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Abstract

We address personalization issues of image captioning,

which have not been discussed yet in previous research. For

a query image, we aim to generate a descriptive sentence,

accounting for prior knowledge such as the user’s active vo-

cabularies in previous documents. As applications of per-

sonalized image captioning, we tackle two post automation

tasks: hashtag prediction and post generation, on our newly

collected Instagram dataset, consisting of 1.1M posts from

6.3K users. We propose a novel captioning model named

Context Sequence Memory Network (CSMN). Its unique up-

dates over previous memory network models include (i) ex-

ploiting memory as a repository for multiple types of context

information, (ii) appending previously generated words into

memory to capture long-term information without suffer-

ing from the vanishing gradient problem, and (iii) adopting

CNN memory structure to jointly represent nearby ordered

memory slots for better context understanding. With quan-

titative evaluation and user studies via Amazon Mechanical

Turk, we show the effectiveness of the three novel features of

CSMN and its performance enhancement for personalized

image captioning over state-of-the-art captioning models.

1. Introduction

Image captioning is a task of automatically generating

a descriptive sentence of an image [3, 4, 9, 12, 20, 22, 28,

31, 33]. As this task is often regarded as one of frontier-

AI problems, it has been actively studied in recent vision

and language research. It requires an algorithm not only to

understand the image content in depth beyond category or

attribute levels, but also to connect its interpretation with a

language model to create a natural sentence.

This work addresses personalization issues of image

∗This work was done while the author was at Seoul National University.
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Figure 1. Problem statement of personalized image captioning

with an Instagram example. As main applications, we address

hashtag prediction and post generation tasks. Given a query im-

age, the former predicts a list of hashtags, while the latter gener-

ates a descriptive text to complete a post. We propose a versatile

context sequence memory network (CSMN) model.

captioning, which have not been discussed in previous re-

search. We aim to generate a descriptive sentence for an

image, accounting for prior knowledge such as the user’s

active vocabularies or writing styles in previous documents.

Potentially, personalized image captioning is applicable to

a wide range of automation services in photo-sharing social

networks. For example, in Instagram or Facebook, users in-

stantly take and share pictures as posts using mobile phones.

One bottleneck to complete an image post is to craft hash-

tags or associated text description using their own words.

Indeed, crafting text is more cumbersome than taking a pic-

ture for general users; photo-taking can be done with only a

single tab on the screen of a smartphone, whereas text writ-

ing requires more time and mental energy for selecting suit-

able keywords and completing a sentence to describe theme,

sentiment, and context of the image.

In this paper, as examples of personalized image cap-

tioning, we focus on two post automation tasks: hashtag
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prediction and post generation. Figure 1 shows an Insta-

gram post example. The hashtag prediction automatically

predicts a list of hashtags for the image, while the post gen-

eration creates a sentence consisting of normal words, emo-

jis, and even hashtags. Personalization is key to success in

these two tasks, because text in social networks is not sim-

ple description of image content, but the user’s own story

and experience about the image with his or her favorite vo-

cabularies and expressions.

To achieve personalized image captioning tasks, we pro-

pose a memory network model named as context sequence

memory network (CSMN). Our model is inspired by mem-

ory networks [5, 24, 29], which explicitly include memory

components to which neural networks read and write data

for capturing long-term information. Our major updates

over previous memory network models are three-fold.

First, we propose to use the memory as a context reposi-

tory of prior knowledge for personalized image captioning.

Since the topics of social network posts are too broad and

users’ writing styles are too diverse, it is crucial to leverage

prior knowledge about the authors or metadata around the

images. Our memory retains such multiple types of context

information to promote more focused prediction, including

users’ active vocabularies and various image descriptors.

Second, we design the memory to sequentially store all

of the words that the model generates. It leads two im-

portant advantages. First, it enables the model to selec-

tively attend, at every step, on the most informative pre-

vious words and their combination with other context infor-

mation in the memory. Second, our model does not suf-

fer from the vanishing gradient problem. Most caption-

ing models are equipped with RNN-based encoders (e.g.

[3, 22, 25, 28, 31, 33]), which predict a word at every time

step, based on only a current input and a single or a few hid-

den states as an implicit summary of all previous history.

Thus, RNNs and their variants often fails to capture long-

term dependencies, which could worsen if one wants to use

prior knowledge together. On the other hand, our state-

based sequence generation explicitly retains all information

in the memory to predict next words. By using teacher-

forced learning [30], our model has a markov property at

training time; predicting a previous word yt−1 has no effect

on predicting a next word yt, which depends on only the

current memory state. Thus, the gradients from the current

time step prediction yt are not propagated through the time.

