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Abstract

One of recent trends [31, 32, 14] in network architec-

ture design is stacking small filters (e.g., 1x1 or 3x3) in the

entire network because the stacked small filters is more ef-

ficient than a large kernel, given the same computational

complexity. However, in the field of semantic segmenta-

tion, where we need to perform dense per-pixel prediction,

we find that the large kernel (and effective receptive field)

plays an important role when we have to perform the clas-

sification and localization tasks simultaneously. Following

our design principle, we propose a Global Convolutional

Network to address both the classification and localization

issues for the semantic segmentation. We also suggest a

residual-based boundary refinement to further refine the ob-

ject boundaries. Our approach achieves state-of-art perfor-

mance on two public benchmarks and significantly outper-

forms previous results, 82.2% (vs 80.2%) on PASCAL VOC

2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.

1. Introduction

Semantic segmentation can be considered as a per-pixel

classification problem. There are two challenges in this

task: 1) classification: an object associated to a specific se-

mantic concept should be marked correctly; 2) localization:

the classification label for a pixel must be aligned to the ap-

propriate coordinates in output score map. A well-designed

segmentation model should deal with the two issues simul-

taneously.

However, these two tasks are naturally contradictory. For

the classification task, the models are required to be in-

variant to various transformations like translation and ro-

tation. But for the localization task, models should be

transformation-sensitive, i.e., precisely locate every pixel

for each semantic category. The conventional semantic seg-

mentation algorithms mainly target for the localization is-

sue, as shown in Figure 1 B. But this might decrease the

Figure 1. A: Classification network; B: Conventional segmentation

network, mainly designed for localization; C: Our Global Convo-

lutional Network.

classification performance.

In this paper, we propose an improved net architecture,

called Global Convolutional Network (GCN), to deal with

the above two challenges simultaneously. We follow two

design principles: 1) from the localization view, the model

structure should be fully convolutional to retain the localiza-

tion performance and no fully-connected or global pooling

layers should be used as these layers will discard the local-

ization information; 2) from the classification view, large

kernel size should be adopted in the network architecture

to enable densely connections between feature maps and

per-pixel classifiers, which enhances the capability to han-

dle different transformations. These two principles lead to

our GCN, as in Figure 2 A. The FCN [25]-like structure

is employed as our basic framework and our GCN is used

to generate semantic score maps. To make global convolu-

tion practical, we adopt symmetric, separable large filters to

reduce the model parameters and computation cost. To fur-

ther improve the localization ability near the object bound-

aries, we introduce boundary refinement block to model the

boundary alignment as a residual structure, shown in Fig-

ure 2 C. Unlike the CRF-like post-process [6], our boundary
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refinement block is integrated into the network and trained

end-to-end.

Our contributions are summarized as follows: 1) we pro-

pose Global Convolutional Network for semantic segmen-

tation which explicitly address the “classification” and “lo-

calization” problems simultaneously; 2) a Boundary Refine-

ment block is introduced which can further improve the lo-

calization performance near the object boundaries; 3) we

achieve state-of-art results on two standard benchmarks,

with 82.2% on PASCAL VOC 2012 and 76.9% on the

Cityscapes.

2. Related Work

In this section we quickly review the literatures on se-

mantic segmentation. One of the most popular CNN based

work is the Fully Convolutional Network (FCN) [25]. By

converting the fully-connected layers into convolutional

layers and concatenating the intermediate score maps, FCN

has outperformed a lot of traditional methods on semantic

segmentation. Following the structure of FCN, there are

several works trying to improve the semantic segmentation

task based on the following three aspects.

Context Embedding in semantic segmentation is a hot

topic. Among the first, Zoom-out [26] proposes a hand-

crafted hierarchical context features, while ParseNet [23]

adds a global pooling branch to extract context information.

Further, Dilated-Net [37] appends several layers after the

score map to embed the multi-scale context, and Deeplab-

V2 [7] uses the Atrous Spatial Pyramid Pooling, which is a

combination of convolutions, to embed the context directly

from feature map.

Resolution Enlarging is another research direction in

semantic segmentation. Initially, FCN [25] proposes the

deconvolution (i.e. inverse of convolution) operation to in-

crease the resolution of small score map. Further, Deconv-

Net [27] and SegNet [3] introduce the unpooling operation

(i.e. inverse of pooling) and a glass-like network to learn

the upsampling process. More recently, LRR [12] argues

that upsampling a feature map is better than score map. In-

stead of learning the upsampling process, Deeplab [24] and

Dilated-Net [37] propose a special dilated convolution to

directly increase the spatial size of small feature maps, re-

sulting in a larger score map.

