus descriptor for defocus estimations.

In this paper, we present hand-crafted and deep features

which assess various aspects of an image for defocus esti-

mation, and a method to obtain a reliable full defocus map

of a scene. Our hand-crafted features focus on three com-

ponents of an image: the frequency domain power distri-

bution, the gradient distribution and the singular values of

an image. We also utilize a convolutional neural network

(CNN) to extract high-dimensional deep features directly

learnt from millions of in-focus and blurred image patches.

All of the features are concatenated to construct our defo-

cus feature vector and are fed into a fully connected neural

network classifier to determine the amount of defocus.

One of the challenges associated with the defocus esti-

mation is the vagueness of the amount of defocus in homo-

geneous regions, as such regions show almost no difference

in appearance when they are in-focus or blurred. To avoid

this problem, we first estimate the amount of defocus using

multi-scale image patches from only strong edges, and then

propagate the estimated values into homogeneous regions

with the guidance of edge-preserving filtered input image.

The full defocus map is obtained after the propagation step.

We use the defocus map for various applications, such as

segmentation, blur magnification, all-in-focus image gener-

ation, and 3-D estimation. Figure 1 shows an example of

our defocus estimation result and a refocusing application.

2. Related Work

Defocus Estimation Defocus estimation plays an im-

portant role in many applications in the computer vision
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community. It is used in digital refocusing [2,5], depth from

defocus [19,30,43], salient region detection [13] and image

matting [26], to name just a few.

Elder and Zucker [10] estimate the minimum reliable

scale for edge detection and defocus estimation. They uti-

lize second derivative Gaussian filter responses, but this

method is not robust due to errors which arise during the lo-

calization of edges. Bae and Durand [2] also utilize second

derivative Gaussian filter responses to magnify the amount

of defocus on the background region. However, their strat-

egy is time-consuming owing to its use of a brute-force

scheme. Tai and Brown [35] employ a measure called local

contrast prior, which considers the relationships between

local image gradients and local image contrasts, but the lo-

cal contrast prior is not robust to noise. Zhuo and Sim [42]

use the ratio between the gradients of input and re-blurred

images with a known Gaussian blur kernel. However, it eas-

ily fails with noise and edge mislocalization. Liu et al. [22]

inspect the power spectrum slope, gradient histogram, max-

imum saturation and autocorrelation congruency. Their seg-

mentation result, however, cannot precisely localize blurry

regions. Shi et al. [31] use not only statistical measures such

as peakedness and heavy-tailedness but also learnt filters

from image data with labels. Homogeneous regions in the

image are weak points in their algorithm. Shi et al. [32] con-

struct sparse dictionaries containing sharp and blurry bases

and determine which dictionary can reconstruct an input im-

age sparsely, but their algorithm is not robust to large blur,

as it is tailored for just noticeable blur estimation.

Neural Networks Neural networks have proved their

worth as algorithms superior to their conventional counter-

parts in many computer vision tasks, such as object and

video classification [14, 29], image restoration [9], image

matting [7], image deconvolution [38], motion blur esti-

mation [34], blur classification [1, 40], super-resolution [8],

salient region detection [16] and edge-aware filtering [39].

Sun et al. [34] focus on motion blur kernel estimation.

They use a CNN to estimate pre-defined discretized motion

blur kernels. However, their approach requires rotational

input augmentation and takes a considerable amount of time

during the MRF propagation step. Aizenberg et al. [1] use

a multilayer neural network based on multivalued neurons

(MVN) for blur identification. The MVN learning step is

computationally efficient. However, their neural network

structure is quite simple. Yan and Shao [40] adopt two-

stage deep belief networks (DBN) to classify blur types and

to identify blur parameters, but they only rely on features

from the frequency domain.

Our Work Compared with the previous works, instead

of using only hand-crafted features, we demonstrate how we

can apply deep features to the defocus estimation problem.

The deep feature is learnt directly from training data with

different amounts of defocus blur. Because each extracted

(a) Image (b) From strong edges (c) From weak edges

Figure 2: Multi-scale patches from strong and weak edges.

deep feature is still a local feature, our hand-crafted fea-

tures, which capture both local and global information of an

image patch, demonstrate the synergetic effect of boosting

the performance of our algorithm. Our work significantly

outperforms previous works on defocus estimation in terms

of both quality and accuracy.