Third, we propose to exploit a CNN to jointly represent

nearby ordered memory slots for better context understand-

ing. Original memory networks [24, 29] leverage time em-

bedding to model the memory order. Still its representation

power is low, since it cannot represent the correlations be-

tween multiple memory slots, for which we exploit convo-

lution layers that lead much stronger representation power.

For evaluation, we collect a new personalized image

captioning dataset, comprising 1.1M Instagram posts from

6.3K users. Instagram is a great source for personalized

captioning, because posts mostly include personal pictures

with long hashtag lists and characteristic text with a wide

range of topics. For each picture post, we consider the body

text or a list of hashtags as groundtruth captions.

Our experimental results demonstrate that aforemen-

tioned three unique features of our CSMN model indeed

improve captioning performance, especially for personal-

ization purpose. We also validate that our CSMN signifi-

cantly outperforms several state-of-the-art captioning mod-

els with the decoders of RNNs or LSTMs (e.g. [27, 28,

31]). We evaluate with quantitative language metrics (e.g.

BLEU [21], CIDEr [26], METEOR [14], and ROUGE [15])

and user studies via Amazon Mechanical Turk.

We summarize contribution of this work as follows.

(1) To the best of our knowledge, we propose a first per-

sonalized image captioning approach. We introduce two

practical post automation tasks that benefit from personal-

ized captioning: post generation and hashtag prediction.

(2) We propose a novel memory network model named

CSMN for personalized captioning. The unique updates

of CSMN include (i) exploiting memory as a repository

for multiple context information, (ii) appending previously

generated words into memory to capture long-term infor-

mation without, and (iii) adopting CNN memory structure

to jointly represent nearby ordered memory slots.

(3) For evaluation of personalized image captioning, we

introduce a novel Instagram dataset. We make the code and

data publicly available.

(4) With quantitative evaluation and user studies via

AMT, we demonstrate the effectiveness of three novel fea-

tures of CSMN and its performance superiority over state-

of-the-art captioning models, including [27, 28, 31].

2. Related work

Image Captioning. In recent years, much work has been

published on image captioning, including [3, 4, 9, 12, 20,

22, 28, 31, 33], to name a few. Many proposed caption-

ing models exploit RNN-based decoders to generate a se-

quence of words from encoded representation of input im-

ages. For example, long-term recurrent convolutional net-

works [3] are one of earliest model to use RNNs for model-

ing the relations between sequential inputs and outputs. You

et al. [33] exploit semantic attention to combine top-down

and bottom-up strategies to extract richer information from

images, and couples it with an LSTM decoder. Compared

to such recent progress of image captioning research, it is

novel to replace an RNN-based decoder with a sequence

memory. Moreover, no previous work has tackled the per-

sonalization issue, which is the key objective of this work.

We also introduce post completion and hashtag prediction

as solid and practical applications of image captioning.
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Dataset # posts # users # posts/user # words/post

caption 721,176 4,820 149.6 (118) 8.55 (8)

hashtag 518,116 3,633 142.6 (107) 7.45 (7)

Table 1. Statistics of Instagram dataset. We also show average

and median (in parentheses) values. The total unique posts and

users in our dataset are (1, 124, 815/6, 315).

Personalization in Vision and Language Research.

There have been many studies about personalization in

computer vision and natural language processing [2, 8, 1,

32, 10, 23]. Especially, Denton et al. [2] develop a CNN

model that predicts hashtags from image content and user

information. However, this work does not formulate the

hashtag prediction as image captioning, and not address the

post completion. In computer vision, Yao et al. [32] pro-

pose a domain adaptation approach to classify user-specific

human gestures. Almaev et al. [1] adopt a transfer learning

framework to detect person-specific facial action unit de-

tection. In NLP, Mirkin et al. [18] enhance machine trans-

lation performance by exploiting personal traits. Polozov

et al. [23] generate personalized mathematical word prob-

lem for a given tutor/student specification by logic program-

ming. Compared to these papers, our problem setup is novel

in that personalization issues in image captioning have not

been discussed yet.

Neural Networks with Memory. Various memory net-

work models have been proposed to enable neural networks

to store variables and data over long timescales. Neural Tur-

ing Machines [5] use external memory to solve algorithmic

problems such as sorting and copying. Later, this archi-

tecture is extended to Differential Neural Computer (DNC)

[6] to solve more complicated algorithmic problems such

as finding shortest path and graph traversal. Weston et al.

[29] propose one of the earliest memory network models

for natural language question answering (QA), and later

Sukhbaatar et al. [24] modify the network to be trainable

in an end-to-end manner. Kumar et al. [13] and Milleret al.