Boundary Alignment tries to refine the predictions near

the object boundaries. Among the many methods, Condi-

tional Random Field (CRF) is often employed here because

of its good mathematical formation. Deeplab [6] directly

employs denseCRF [18], which is a CRF-variant built on

fully-connected graph, as a post-processing method after

CNN. Then CRFAsRNN [38] models the denseCRF into

a RNN-style operator and proposes an end-to-end pipeline,

yet it involves too much CPU computation on Permutohe-

dral Lattice [1]. DPN [24] makes a different approxima-

tion on denseCRF and put the whole pipeline completely on

GPU. Furthermore, Adelaide [21] deeply incorporates CRF

and CNN where hand-crafted potentials is replaced by con-

volutions and nonlinearities. Besides, there are also some

alternatives to CRF. [4] presents a similar model to CRF,

called Bilateral Solver, yet achieves 10x speed and com-

parable performance. [16] introduces the bilateral filter to

learn the specific pairwise potentials within CNN.

In contrary to previous works, we argues that semantic

segmentation is a classification task on large feature map

and our Global Convolutional Network could simultane-

ously fulfill the demands of classification and localization.

3. Approach

In this section, we first propose a novel Global Convolu-

tional Network (GCN) to address the contradictory aspects

— classification and localization in semantic segmentation.

Then using GCN we design a fully-convolutional frame-

work for semantic segmentation task.

3.1. Global Convolutional Network

The task of semantic segmentation, or pixel-wise classi-

fication, requires to output a score map assigning each pixel

from the input image with semantic label. As mentioned in

Introduction section, this task implies two challenges: clas-

sification and localization. However, we find that the re-

quirements of classification and localization problems are

naturally contradictory: (1) For classification task, models

are required invariant to transformation on the inputs — ob-

jects may be shifted, rotated or rescaled but the classifica-

tion results are expected to be unchanged. (2) While for lo-

calization task, models should be transformation-sensitive

because the localization results depend on the positions of

inputs.

In deep learning, the differences between classification

and localization lead to different styles of models. For clas-

sification, most modern frameworks such as AlexNet [20],

VGG Net [31], GoogleNet [32, 33] or ResNet [14] em-

ploy the ”Cone-shaped” networks shown in Figure 1 A:

features are extracted from a relatively small hidden layer,

which is coarse on spatial dimensions, and classifiers

are densely connected to entire feature map via fully-

connected layer [20, 31] or global pooling layer [32, 33, 14],

which makes features robust to locally disturbances and

allows classifiers to handle different types of input trans-

formations. For localization, in contrast, we need rela-

tively large feature maps to encode more spatial informa-

tion. That is why most semantic segmentation frameworks,

such as FCN [25, 30], U-Net [28], DeepLab [6, 7], Deconv-

Net [27], adopt ”Barrel-shaped” networks shown in Fig-

ure 1 B. Techniques such as Deconvolution [25], Unpool-

ing [27, 3] and Dilated-Convolution [6, 37] are used to gen-

erate high-resolution feature maps, then classifiers are con-
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Figure 2. An overview of the whole pipeline in (A). The details of Global Convolutional Network (GCN) and Boundary Refinement (BR)

block are illustrated in (B) and (C), respectively.

nected locally to each spatial location on the feature map to

generate pixel-wise semantic labels.

We notice that current state-of-the-art semantic segmen-

tation models [25, 6, 27] mainly follow the design princi-

ples for localization, however, which may be suboptimal

for classification. As classifiers are connected locally rather

than globally to the feature map, it is difficult for classi-

fiers to handle different variations of transformations on the

input. For example, consider the situations in Figure 3: a

classifier is aligned to the center of an input object, so it is

expected to give the semantic label for the object. At first,

the valid receptive filed (VRF)1 is large enough to hold the

entire object. However, if the input object is resized to a

large scale, then VRF can only cover a part of the object,

which may be harmful for classification. It will be even

worse if larger feature maps are used, because the gap be-

tween classification and localization becomes larger.