3. Feature Extraction

We extract multi-scale image patches from an input im-

age for feature extraction. In addition, we extract image

patches on edges only because homogeneous regions are

ambiguous in defocus estimation. For edge extraction, we

first transform the input image from the RGB to the HSV

color space and then use a V channel to extract image edges.

There have been numerous hand-crafted features for

sharpness measurements [3, 22, 25, 35, 37]. In this work,

three hand-crafted features related to the frequency domain

power distribution, the gradient distribution, and the singu-

lar values of a grayscale image patch are proposed. The

deep feature is extracted from a CNN which directly pro-

cesses color image patches in the RGB space for feature ex-

traction. All of the extracted features are then concatenated

to form our final defocus feature.

3.1. Multi­scale Patch Extraction

Because we extract hand-crafted and deep features based

on image patches, it is important to determine a suitable

patch size for each pixel in an image. Although there have

been many works related to scale-space theories [20,23,24],

there is still some ambiguity with regard to the relation-

ship between the patch scale and the hand-crafted features,

as they utilize global information in an image patch. In

other words, a sharp image patch can be regarded as blurry

mistakenly depending on the size of the patch, and vice

versa. In order to avoid patch scale dependency, we ex-

tract multi-scale patches depending on the strength of the

edges. In natural images, strong edges are more likely to

be in-focus than blurry ones ordinarily. Therefore, we as-

sume that image patches from strong edges are in-focus and

that weak edges are blurry during the patch extraction step.

For sharp patches, we can determine their sharpness accu-

rately with a small patch size, whereas blurry patches can

be ambiguous with a small patch size because of their lit-

tle change in the appearance when they are blurred or not.

Figure 2 shows multi-scale patches from strong and weak

edges. Figure 2 (b) shows that small patches from strong
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Figure 3: Sharp and blurry hand-crafted features. Average (a) DCT, DFT, DST, (b) gradient and (c) SVD features from sharp

(dotted) and blurry (solid) patches. The number of samples exceeds more than 11K. The absolute difference between sharp

and blurry features can be a measure of discriminative power.

edges still have abundant information for defocus estima-

tion, while Figure 2 (c) shows that small patches from weak

edges severely lack defocus information and contain high

degrees of ambiguity. Based on this observation, we extract

small patches from strong edges and large patches from

weak edges. Edges are simply extracted using the Canny

edge detector [4] with multi-threshold values. In general,

the majority of the strong edges can be extracted in an in-

focus area. Weak edges can be extracted in both sharp and

blurry areas because they can come from in-focus weak tex-

tures or out-of-focus sharp textures. Our multi-scale patch

extraction scheme boosts the performance of a defocus es-

timation algorithm drastically (Section 3.6).

3.2. DCT Feature

We transform a grayscale image patch PI to the fre-

quency domain to analyze its power distribution. We utilize

the discrete cosine transform (DCT) because the DCT offers

strong energy compaction [28]; i.e., most of the information

pertaining to a typical signal tends to be concentrated in a

few low-frequency bands. Hence, when an image is more

detailed, more non-zero DCT coefficients are needed to pre-

serve the information. Accordingly, we can examine high-

frequency bands at a higher resolution with the DCT than

with the discrete Fourier transform (DFT) or the discrete

sine transform (DST). Because an in-focus image has more

high-frequency components than an out-of-focus image, the

ratio of high-frequency components in an image patch can

be a good measure of the blurriness of an image. Our DCT

feature fD is constructed using the power distribution ratio

of frequency components as follows:

fD(k) =
1

WD

log

(

1 +
∑

θ

ρk+1
∑

ρ=ρk

|P(ρ, θ)|

Sk

)

, k ∈ [1, nD],

(1)

where | · |, P(ρ, θ), ρk, Sk, WD and nD denote the abso-

lute operator, the discrete cosine transformed image patch

with polar coordinates, the k-th boundary of the radial co-

ordinate, the area enclosed by ρk and ρk+1, a normaliza-

tion factor to make sum of the feature unity, and the dimen-

sions of the feature, respectively. Figure 3 (a) shows fea-

(a) Original (b) n = 60 (c) n = 30 (d) n = 15

Figure 4: Low-rank matrix approximation of an image. (a)