[17] address language QA tasks proposing novel memory

networks such as dynamic networks with episodic memory

in [13] and key-value memory networks in [17]. Compared

to previous memory networks, our CSMN has three novel

features as discussed in section 1.

3. Dataset

We introduce our newly collected Instagram dataset,

whose key statistics are outlined in Table 1. We make sepa-

rate datasets for post completion and hashtag prediction.

3.1. Collection of Instagram Posts

We collect image posts from Instagram, which is one

of the fastest growing photo-sharing social networks. As

a post crawler, we use the built-in hashtag search function

provided by Instagram APIs. We select 270 search key-

words, which consist of the 10 most common hashtags for

each of 27 general categories of Pinterest (e.g. design, food,

style). We use the Pinterest categories because they are

well-defined topics to obtain image posts of diverse users.

We totally collect 3,455,021 raw posts from 17,813 users.

Next we process a series of filtering. We first apply lan-

guage filtering to include only English posts; we exclude

the posts where more than 20% of words are not in English

based on the dictionary en.us dict of PyEnchant. We then

remove the posts that embed hyperlinks in the body text be-

cause they are likely to be advertisement. Finally, if users

have more than max(15, 0.15×#user posts) non-English

or advertisement posts, we remove all of their posts.

Next we apply filtering rules for the lengths of captions

and hashtags. We limit maximum number of posts per user

to 1,000, not to make the dataset biased to a small number

of dominant users. We also limit minimum number of posts

per user to 50, to be sufficiently large to discover users’

writing patterns from posts. We also filter out the posts if

their lengths are too short or too long. We set 15 as maxi-

mum post length because we observe that lengthy posts tend

to include irrelevant stuff to the associated pictures. We set

3 as minimum post length because too short posts are likely

to include only an exclamation (e.g. great!) or a short reply

(e.g. thanks to everyone!). We use the same rule for hashtag

dataset. We observe that lengthy lists of hashtags more than

15 are often too much redundant (e.g. #fashionable, #fash-

ionblog, #fashionista, #fashionistas, #fashionlover, #fash-

ionlovers). Finally, we obtain about 721,176 posts for cap-

tions and 518,116 posts for hashtags.

3.2. Preprocessing

We separately build a vocabulary dictionary V for each

of the two tasks, by choosing the most frequent V words in

our dataset. For instance, the dictionary for hashtag predic-

tion includes only most frequent hashtags as vocabularies.

We set V to 40K for post completion and 60K for hash pre-

diction after thorough tests. Before building the dictionary,

we first remove any urls, unicodes except emojis, and spe-

cial characters. We then lowercase words and change user

names to a @username token.

4. The Context Sequence Memory Network

Figure 2 illustrates the proposed context sequence mem-

ory network (CSMN) model. The input is a query image

Iq of a specific user, and the output is a sequence of words:

{yt} = y1, . . . , yT , each of which is a symbol coming from

the dictionary V . That is, {yt} corresponds to a list of

hashtags in hashtag prediction, and a post sentence in post

generation. Optional input is the context information to be

added to memory, such as active vocabularies of a given

user. Since both tasks can be formulated as word sequence

prediction for a given image, we exploit the same CSMN
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Figure 2. Illustration of the proposed context sequence memory network (CSMN) model. (a) Context memory setup using image descrip-

tions and D frequent words from the query user’s previous posts (section 4.1). (b) Word prediction at every step t based on the memory

state (section 4.2). (c) Update of word output memory once a new output word is generated.

model while changing only the dictionary. Especially, we

too regard hashtag prediction as sequence prediction instead

of prediction of a bag of orderless tag words. Since hash-

tags in a post tend to have strong co-occurrence relations, it

is better to take previous hashtags into account to predict a

next one. It will be validated by our experimental results.

4.1. Construction of Context Memory

As in Figure 2(a), we construct the memory to store three

types of context information: (i) image memory for repre-

sentation of a query image, (ii) user context memory for

TF-IDF weighted D frequent words from the query user’s

previous posts, and (iii) word output memory for previously

generated words. Following [29], each input to the memory

is embedded into input and output memory representation,

for which we use superscript a and c, respectively.

Image Memory. We represent images using ResNet-

101 [7] pretrained on the ImageNet 2012 dataset. We test

two different descriptions: (7 × 7) feature maps of res5c

layer, and pool5 feature vectors. The res5c feature map de-

noted by Ir5c ∈ R
2,048×7×7 is useful if a model exploits

spatial attention; otherwise, the pool5 feature Ip5 ∈ R
2,048

is used as a feature vector of the image. Hence, the pool5 is

inserted into a single memory cell, while the res5c feature

map occupies 49 cells, on which the memory attention later

can focus on different regions of an (7× 7) image grid. We

will compare these two descriptors in the experiments.