Based on above observation, we try to design a new ar-

chitecture to overcome the drawbacks. First from the local-

ization view, the structure must be fully-convolutional with-

out any fully-connected layer or global pooling layer that

used by many classification networks, since the latter will

1Feature maps from modern networks such as GoolgeNet or ResNet

usually have very large receptive field because of the deep architecture.

However, studies [39] show that network tends to gather information

mainly from a much smaller region in the receptive field, which is called

valid receptive field (VRF) in this paper.

discard localization information. Second from the classi-

fication view, motivated by the densely-connected structure

of classification models, the kernel size of the convolutional

structure should be as large as possible. Specially, if the ker-

nel size increases to the spatial size of feature map (named

global convolution), the network will share the same ben-

efit with pure classification models. Based on these two

principles, we propose a novel Global Convolutional Net-

work (GCN) in Figure 2 B. Instead of directly using larger

kernel or global convolution, our GCN module employs a

combination of 1 × k + k × 1 and k × 1 + 1 × k convo-

lutions, which enables densely connections within a large

k×k region in the feature map. Different from the separable

kernels used by [33], we do not use any nonlinearity after

convolution layers. Compared with the trivial k × k convo-

lution, our GCN structure involves only O( 2
k
) computation

cost and number of parameters, which is more practical for

large kernel sizes.

3.2. Overall Framework

Our overall segmentation model are shown in Figure 2.

We use pretrained ResNet [14] as the feature network and

FCN4 [25, 36] as the segmentation framework. Multi-scale

feature maps are extracted from different stages in the fea-

ture network. Global Convolutional Network structures are

used to generate multi-scale semantic score maps for each
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Figure 3. Visualization of valid receptive field (VRF) introduced by [39]. Regions on images show the VRF for the score map located at

the center of the bird. For traditional segmentation model, even though the receptive field is as large as the input image, however, the VRF

just covers the bird (A) and fails to hold the entire object if the input resized to a larger scale (B). As a comparison, our Global Convolution

Network significantly enlarges the VRF (C).

class. Similar to [25, 36], score maps of lower resolution

will be upsampled with a deconvolution layer, then added

up with higher ones to generate new score maps. The final

semantic score map will be generated after the last upsam-

pling, which is used to output the prediction results.

In addition, we propose a Boundary Refinement (BR)

block shown in Figure 2 C. Here, we models the boundary

alignment as a residual structure. More specifically, we de-

fine S̃ as the refined score map: S̃ = S +R(S), where S is

the coarse score map and R(·) is the residual branch. The

details can be referred to Figure 2.

4. Experiment

We evaluate our approach on the standard benchmark

PASCAL VOC 2012 [11, 10] and Cityscapes [8]. PAS-

CAL VOC 2012 has 1464 images for training, 1449 images

for validation and 1456 images for testing, which belongs

to 20 object classes along with one background class. We

also use the Semantic Boundaries Dataset [13] as auxiliary

dataset, resulting in 10,582 images for training. We choose

the state-of-the-art network ResNet 152 [14] (pretrained on

ImageNet [29]) as our base model for fine tuning. Dur-

ing the training time, we use standard SGD [20] with batch

size 1, momentum 0.99 and weight decay 0.0005 . Data

augmentations like mean subtraction and horizontal flip are

also applied in training. The performance is measured by

standard mean intersection-over-union (IoU). All the exper-

iments are running with Caffe [17] tool.

In the next subsections, first we will perform a series of

ablation experiments to evaluate the effectiveness of our ap-

proach. Then we will report the full results on PASCAL

VOC 2012 and Cityscapes.

4.1. Ablation Experiments

In this subsection, we will make apple-to-apple compar-

isons to evaluate our approaches proposed in Section 3. As

mentioned above, we use PASCAL VOC 2012 validation

set for the evaluation. For all succeeding experiments, we

pad each input image into 512 × 512 so that the top-most

feature map is 16× 16.

Figure 4. (A) Global Convolutional Network. (B) 1 × 1 convolu-

tion baseline. (C) k × k convolution. (D) stack of 3× 3 convolu-

tions.