Original and (b)-(d) approximated images with the number

of preserved singular values. The more number of singular

values are preserved, the more details are also preserved.

tures from sharp and blurry patches after different transfor-

mations. The absolute difference between sharp and blurry

features can be a measure of discriminative power. In this

case, the DCT feature has the best discriminative power be-

cause its absolute difference between sharp and blurry fea-

tures is greater than those of the other transformations.

3.3. Gradient Feature

We calculate the gradients of PI using Sobel filtering to

obtain a gradient patch PG. Typically, there are more strong

gradients in a sharp image patch than in a blurry image.

Therefore, the ratio of the strong gradient components in an

image patch can be another measure of the sharpness of the

image. We use the normalized histogram of PG as a second

component of our defocus feature. Our gradient feature fG
is defined as follows:

fG(k) =
1

WG

log (1 +HG(k)) , k ∈ [1, nG], (2)

where HG, WG and nG denote the histogram of PG, the

normalization factor and the dimensions of the feature, re-

spectively. Figure 3 (b) shows a comparison of sharp and

blurry gradient features. Despite its simplicity, the gradient

feature shows quite effective discriminative power.

3.4. SVD Feature

Singular value decomposition (SVD) has many useful

applications in signal processing. One such application of

SVD is the low-rank matrix approximation [27] of an im-

age. The factorization of an m × n real matrix A can be
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Figure 5: Our deep feature extraction network and average activations with sharp, intermediate and blurry patches. The

output dimensions of each layer are shown together. The stride is set to 1 for convolution and to 3 for max pooling.

written as follows:

A = UΛVT =

N
∑

k=1

Ak =

N
∑

k=1

λkukv
T
k , (3)

where Λ, N , λk, uk and vk denote the m × n diagonal

matrix, the number of non-zero singular values of A, the

k-th singular value, and the k-th column of the real unitary

matrices U and V, respectively. If we construct a matrix

Ã =
∑n

k=1 Ak, where n ∈ [1, N ], we can approximate the

given matrix A with Ã. In the case of image reconstruc-

tion, low-rank matrix approximation will discard small de-

tails in the image, and the amount of the loss of details is

inversely proportional to n. Figure 4 shows an example of

the low-rank matrix approximation of an image. Note that

the amount of preserved image detail is proportional to the

number of preserved singular values.

We extract a SVD feature based on low-rank matrix ap-

proximation. Because more non-zero singular values are

needed to preserve the details in an image, a sharp image

patch tends to have more non-zero singular values than a

blurry image patch; i.e., a non-zero λk with large k is a clue

to measure the amount of detail. The scaled singular values

define our last hand-crafted feature as follows:

fS(k) =
1

WS

log (1 + λk) , k ∈ [1, nS ], (4)

where WS denotes the normalization factor and nS denotes

the dimensions of the feature. Figure 3 (c) shows a compar-

ison of sharp and blurry SVD features. The long tail of the

sharp feature implies that more details are preserved in an

image patch.

3.5. Deep Feature

We extract the deep feature fC from a color image patch

using a CNN. To deal with multi-scale patches, small-scale

patches are zero-padded before they are fed into the CNN.

Our feature extraction network consists of convolutional,

ReLU and max pooling layers, as illustrated in Figure 5.

Successive convolutional, ReLU and max pooling layers are

suitable to obtain highly non-linear features. Because the

deep feature is learnt from a massive amount of training data

Feature Accuracy(%) Feature Accuracy(%)

fD (DCT) 38.15 fH (Hand-crafted) 71.49

fG (Gradient) 68.36 fC (Deep) 89.38

fS (SVD) 61.76 fB (Concatenated) 94.16

Table 1: Classification accuracies. Note that the accuracy

of a random guess is 9.09 %.