The image memory vector mim ∈ R
1,024 for the res5c

feature is represented by

ma
im,j = ReLU(Wa

imIr5cj + ba
im), (1)

mc
im,j = ReLU(Wc

imIr5cj + bc
im), (2)

for j = 1, . . . , 49. The parameters to learn include W
a,c
im ∈

R
1,024×2,048 and b

a,c
im ∈ R

1,024. The ReLU indicates an

element-wise ReLU activation [19]. For the pool5, we use

m
a/c
im,j = ReLU(W

a/c
im I

p5
j + b

a/c
im ). (3)

for j = 1. In Eq.(3), we simply present two equations for

input and output memory as a single one using superscript

a/c. Without loss of generality, we below derive the formu-

lation assuming that we use the res5c feature.

User Context Memory. In a personalized setting where

the author of a query image is identifiable, we define

{ui}
D
i=1 by selecting D most frequent words from the user’s

previous posts. We input {ui}
D
i=1 into the user context

memory in a decreasing order of scores, in order to exploit

CNN later effectively. This context memory improves the

model’s performance by focusing more on the user’s writing

style of active vocabularies or hashtags. To build {ui}
D
i=1,

we compute TF-IDF scores and select top-D words for a

given user. Using TF-IDF scores means that we do not in-

clude too general terms that many users commonly use, be-

cause they are not helpful for personalization. Finally, the

user context memory vector m
a/c
us ∈ R

1,024 becomes

ua
j = Wa

euj ,u
c
j = Wc

euj ;yj ; j ∈ 1, . . . , D (4)

m
a/c
us,j = ReLU(Wh[u

a/c
j ] + bh), (5)

where uj is a one-hot vector for j-th active word. Parame-

ters include W
a/c
e ∈ R

512×V and Wh ∈ R
1,024×512. We

use the same Wh for both input and output memory, while

we learn separate word embedding matrices W
a/c
e .

Word Output Memory. As shown in Figure 2(c), we

insert a series of previously generated words y1, . . . , yt−1

into the word output memory, which is represented as

oa
j = Wa

eyj ,o
c
j = Wc

eyj ; j ∈ 1, . . . , t− 1 (6)

m
a/c
ot,j = ReLU(Wh[o

a/c
j ] + bh). (7)

where yj is a one-hot vector for j-th previous word. We use

the same word embeddings W
a/c
e and parameters Wh,bh

with user context memory in Eq.(4). We update m
a/c
ot,j for

every iteration whenever a new word is generated.
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Finally, we concatenate the input and memory presenta-

tion of all memory types: M
a/c
t = [m

a/c
im,1⊕· · ·⊕m

a/c
im,49⊕

m
a/c
us,1 ⊕ · · · ⊕ m

a/c
us,D ⊕ m

a/c
ot,1 ⊕ · · · ⊕ m

a/c
ot,t−1]. We use

m to denote the memory size, which is the sum of sizes of

three memory types: m = mim +mus +mot.

4.2. State-Based Sequence Generation

RNNs and their variants have been widely used for

sequence generation via recurrent connections throughout

time. However, our approach does not involve any RNN

module, but sequentially store all of previously generated

words into the memory. It enables to predict each output

word by selectively attending on the combinations of all

previous words, image regions, and user context.

We now discuss how to predict a word yt at time step t
based on the memory state (see Figure 2(b)). Letting one-

hot vector of previous word to yt−1, we first generate an

input vector qt at time t to our memory network as

qt = ReLU(Wqxt + bq), where xt = Wb
eyt−1. (8)

where Wb
e ∈ R

512×V and Wq ∈ R
1,024×512 are learned.

Next qt is fed into the attention model of context memory:

pt = softmax(Ma
t qt), Mot(∗, i) = pt ◦M

c
t(∗, i). (9)

We compute how well the input vector qt matches with

each cell of memory Ma
t by a matrix multiplication fol-

lowed by a softmax. That is, pt ∈ R
m indicates the compat-

ibility of qt over m memory cells. Another interpretation is

that pt indicates which part of input memory is important

for input qt at current time step (i.e. to which part of mem-

ory the attention turns at time t [31]). Next we rescale each

column of the output memory presentation Mc
t ∈ R

m×1,024

by element-wise multiplication (denoted by ◦) with pt ∈
R

m. As a result, we obtain the attended output memory rep-

resentation Mot, which are decomposed into three memory

types as Mot = [mo
im,1:49 ⊕m

a/c
us,1:D ⊕m

a/c
ot,1:t−1].