4.1.1 Global Convolutional Network — Large Kernel

Matters

In Section 3.1 we propose Global Convolutional Net-

work (GCN) to enable densely connections between clas-

sifiers and features. The key idea of GCN is to use large

kernels, whose size is controlled by the parameter k (see

Figure 2 B). To verify this intuition, we enumerate differ-

ent k and test the performance respectively. The overall

network architecture is shown as in Figure 2 A except that

Boundary Refinement block is not applied. For better com-

parison, a naive baseline is added just to replace GCN with a

simple 1×1 convolution (shown in Figure 4 B). The results

are presented in Table 1.

We try different kernel sizes ranging from 3 to 15. Note

that only odd size are used just to avoid alignment error. In

the case k = 15, which roughly equals to the feature map

size (16×16), the structure becomes “really global convolu-
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k base 3 5 7 9 11 13 15

Score 69.0 70.1 71.1 72.8 73.4 73.7 74.0 74.5

Table 1. Experimental results on different k settings of Global

Convolutional Network. The score is evaluated by standard mean

IoU(%) on PASCAL VOC 2012 validation set.

tional”. From the results, we can find that the performance

consistently increases with the kernel size k. Especially,

the “global convolutional” version (k = 15) surpasses the

smallest one by a significant margin 5.5%. Results show

that large kernel brings great benefit in our GCN structure,

which is consistent with our analysis in Section 3.1.

Further Discussion: In the experiments in Table 1,

since there are other differences between baseline and dif-

ferent versions of GCN, it seems not so confirmed to at-

tribute the improvements to large kernels or GCN. For ex-

ample, one may argue that the extra parameters brought by

larger k lead to the performance gain. Or someone may

think to use another simple structure instead of GCN to

achieve large equivalent kernel size. So we will give more

evidences for better understanding.

(1) Are more parameters helpful? In GCN, the number

of parameters increases linearity with kernel size k, so one

natural hypothesis is that the improvements in Table 1 are

mainly brought by the increased number of parameters. To

address this, we compare our GCN with the trivial large ker-

nel design with a trivial k×k convolution shown in Figure 4

C. Results are shown in Table 2. From the results we can see

that for any given kernel size, the trivial convolution design

contains more parameters than GCN. However, the latter is

consistently better than the former in performance respec-

tively. It is also clear that for trivial convolution version,

k 3 5 7 9

Score (GCN) 70.1 71.1 72.8 73.4

Score (Conv) 69.8 70.4 69.6 68.8

# of Params (GCN) 260K 434K 608K 782K

# of Params (Conv) 387K 1075K 2107K 3484K

Table 2. Comparison experiments between Global Convolutional

Network and the trivial implementation. The score is measured

under standard mean IoU(%), and the 3rd and 4th rows show num-

ber of parameters of GCN and trivial Convolution after res-5.

larger kernel will result in better performance if k ≤ 5, yet

for k ≥ 7 the performance drops. One hypothesis is that

too many parameters make the training suffer from overfit,

which weakens the benefits from larger kernels. However,

in training we find trivial large kernels in fact make the net-

work difficult to converge, while our GCN structure will not

suffer from this drawback. Thus the actual reason still needs

further study.

(2) GCN vs. Stack of small convolutions. Instead of

GCN, another trivial approach to form a large kernel is to

use stack of small kernel convolutions(for example, stack

of 3 × 3 kernels in Figure 4 D), , which is very common

in modern CNN architectures such as VGG-net [31]. For

example, we can use two 3×3 convolutions to approximate

a 5× 5 kernel. In Table 3, we compare GCN with convolu-

tional stacks under different equivalent kernel sizes. Differ-

ent from [31], we do not apply nonlinearity within convo-

lutional stacks so as to keep consistent with GCN structure.

Results shows that GCN still outperforms trivial convolu-

tion stacks for any large kernel sizes.

k 3 5 7 9 11

Score (GCN) 70.1 71.1 72.8 73.4 73.7

Score (Stack) 69.8 71.8 71.3 69.5 67.5

Table 3. Comparison Experiments between Global Convolutional

Network and the equivalent stack of small kernel convolutions.

The score is measured under standard mean IoU(%). GCN is still

better with large kernels (k > 7).

For large kernel size (e.g. k = 7) 3 × 3 convolutional

stack will bring much more parameters than GCN, which

may have side effects on the results. So we try to reduce

the number of intermediate feature maps for convolutional

stack and make further comparison. Results are listed in Ta-

ble 4. It is clear that its performance suffers from degrada-

tion with fewer parameters. In conclusion, GCN is a better

structure compared with trivial convolutional stacks.

m (Stack) 2048 1024 210 2048 (GCN)

Score 71.3 70.4 68.8 72.8

# of Params 75885K 28505K 4307K 608K

Table 4. Experimental results on the channels of stacking of small

kernel convolutions. The score is measured under standard mean

IoU. GCN outperforms the convolutional stack design with less

parameters.