(Section 5.1), it can accurately distinguish between sharp

and blurry features. In addition, it compensates for the lack

of color and cross-channel information in the hand-crafted

features, which are important and valuable for our task. Fig-

ure 5 also shows the average outputs from our feature ex-

traction network with sharp, intermediate and blurry image

patches. The activations are proportional to the sharpness

of the input image.

3.6. Our Defocus Feature

We concatenate all of the extracted features to construct

our final defocus feature fB as follows:

fB = [fH , fC ] = [[fD, fG, fS ], fC ], (5)

where [·] denotes the concatenation. Table 1 shows the clas-

sification accuracy of each feature. We use a neural network

classifier for the accuracy comparison. The classification

tolerance is set to an absolute difference of 0.15 compared

to the standard deviation value σ of the ground truth blur

kernel. We train neural networks with the same architecture

using those features individually and test on 576,000 fea-

tures of 11 classes. The details of the classifier and the train-

ing process will be presented in Sections 4.1 and 5.1. Our

deep feature, fC , has the most discriminative power with

regard to blurry and sharp features as compared to other in-

dividual hand-crafted features, {fD, fG, fS}, and their con-

catenation, fH . When all hand-crafted and deep features are

concatenated (fB), the performance is even more enhanced.

Removing one of the hand-crafted features drops the perfor-

mance by approximately 1-3%. For example, the classifica-

tion accuracies of [fD, fS , fC ] and [fG, fS , fC ] are 93.25%

and 91.10%, respectively. In addition, the performance of

fB with only single-scale patch extraction also decreases to

91.00%.
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4. Defocus Map Estimation

The defocus features are classified using a neural net-

work classifier to determine the amount of defocus at the

center point of each patch. We obtain an initial sparse de-

focus map after the classification step and then filter out

a number of outliers from the sparse defocus map using a

sparse joint bilateral filter [42] adjusted with the classifi-

cation confidence values. A full defocus map is estimated

from the filtered sparse defocus map using a matting Lapla-

cian algorithm [18]. The edge-preserving smoothing fil-

tered [41] color image is used as a guidance of propagation.

4.1. Neural Network Classifier

We adopt a neural network classifier for classification be-

cause it can capture the highly non-linear relationship be-

tween our defocus feature components and the amount of

defocus. Moreover, its outstanding performance has been

demonstrated in various works [14, 29, 33]. Our classifier

network consists of three fully connected layers (300-150-

11 neurons each) with ReLU and dropout layers. The soft-

max classifier is used for the last layer. Details about the

classifier training process will be presented in Sections 5.1

and 5.2. Using this classification network, we obtain the

labels and probabilities of features, after which the labels

are converted to the corresponding σ values of the Gaus-

sian kernel, which describe the amount of defocus. Subse-

quently, we construct the sparse defocus map IS using the

σ values and the confidence map IC using the probabilities.

4.2. Sparse Defocus Map

The sparse defocus map is filtered by the probability-

joint bilateral filter to reject certain outliers and noise.

In addition, we filter the input image with an edge-

preserving smoothing filter to create a guidance image IG
for probability-joint bilateral filtering and sparse defocus

map propagation. A rolling guidance filter [41] is chosen

because it can effectively remove image noise together with

the distracting small-scale image features and prevent erro-

neous guidances on some textured and noisy regions. Our

probability-joint bilateral filter B(·) is defined as follows:

B(x) =
1

W (x)

∑

p∈Nx

Gσs
(x,p)

×Gσr
(IG(x), IG(p))Gσc

(1, IC(p))IS(p), (6)

where Gσ(u,v) = exp(−‖u − v‖2F /2σ
2) and ‖ · ‖F , W ,

Nx, σs, σr and σc denote the Frobenius norm, the normal-

ization factor, the non-zero neighborhoods of x, the stan-

dard deviation of spatial, range and probability weight, re-

spectively. The probability weight Gσc
is added to the

conventional joint bilateral filter in order to reduce the un-

wanted effects of the outliers within neighborhood with low
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Figure 6: Sparse defocus maps before (IS) and after (IB)

probability-joint bilateral filtering. Solid boxes denote

sharp areas (small value) and dashed boxes denote blurry ar-

eas (large value). Some outliers are filtered out effectively.

probability values. Probability-joint bilateral filtering re-

moves outliers and regularizes the sparse defocus map ef-

fectively as shown in Figure 6.