Memory CNNs. We then apply a CNN to the attended

output of memory Mot. As will be shown in our experi-

ments, using a CNN significantly boosts the captioning per-

formance. It is mainly due to that the CNN allows us to

obtain a set of powerful representations by fusing multiple

heterogeneous cells with different filters.

We define a set of three filters whose depth is 300 by

changing window sizes h = [3, 4, 5]. We separately apply

a single convolutional layer and max-pooling layer to each

memory type. For h = [3, 4, 5],

chim,t = maxpool(ReLU(wh
im ∗mo

im,1:49 + bh
im)) (10)

where ∗ indicates the convolutional operation. Parame-

ters include biases bh
im ∈ R

49×300 and filters wh
im ∈

R
[3,4,5]×1,024×300. Via max-pooling, each chim,t is reduced

from (300× [47, 46, 45]) to (300× [1, 1, 1]). Finally, we

obtain cim,t by concatenating chim,t from h = 3 to 5. We

repeat the convolution and maxpooling operation of Eq.(10)

to the other memory types as well. As a result, we ob-

tain ct = [cim,t ⊕ cus,t ⊕ cot,t], whose dimension is

2, 700 = 3× 3× 300.

Next we compute the output word probability st ∈ R
V :

ht = ReLU(Woct + bo), (11)

st = softmax(Wfht). (12)

We obtain the hidden state ht by Eq.(11) with a weight ma-

trix Wo ∈ R
2,700×2,700 and a bias bo ∈ R

2,700. We then

compute the output probability st over vocabularies V by a

softmax layer in Eq.(12).

Finally, we select the word that attains the highest prob-

ability yt = argmax
s∈V(st). Unless the output word yt is

the EOS token, we repeat generating a next word by feeding

yt into the word output memory in Eq.(6) and the input of

Eq.(8) at time step t+ 1. As a simple post-processing only

for hashtag prediction, we remove duplicate output hash-

tags. In summary, this inference is greedy in the sense that

the model creates the best sequence by a sequential search

for the best word at each time step.

4.3. Training

To train our model, we adopt teacher forced learning that

provide the correct memory state to predict next words. We

use the softmax cross-entropy loss as the cost function for

every time step predictions, which minimizes the negative

log likelihood from the estimated yt to its corresponding

target word yGT,t. We randomly initialize all the parameters

with a uniform unit scaling of 1.0 factor: [±
√

3/dim].
We apply mini-batch stochastic gradient descent. We se-

lect the Adam optimizer [11] with β2 = 0.9, β2 = 0.999
and ϵ = 1e − 08. To speed up training, we use four GPUs

for data parallelism, and set a batch size as 200 for each

GPU. We earn the best results the initial learning rate is set

as 0.001 for all the models. At every 5 epochs, we divide a

learning rate by 1.2 to gradually decrease it. We train our

models up to 20 epochs.

5. Experiments

We compare the performance of our approach with other

state-of-the-art models via quantitative measures and Ama-

zon Mechanical Turk (AMT) studies.

5.1. Experimental Setting

We use the image of a test post as a query and asso-

ciated hashtags and text description as groundtruth (GT).

For evaluation metrics of hashtag prediction, we compute

the F1-score as a balanced average metric between pre-

cision and recall between predicted hashtag sets and GT
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(GT) pretty flowers 

from the hubby ��

(Ours) my beautiful flowers 

from my hubby

(GT) the face in the woods

(Ours) my first painting 

of the day

(GT) pool pass for the summer ✔

(Ours) the pool was absolutely 

perfect ☀

(GT) awesome view 

of the city
(Ours) the city of 

cincinnati is so pretty(NoCNN) the beach (Usr) no enhancements 

needed (UsrIm) there are no words (NoFB) I love

(GT) dinner and drinks 

with @username

(Ours) wine and movie 

night with @username

(Im) my afternoon is sorted

(GT) air is in the fall

(Ours) fall is in the air

(Usr) tis the holiday 

season

(GT) this speaks to me 

literarily

(Ours) I love this #quote

(Showtell) is the only thing 

that matters  _UNK

Figure 3. Seven examples of post generation with query images, groundtruths (GT), and generated posts by our method (Ours) and base-

lines. The @username shows an anonymized user. Most of the predicted texts are relevant and meaningful for the query images.