(3) How GCN contributes to the segmentation results? In

Section 3.1, we claim that GCN improves the classification

capability of segmentation model by introducing densely

connections to the feature map, which is helpful to han-

dle large variations of transformations. Based on this, we

can infer that pixels lying in the center of large objects may

benefit more from GCN because it is very close to “pure”

classification problem. As for the boundary pixels of ob-

jects, however, the performance is mainly affected by the

localization ability.

To verify our inference, we divide the segmentation

score map into two parts: a) boundary region, whose pix-

els locate close to objects’ boundary (distance ≤ 7), and b)

internal region as other pixels. We evaluate our segmenta-

tion model (GCN with k = 15) in both regions. Results

are shown in Table 5. We find that our GCN model mainly
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improves the accuracy in internal region while the effect in

boundary region is minor, which strongly supports our argu-

ment. Furthermore, in Table 5 we also evaluate the bound-

ary refinement (BF) block referred in Section 3.2. In con-

trary to GCN structure, BF mainly improves the accuracy in

boundary region, which also confirms its effectiveness.

Model Boundary (acc.) Internal (acc. ) Overall (IoU)

Baseline 71.3 93.9 69.0

GCN 71.5 95.0 74.5

GCN + BR 73.4 95.1 74.7

Table 5. Experimental results on Residual Boundary Alignment.

The Boundary and Internal columns are measured by the per-pixel

accuracy while the 3rd column is measured by standard mean IoU.

4.1.2 Global Convolutional Network for Pretrained

Model

In the above subsection our segmentation models are

finetuned from ResNet-152 network. Since large kernel

plays a critical role in segmentation tasks, it is nature to ap-

ply the idea of GCN also on the pretrained model. Thus we

propose a new ResNet-GCN structure, as shown in Figure 5.

We remove the first two layers in the original bottleneck

structure used by ResNet, and replace them with a GCN

module. In order to keep consistent with the original, we

also apply Batch Normalization [15] and ReLU after each

of the convolution layers.

Figure 5. A: the bottleneck module in original ResNet. B: our

Global Convolutional Network in ResNet-GCN.

We compare our ResNet-GCN structure with the original

ResNet model. For fair comparison, sizes for ResNet-GCN

are carefully selected so that both network have similar

computation cost and number of parameters. More details

are provided in the appendix. We first pretrain ResNet-GCN

on ImageNet 2015 [29] and fine tune on PASCAL VOC

2012 segmentation dataset. Results are shown in Table 6.

Note that we take ResNet50 model (with or without GCN)

for comparison because the training of large ResNet152 is

very costly. From the results we can see that our GCN-

based ResNet is slightly poorer than original ResNet as an

ImageNet classification model. However, after finetuning

on segmentation dataset ResNet-GCN model outperforms

original ResNet significantly by 5.5%. With the applica-

tion of GCN and boundary refinement, the gain of GCN-

based pretrained model becomes minor but still prevails.

We can safely conclude that GCN mainly helps to improve

segmentation performance, no matter in pretrained model

or segmentation-specific structures.

Pretrained Model ResNet50 ResNet50-GCN

ImageNet cls err (%) 7.7 7.9

Seg. Score (Baseline) 65.7 71.2

Seg. Score (GCN + BR) 72.3 72.5

Table 6. Experimental results on ResNet50 and ResNet50-GCN.

Top-5 error of 224×224 center-crop on 256×256 image is used in

ImageNet classification error. The segmentation score is measured

under standard mean IoU.

4.2. PASCAL VOC 2012

In this section we discuss our practice on PASCAL VOC

2012 dataset. Following [6, 38, 24, 7], we employ the Mi-

crosoft COCO dataset [22] to pre-train our model. COCO

has 80 classes and here we only retain the images including

the same 20 classes in PASCAL VOC 2012. The training

phase is split into three stages: (1) In Stage-1, we mix up all

the images from COCO, SBD and standard PASCAL VOC

2012, resulting in 109,892 images for training. (2) During

the Stage-2, we use the SBD and standard PASCAL VOC

2012 images, the same as Section 4.1. (3) For Stage-3, we

only use the standard PASCAL VOC 2012 dataset. The in-

put image is padded to 640× 640 in Stage-1 and 512× 512
for Stage-2 and Stage-3. The evaluation on validation set is

shown in Table 7.