4.3. Full Defocus Map

The full defocus map is obtained from the sparse defocus

map using the matting Laplacian algorithm [18] with the

help of the guidance image IG. The matting Laplacian is

defined as follows:

L(i, j) =
∑

k|(i,j)∈wk

(

δij −
1

|wk|

(

1 + (IG(i)− µk)

× (Σk +
ǫ

|wk|
I3)

−1(IG(j)− µk)
)

)

, (7)

where i, j, k, wk, |wk|, δij , µk, Σk, I3 and ǫ denote the

linear indices of pixels, a small window centered at k, the

size of wk, the Kronecker delta, the mean and variance of

the wk, a 3×3 identity matrix and a regularization param-

eter, respectively. The full defocus map IF is obtained by

solving the following least-squares problem:

ÎF = γ (L+Dγ)
−1 ÎB , (8)

where Î , γ and Dγ denote the vector form of matrix I , a user

parameter and a diagonal matrix whose element D(i, i) is γ
when IB(i) is not zero, respectively. An example of a full

defocus map is shown in Figure 1 (b).

5. Experiments

We first describe our method to generate the training data

and train the classifier, after which we compare the perfor-

mance of our algorithm with the performances of state-of-

the-art algorithms using a blur detection dataset [31]. Vari-

ous applications such as blur magnification, all-in-focus im-

age generation and 3-D estimation are also presented. Our

codes and dataset are available on our project page.1

5.1. Classifier Training

For the classification network training, 300 sharp images

are randomly selected from the ILSVRC [29] training data.

1https://github.com/zzangjinsun/DHDE_CVPR17

1740



Feature from Large Scale Feature from Small Scale�� ��
Figure 7: Our feature scale encoding scheme. If a feature

is from large-scale, we fill the small-scale positions with

zeros, and vice versa.

Similar to the feature extraction step, we extract approxi-

mately 1M multi-scale image patches on strong edges and

regard these patches as sharp patches. After that, each sharp

patch PS
I is convolved with synthetic blur kernels to gener-

ate blurry patches PB
I as follows:

PBl

I = PS
I ∗ hσl

, l ∈ [1, L], (9)

where hσ , ∗ and L denote the Gaussian blur kernel with a

zero mean and variance σ2, the convolution operator and

the number of labels, respectively. We set L = 11 and the

σ values for each blur kernel are then calculated as follows:

σl = σmin + (l − 1)σinter, (10)

where we set σmin = 0.5 and σinter = 0.15.

For the training of the deep feature, fC , we directly con-

nect the feature extraction network and the classifier net-

work to train the deep feature and classifier simultaneously.

The same method is applied when we use the concatenated

feature, fH , for training. For the training of fB , we ini-

tially train the classifier connected to the feature extraction

network only (i.e., with fC only), after which we fine-tune

the classifier with the hand-crafted features, fH . We use the

Caffe [12] library for our network implementation.

5.2. Scale Encoding

While we trained the classifier with features from small

and large patches together, we found that the network does

not converge. This occurs because some features from dif-

ferent scales with different labels can be similar. If we train

classifiers for each scale individually, it is inefficient and

risky, as the parameters to be trained are doubled and there

is no assurance that individual networks are consistent.

In order to encode scale information to a feature itself,

we assign specific positions for features from each scale, as

shown in Figure 7. An entire feature consists of positions

and constants for each scale. Additional constants are as-

signed to deal with biases for each scale.

In neural networks, the update rules for weights and the

bias in a fully connected layer are as follows:

wt
jk → wt

jk − η(at−1
k δtj), (11)

btj → btj − ηδtj , (12)

where wt
jk, btj , η, a and δ denote the k-th weight in the

j-th neuron of the layer t, the bias of the j-th neuron of

the layer t, the learning rate, the activation, and the error,
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Figure 8: Segmentation accuracies (top) and Precision-

Recall comparison (bottom) of Shi et al. [31], Zhuo and

Sim [42] and our algorithm.

respectively. For the input layer (t = 1), if we set the k-

th dimension of the input feature to a constant C, Equa-

tion (11) becomes w1
jk → w1

jk − η(Cδ1j ), and surprisingly,

if we let C = 1, the update rule takes the same form of

the bias update rule. Therefore, by introducing additional

constants into each scale, we are able not only effectively

to separate the biases for each scale but also to apply dif-

ferent learning rates for each bias with different constants.