(GT) #style #fashion #shopping 

#shoes #kennethcole…

(Ours) #newclothes #fashion 

#shoes #brogues

(GT) #connecticut #books 

#bookbarn

(Ours) #books #reading

(GT) #boudoir #heartprint #love 

#weddings #potterybarn

(Ours) #decor #homedecor #interiors 

#interiordesign #rustic #bride #pretty 

#wedding #home #white

(GT) #fashionkids #stylish-

cubs #kidzfashion …

(Ours) #pink #babygirl

#fashionkids #cutekidsclub …

(GT) #coffee #dailycortado #love 

#vscocam #vscogood #vscophile

#coffeebreak …

(Ours) #coffee #coffeetime

#coffeeart #latte #latteart

#coffeebreak #vsco

(GT) #greensmoothie #dairyfree

#lifewithatoddler #glutenfree

#vegetarian …

(Ours) #greensmoothie #greenjuice

#smoothie #vegan #raw #juicing 

#eatclean #detox #cleanse

Figure 4. Six examples of hashtag prediction with query images, groundtruths (GT), and our predicted hashtags (Ours). Bold hashtags are

correctly matched ones that occur in both (GT) and (Ours). Colored words are the ones that appear in both prediction and context memory.

sets: 2(1/precision+1/recall)−1. For evaluation measures

of post generation, we compute the language similarity be-

tween predicted sentences and GTs. We exploit BLEU [21],

CIDEr [26], METEOR [14], and ROUGE-r [15] scores. In

all measures, higher scores indicate better performance.

We randomly split the dataset into 90% for training, 5K

posts for test and the rest for validation. We divide the

dataset by users so that training and test users are disjoint, in

order to correctly measure the prediction power of methods.

If users’s posts exist both in training and test sets, then pre-

diction can be often trivial by simply retrieving their closest

posts in the training set.

While some benchmark datasets for image captioning

(e.g. Flickr30K [34] and MS COCO [16]) have multiple

GTs (e.g. 5 sentences per image in the MS COCO), our

dataset has only one GT post text and hashtag list per test

example. Hence, the absolute metric values in this work

may be lower than those in these benchmark datasets.

5.2. Baselines

As baselines, we select multiple nearest neighbor ap-

proaches, one language generation algorithm, two state-of-

the-art image captioning methods, and multiple variants of

our model. As straightforward baselines, we first test the

1-nearest search by images, denoted by (1NN-Im); for a

query image, we find its closest training image using the ℓ2
distance on ResNet pool5 descriptors, and return its text as

prediction. Second, we test the 1-nearest search by users,

denoted by (1NN-Usr); we find the nearest user whose 60

active vocabularies are overlapped the most with those of

the query user, and then randomly select one post of the

nearest user. The third nearest neighbor variant denoted

by (1NN-UsrIm) is to find the 1-nearest image among the

nearest user’s images, and return its text as prediction.

As a language-only method, we use the sequence-

to-sequence model by Vinyals et al. [27], denoted by

(seq2seq). It is a recurrent neural network with three hid-

den LSTM layers, and originally applied to the language

translation. This baseline takes 60 active words of the query

user in a decreasing order of TF-IDF weights, and predicts

captions. Since this baseline does not use an image for text

generation, this comparison quantifies how much the image

is important to predict hashtags or text.

We also compare with the two state-of-the-art image cap-

tioning methods with no personalization. The first baseline

is (ShowTell) of [28], which is a multi-modal CNN and

LSTM model. The second baseline is the attention-based

captioning model of [31] denoted by (AttendTell).

We compare different variants of our method (CSMN-*).

To validate the contribution of each component, we ex-

clude one of key components from our model as follows:

(i) without the memory CNN in section 4.2 denoted by

(-NoCNN-), (ii) without user context memory denoted by

(-NoUC-), and (iii) without feedback of previously gen-

erated words to output memory by (-NoWO-). That is, the

(-NoCNN-) quantifies the performance improvement by the

use of the memory CNN. The (-NoUC-) is the model with-

out personalization; that is, it does not use the information

about query users, such as their D active vocabularies. Fi-

nally, the (-NoWO-) is the model without sequential pre-

diction. For hashtag prediction, the (-NoWO-) indicates the

performance of separate tag generation instead of sequen-
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Methods B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE-L

(seq2seq) [27] 0.050 0.012 0.003 0.000 0.024 0.034 0.065

(ShowTell)∗ [28] 0.055 0.019 0.007 0.003 0.038 0.004 0.081

(AttendTell)∗ [31] 0.106 0.015 0.000 0.000 0.026 0.049 0.140

(1NN-Im)∗ 0.071 0.020 0.007 0.004 0.032 0.059 0.069

(1NN-Usr) 0.063 0.014 0.002 0.000 0.028 0.025 0.059

(1NN-UsrIm) 0.106 0.032 0.011 0.005 0.046 0.084 0.104

(CSMN-NoCNN-P5) 0.086 0.037 0.015 0.000 0.037 0.103 0.122

(CSMN-NoUC-P5)∗ 0.079 0.032 0.015 0.008 0.037 0.133 0.120

(CSMN-NoWO-P5) 0.090 0.040 0.016 0.006 0.037 0.119 0.116

(CSMN-R5C) 0.097 0.034 0.013 0.006 0.040 0.107 0.110

(CSMN-P5) 0.171 0.068 0.029 0.013 0.064 0.214 0.177

(CSMN-W20-P5) 0.116 0.041 0.018 0.007 0.044 0.119 0.123

(CSMN-W100-P5) 0.109 0.037 0.015 0.007 0.042 0.109 0.112

Table 2. Evaluation of post generation between different methods for the Instagram