Phase Baseline GCN GCN + BR

Stage-1(%) 69.6 74.1 75.0

Stage-2(%) 72.4 77.6 78.6

Stage-3(%) 74.0 78.7 80.3

Stage-3-MS(%) 80.4

Stage-3-MS-CRF(%) 81.0

Table 7. Experimental results on PASCAL VOC 2012 validation

set. The results are evaluated by standard mean IoU.

Our GCN + BR model clearly prevails, meanwhile the

post-processing multi-scale and denseCRF [18] also bring

benefits. Some visual comparisons are given in Figure 6.

We also submit our best model to the on-line evaluation

server, obtaining 82.2% on PASCAL VOC 2012 test set,

4358



Figure 6. Examples of semantic segmentation results on PASCAL VOC 2012. For every row we list input image (A), 1 × 1 convolution

baseline (B), Global Convolutional Network (GCN) (C), Global Convolutional Network plus Boundary Refinement (GCN + BR) (D), and

Ground truth (E).

as shown in Table 8. Our work has outperformed all the

previous state-of-the-arts.

Method mean-IoU(%)

FCN-8s-heavy [30] 67.2

TTI zoomout v2 [26] 69.6

MSRA BoxSup [9] 71.0

DeepLab-MSc-CRF-LargeFOV [6] 71.6

Oxford TVG CRF RNN COCO [38] 74.7

CUHK DPN COCO [24] 77.5

Oxford TVG HO CRF [2] 77.9

CASIA IVA OASeg [34] 78.3

Adelaide VeryDeep FCN VOC [35] 79.1

LRR 4x ResNet COCO [12] 79.3

Deeplabv2-CRF [7] 79.7

CentraleSupelec Deep G-CRF[5] 80.2

Our approach 82.2

Table 8. Experimental results on PASCAL VOC 2012 test set.

4.3. Cityscapes

Cityscapes [8] is a dataset collected for semantic seg-

mentation on urban street scenes. It contains 24998 images

from 50 cities with different conditions, which belongs to

30 classes without background class. For some reasons,

only 19 out of 30 classes are evaluated on leaderboard. The

images are split into two set according to their labeling qual-

ity. 5,000 of them are fine annotated while the other 19,998

are coarse annotated. The 5,000 fine annotated images are

further grouped into 2975 training images, 500 validation

images and 1525 testing images.

The images in Cityscapes have a fixed size of 1024 ×
2048, which is too large to our network architecture. There-

fore we randomly crop the images into 800 × 800 during

training phase. We also increase k of GCN from 15 to 25

as the final feature map is 25 × 25. The training phase is

split into two stages: (1) In Stage-1, we mix up the coarse

annotated images and the training set, resulting in 22,973
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images. (2) For Stage-2, we only finetune the network on

training set. During the evaluation phase, we split the im-

ages into four 1024×1024 crops and fuse their score maps.

The results are given in Table 9.

Phase GCN + BR

Stage-1(%) 73.0

Stage-2(%) 76.9

Stage-2-MS(%) 77.2

Stage-2-MS-CRF(%) 77.4

Table 9. Experimental results on Cityscapes validation set. The

standard mean IoU is used here.

We submit our best model to the on-line evaluation

server, obtaining 76.9% on Cityscapes test set as shown

in Table 10. Once again, we outperforms all the previous

publications and reaches the new state-of-art.

5. Conclusion

According to our analysis on classification and segmen-
tation, we find that large kernels is crucial to relieve the
contradiction between classification and localization. Fol-
lowing the principle of large-size kernels, we propose the
Global Convolutional Network. The ablation experiments
show that our proposed structures meet a good trade-off
between valid receptive field and the number of parameters,
while achieves good performance. To further refine the ob-
ject boundaries, we present a novel Boundary Refinement
block. Qualitatively, our Global Convolutional Network
mainly improve the internal regions while Boundary Re-
finement increase performance near boundaries. Our best
model achieves state-of-the-art on two public benchmarks:
PASCAL VOC 2012 (82.2%) and Cityscapes (76.9%).
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