After encoding scale information to a feature itself, the clas-

sifier network converges. In our experiments, we simply set

CL = CS = 1.

Owing to this encoding scheme, we set the number of

neurons in the first layer of the classifier network such that it

is roughly two times greater than the dimensions of our de-

scriptor to decode small- and large-scale information from

encoded features.

5.3. Blur Detection Dataset

We verify the reliability and robustness of our algorithm

using a blur detection dataset [31]. The dataset used con-

tains 704 natural images containing blurry and sharp re-

gions and corresponding binary blurry region masks man-

ually segmented by a human. We extract 15 × 15 patches

on strong edges and 27×27 patches on weak edges. We set

nD = nG = nS = 25 for large patches, nD = nG = nS =
13 for small patches, σs = σr = 100.0, σc = 1.0, ǫ = 1e−5

and γ = 0.005 for all experiments. We compare our algo-

rithm to the results of Shi et al. [31], Shi et al. [32] and Zhuo

and Sim [42]. Because the blur detection dataset contains

only binary masks, quantitative results are obtained using

binary blurry region masks from each algorithm. For bi-

nary segmentation, we apply a simple thresholding method

to the full defocus map. The threshold value τ is determined

as follows:

τ = αvmax + (1− α)vmin, (13)

where vmax and vmin denote the maximum and the mini-

mum values of the full defocus map, and α is a user param-

eter. We set α = 0.3 for the experiments empirically and
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9: Defocus map estimation and binary blurry region segmentation results. (a) Input images. (b) Results of [30].

(c) Results of [31]. (d) Results of [32] (Inverted for visualization). (e) Results of [42]. (f) Our defocus maps and (g)

corresponding binary masks. (h) Ground truth binary masks.

(a) Images (b) fD (c) fG (d) fS (e) fC (f) fH (g) fB

Figure 10: Defocus maps from each feature. Features used for the estimation of each defocus map are annotated. The blue

solid boxes and red dashed boxes in (e), (f) and (g) show the complementary roles of the hand-crafted and deep features.

this value works reasonably well. Figure 8 shows the seg-

mentation accuracies and the precision-recall curves, and

Figure 9 shows the results of the different algorithms. The

segmentation accuracies are obtained from the ratio of the

number of pixels correctly classified to the total number of

pixels. Precision-Recall curves can be calculated by adjust-

ing τ from σ1 to σL.

Our algorithm shows better results than the state-of-the-

art methods quantitatively and qualitatively. In the homo-

geneous regions of an image, sufficient textures for defocus

estimation do not exist. The results of [31] and [32], there-

fore, show some erroneous classification results in such re-

gions. Our algorithm and [42] can avoid this problem with

the help of sparse patch extraction on strong edges. In con-

trast, sparse map propagation can also lead to uncertain re-

sults in textured regions because the prior used for the prop-

agation is based on the color line model [18], as shown in

Figure 9 (e). An edge-preserving smoothed color image is

adopted as a propagation prior in our algorithm, and it gives

better results, as shown in Figures 9 (f) and (g). In addition,

we compare our algorithm with that of Shi et al. [30]. We

conducted a RelOrder [30] evaluation and obtained a result

of 0.1572 on their dataset, which is much better than their

result of 0.13932 of [30]. Moreover, the segmentation ac-

curacy of [30] (53.30%) is much lower than the accuracy of

our algorithm because their method easily fails with a large

amount of blur (Figure 9 (b)).

We also examined defocus maps from single and con-

catenated features qualitatively. As shown in Figures 10

(b), (c) and (d), single hand-crafted features give unsatis-

factory results compared to deep or concatenated features.