dataset. As performance measures, we use language similarity metrics (BLEU, CIDEr,

METEOR, ROUGE-L). The methods with [∗] use no personalization.

Methods F1 score

(seq2seq) [27] 0.132 0.085

(ShowTell)∗ [28] 0.028 0.011

(AttendTell)∗ [31] 0.020 0.014

(1NN-Im)∗ 0.049 0.110

(1NN-Usr) 0.054 0.173

(1NN-UsrIm) 0.109 0.380

(CSMN-NoCNN-P5) 0.135 0.310

(CSMN-NoUC-P5)∗ 0.111 0.076

(CSMN-NoWO-P5) 0.117 0.244

(CSMN-R5C) 0.192 0.340

(CSMN-P5) 0.230 0.390

(CSMN-W20-P5) 0.147 0.349

(CSMN-W80-P5) 0.135 0.341

Table 3. Evaluation of hashtag prediction. We

show test results for split by users in the left and

split by posts in the right.

tial prediction of our original proposal. We also test two

different image descriptors in section 4.1: (7×7) res5c fea-

ture maps and pool5 feature vectors, denoted by (-R5C) and

(-P5) respectively. Finally, we also evaluate the effects on

the sizes of user context memory: (-W20-) and (-W80-)

or (-W100-).

5.3. Quantitative Results

Table 2 and 3 summarize the quantitative results of post

generation and hashtag prediction, respectively. Since algo-

rithms show similar patterns in both tasks, we below ana-

lyze the experimental results together.

First of all, according to most metrics in both tasks,

our approach (CSMN-*) significantly outperforms base-

lines. We can divide the algorithms into two groups with or

without personalization; the latter includes (ShowTell),

(AttendTell), (1NN-Im), and (CSMN-NoUC-P5),

while the former comprises the other methods. Our

(CSMN-NoUC-P5) ranks the first among the methods with

no personalization, while the (CSMN-P5) achieves the best

overall. Interestingly, using a pool5 feature vector as image

description that occupies only a single memory slot leads

better performance than using (7 × 7) res5c feature maps

with 49 slots. It is mainly due to that attention learning

quickly becomes harder with a larger dimension of image

representation. Another reason could be that users do not

tent to discuss in the level of details about individual (7×7)
image grids, and thus a holistic view of the image content is

sufficient for prediction of users’ text.

We summarize other interesting observations as follows.

First, among the baselines, the simple nearest neighbor ap-

proach (1NN-UsrIm) turns out to be the strongest candi-

date. Second, our approach becomes significantly worsen,

if we remove one of key components, such as memory

CNN, personalization, and sequential prediction. Third,

among the tested memory sizes of user context, the best per-

formance is obtained with 60. With larger memory sizes, at-

tention learning becomes harder. Moreover, we choose the

size of 60 based on the statistics of our dataset; with a too

larger size, there are many empty slots, which also make at-

tention learning difficult. Finally, we observe that post gen-

eration is more challenging than hashtag prediction. It is

due to that the expression space of post generation is much

larger because the post text includes any combinations of

words, emojis, and symbols.

Given that Instagram provides a function of hashtag au-

tomation from previous posts when writing a new post, we

test another dataset split for hashtag prediction. That is, we

divide dataset by posts so that each user’s posts are included

in both training and test sets. We call this as split by posts,

while the original split as split by users. We observe that,

due to the automation function, many posts in our training

and test set have almost identical hashtags. This setting is

highly favorable for (1NN-UsrIm), which returns the text

of the closest training image of the query user. Table 3

shows the results of split by users in the left and split by

posts in the right. Interestingly, our (CSMN-P5) works bet-

ter than (1NN-UsrIm) even in the setting of split by posts,

although its performance margin (i.e. 0.01 in F1 score) is

not as significant as in the split by users (i.e. 0.121).