Surprisingly, a deep feature alone (Figure 10 (e)) works

quite well but gives a slightly moderate result compared to

the concatenated features (See the solid blue boxes). The

hand-crafted feature alone (Figure 10 (f)) also works nicely

but there are several misclassifications (See the dashed red

boxes). These features show complementary roles when

they are concatenated. Certain misclassifications due to

the hand-crafted feature are well handled by the deep fea-

ture, and the discriminative power of the deep feature was

strengthened with the aid of the hand-crafted features, as

shown in Figure 10 (g).

2Different from the reported value in [30] because we utilize our own

implementation. The evaluation codes of [30] have not been released.
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(a) Input (b) Magnified (c) Defocus map

Figure 11: Defocus blur magnification. The background

blurriness is amplified to direct more attention to the fore-

ground.

(a) Input (b) All-in-focus (c) Defocus map

Figure 12: All-in-focus image generation. Blurry regions

(yellow boxes) in the original image look clearer in the all-

in-focus image.

(a) (b) (c) (d) (e)

Figure 13: Depth estimation. (a) Input image. (b) Tao et

al. [36]. (c) Jeon et al. [11]. (d) Liu et al. [21] (e) Ours. Our

depth map looks reasonable compared to those in the other

works.

5.4. Applications

The estimated defocus maps can be used for various ap-

plications. We apply our defocus maps to the following ap-

plications and the results are quite pleasing.

Defocus Blur Magnification Our algorithm can be used

for defocus blur magnification tasks. We can highlight the

foreground by amplifying the blurriness of the background.

Figure 11 shows an example of the defocus blur magnifica-

tion. The foreground objects appear more prominent in the

blur magnified image.

All-in-focus Image Generation Contrary to defocus

blur magnification, we can deblur blurry regions in an im-

age to obtain an all-in-focus image. Using the σ values of

each pixel in the defocus map, we generate corresponding

Gaussian blur kernels and use them to deblur the image. We

use the hyper-laplacian prior [15] for non-blind deconvolu-

tion. Figure 12 shows an example of the all-in-focus image

generation. In accordance with the defocus map, we deblur

the original image in a pixel-by-pixel manner. The blurry

regions in the original image are restored considerably in

the all-in-focus image (Figure 12 (b)).

3-D Estimation from a Single Image The amount of

defocus is closely related to the depth of the correspond-

ing point because the scaled defocus values can be regarded

as pseudo-depth values if all of the objects are located on

(a) (b) (c) (d) (e)

Figure 14: Effects of additional random seed points. (a) In-

put image. (b) IS . (c) IS + Seeds. (d) IF from (b). (e) IF
from (c). Additional random seed points can effectively en-

hance the defocus accuracy in large homogeneous regions.

the same side of the focal plane. Because we need both

defocused images and depth maps, we utilize light-field im-

ages, as there are numerous depth estimation algorithms and

because digital refocusing can easily be done. We decode

light-field images using [6], and then generate a refocused

image using [36]. Our algorithm is compared to algorithms

for light-field depth estimation [11,36] and an algorithm for

single image depth estimation [21]. Figure 13 shows an in-

put image and depth map from each algorithm. Our depth

map from a single image appears reasonable compared to

those in the other works, which utilize correspondences be-

tween multiple images.

6. Conclusion

We have introduced a unified approach to combine hand-

crafted and deep features and demonstrated their comple-

mentary effects for defocus estimation. A neural network

classifier is shown to be able to capture highly non-linear re-

lationships between each feature, resulting in high discrimi-

native power. In order to reduce the patch scale dependency,

multi-scale patches are extracted depending on the strength

of the edges. The homogeneous regions in an image are

well handled by a sparse defocus map, and the propagation

process is guided by an edge-preserving smoothed image.

The performance of our algorithm is compared to those of

the state-of-the-art algorithms. In addition, the potential for

use in various applications is demonstrated.

One limitation of our algorithm is that we occasionally

obtain incorrect defocus values in a large homogeneous

area. This is due to the fact that there is no strong edge

within such regions for defocus estimation. A simple rem-

edy to address this problem involves the random addition

of classification seed points in large homogeneous regions.

Figure 14 shows the effect of additional seed points. Ad-

ditional random seed points effectively guide the sparse de-

focus map, causing it to be propagated correctly into large

homogeneous areas.

For future works, we expect to develop fully convolu-

tional network architectures for our task.
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