5.4. User Studies via Amazon Mechanical Turk

We perform AMT tests to observe general users’ prefer-

ences between different algorithms for the two post automa-

tion tasks. For each task, we randomly sample 100 test ex-

amples. At test, we show a query image and three randomly

sampled complete posts of the query user as a personaliza-

tion clue, and two text descriptions generated by our method

and one baseline in a random order. We ask turkers to

choose more relevant one among the two. We obtain an-

swers from three different turkers for each query. We select

the variant (CSMN-P5) as a representative of our method,

because of its best quantitative performance. We compare

with three baselines by selecting the best method in each

group of 1NNs, image captioning, and language-only meth-

ods: (1NN-UsrIm), (ShowTell), and (seq2seq).

Table 4 summarize the results of AMT tests, which val-

idate that human annotators significantly prefer our results
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#art #artist #illustration #paint 

#design #artwork #painting

#motivation #love #family #joy 

#peace #prayer

#love #gift #makeup #skincare #mom

#vintagebooks #kids #art #gift #vintage 

#handmade #packaging #books #diy

#pink #love #valentinesday #engaged 

#bride #wedding #bridetobe

#hair #natural 
#saturdaynight #fashion 

#shenanigans #selfie #makeup…

#love #family

#pro #selfie 

my boys cheering on the sidelines for the game

golfing with my little bro !

cubs game with the girls at the rugby today

my baby cousin @username and I

beautiful solitude in the morning

the beautiful melbourne I love spring

beautiful day for a wedding

Figure 5. Three examples of hashtag prediction and two examples of post prediction with query images and multiple predictions by different

users (shown in different colors). Predicted results vary according to query users, but still are relevant and meaningful for the query images.

(a) Design topic

#cute #pet #catsofinstagram #cat #cats#art #artist #interiors 

#handmade #design #interior

#sew #art #stitch #artist 

#sewing #illustration 

#embroidery #etsy #bird

#sketch #art #artist #illustration #instaart

#design #artwork #webstagram #drawing

(b) Substantially different topic

#blue #sketch #art 

#artist #tree

#summer #sea #sky

Figure 6. Six examples of hashtag prediction for a single user whose most of posts are about design. (a) For design-related query images,

our CSMN predicts relevant hashtags for the design topic. (b) For the query images of substantially different topics, our CSMN is also

resilient to predict meaningful hashtags.

Hashtag Prediction

vs. Baselines (1NN-UsrIm) (Showtell) (seq2seq)

(CSMN-P5) 67.0 (201/300) 88.0 (264/300) 81.3 (244/300)

Post Generation

(CSMN-P5) 73.0 (219/300) 78.0 (234/300) 81.3 (244/300)

Table 4. AMT preference results for the two tasks between our

methods and three baselines. We show the percentages of re-

sponses that turkers vote for our approach over baselines.

to those of baselines. Among the baselines, (1NN-UsrIm)

is preferred the most, given that the performance gap with

our approach is the smallest. These results coincide with

those of quantitative evaluation in Table 2 and 3.

5.5. Qualitative Results

Figure 3 illustrates selected examples of post generation.

In each set, we show a query image, GT, and generated text

description by our method and baselines. In many of Insta-

gram examples, GT comments are hard to correctly predict,

because they are extremely diverse, subjective, and private

conversation over a variety of topics. Nonetheless, most

of predicted text descriptions are relevant to the query im-

ages. Moreover, our CSMN model is able to appropriately

use normal words, emojis, and even mentions to other users

(anonymized by @username). Figure 4 shows examples of

hashtag prediction. We observe that our hashtag prediction

is robust even with a variety of topics, including profiles,

food, fashion, and interior design.

Figure 5 shows examples of how much hashtag and post

prediction vary according to different users for the same

query images. Although predicted results change in terms

of used words, they are relevant and meaningful for the

query images. Figure 6 illustrates the variation of text pre-

dictions according to query images for the same user. We

first select a user whose most of posts are about design, and

then obtain prediction by changing the query images. For

design-related query images, the CSMN predicts relevant

hashtags for the design topic (Figure 6(a)). For the query

images of substantially different topics, our CSMN is also

resilient to predict relevant hashtags (Figure 6(b)).

6. Conclusions

We proposed the context sequence memory networks

(CSMN) as a first personalized image captioning approach.

We addressed two post automation tasks: hashtag predic-

tion and post generation. With quantitative evaluation and

AMT user studies on nearly collected Instagram dataset, we

showed that our CSMN approach outperformed other state-

of-the-art captioning models. There are several promising

future directions that go beyond this work. First, we can

extend the CSMN model for another interesting related task

such as post commenting that generates a thread of replies

for a given post. Second, since we dealt with only Insta-

gram posts in this work, we can explore data in other social

networks such as Flickr, Pinterest, or Tumblr, which have

different post types, metadata, and text and hashtag usages.
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