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Abstract

Spectral clustering based subspace clustering methods
have emerged recently. When the inputs are 2-dimensional
(2D) data, most existing clustering methods convert such
data to vectors as preprocessing, which severely damages
spatial information of the data. In this paper, we propose
a novel subspace clustering method for 2D data with en-
hanced capability of retaining spatial information for clus-
tering. It seeks two projection matrices and simultaneously
constructs a linear representation of the projected data,
such that the sought projections help construct the most
expressive representation with the most variational infor-
mation. We regularize our method based on covariance
matrices directly obtained from 2D data, which have much
smaller size and are more computationally amiable. More-
over, to exploit nonlinear structures of the data, a nonlinear
version is proposed, which constructs an adaptive manifold
according to updated projections. The learning processes
of projections, representation, and manifold thus mutually
enhance each other, leading to a powerful data representa-
tion. Efficient optimization procedures are proposed, which
generate non-increasing objective value sequence with the-
oretical convergence guarantee. Extensive experimental re-
sults confirm the effectiveness of proposed method.

1. Introduction

Representing and processing high-dimensional data has
been routinely used in many areas such as computer vi-
sion and machine learning. Often times, high-dimensonal
data have latent low-dimensional structures and can be well
represented by a union of low-dimensional subspaces. Re-
covering such low-dimensional subspaces usually requires
clustering data points into different groups such that each
group can be fitted with a subspace, which is refered to as
subspace clustering. During the last decade, subspace clus-
tering algorithms have attracted substantial reserach atten-
tion, among which spectral-clustering based subspace clus-

tering methods have been popular due to their promising
performance; e.g., low-rank representation (LRR) [17] and
sparse subspace clustering (SSC) [6] are two typical such
methods that seek representation matrices with different as-
sumptions, with LRR assuming low-rankness while SSC re-
quiring sparsity.

Recently, a number of new subspace clustering meth-
ods have been developed. For example, [29] replaces the
nuclear norm used in LRR by some non-convex rank ap-
proximations, because the nuclear norm is far from being
accurate in estimating the rank of real world data. [30] re-
veals that not all features are equally important to recover
low-dimensional subspaces and with feature selection both
nuclear norm and non-convex rank approximations may ob-
tain enhanced performance. [24] seeks a linear projection
to project the data and learns a sparse representation in the
projected latent low-dimensional space. To capture nonlin-
ear structures of the data, nonlinear techniques such as ker-
nel and manifold methods have been adopted for subspace
clustering. For example, kernel SSC (KSSC) [25] maps data
points into a higher-dimensional kernel space where sparse
coefficients are learned; [19, 34] construct low-rank rep-
resentations by exploiting nonlinear structures of the data
in a kernel space or on manifold. A shared drawback of
these nonlinear methods is that the kernel matrix or graph
Laplacian is predefined, and thus may be independent from
the representation learning, potentially leading to cluster-
ing results far from optimal. A recently developed method,
thresholding ridge regression (TRR) [31], points out that
such methods as LRR and SSC achieve robustness by esti-
mating and removing specifically structured representation
errors from the input space, which requires prior knowledge
on the usually unknown structures of the (also unknown)
errors. To overcome this limitation, [31] leverages an ob-
servation that the representation coefficients are larger over
intra-subspace than inter-subspace data points, and thus the
representation errors can be eliminated in the projection
space by thresholding small coefficients obtained with a
ridge regression model.
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Subspace clustering has various applications in computer
vision areas based on 2-dimensional (2D) data. Because
all above-mentioned methods use only vectors as input ex-
amples, to make the input samples of 2D matrices suit to
these methods, a standard approach is to vectorize the 2D
examples. While being commonly employed, this approach
does not consider the inherent structure and spatial corre-
lations of the 2D data; more importantly, building models
using vectorized data will significantly increase the dimen-
sion of the search space of the model, which is not effective
to filter the noise, occlusions or redundant information [10].
Besides the way of vectorizing 2D data, tensor based ap-
proaches have been proposed. While they may potentially
better exploit spatial structures of the 2D data [9, 38], such
approaches still have some limitations: They use all fea-
tures of the data, hence noisy or redundant features may de-
grade the learning performance. Also, tensor computation
and methods usually involve flattening and folding opera-
tions, which, more or less, have issues similar to those of
vectorization operation and thus might not fully exploit the
true structures of the data. Moreover, tensor methods usu-
ally suffer from the following major issues: 1) for cande-
comp/parafac (CP) decomposition based methods, it is gen-
erally NP-hard to compute the CP rank [12,20]; 2) Tucker
decomposition is not unique [12]; 3) the application of a
core tensor and a high-order tensor product would incur in-
formation loss of spatial details [14].

To overcome the limitations of existing methods, we pro-
pose a new subspace clustering method for 2D data with
enhanced capability of retaining spatial information, which,
in particular, has stark differences from tensor-based meth-
ods. We summarize the key contributions of this paper as
follows: 1) Projections are sought to simultaneously retain
the most variational information from 2D data and help con-
struct the most expressive representation coefficients, such
that the learning of projection and representation mutually
enhance each other; 2) Nonlinear relationship between ex-
amples are accounted for, where the graph Laplacian is
adaptively constructed according to the updated projections.
Hence all learning tasks mutually enhance and lead to a
powerful data representation; 3) Covariance matrices con-
structed from 2D data are used for regularization, which en-
able the curse of dimensionality to be effectively mitigated;
4) Efficient optimization procedures are developed with the-
oretical convergence guarantee of the objective value se-
quence; 5) Extensive experimental results have verified the
effectiveness of the proposed method.

2. Related Work

In this section, we review some methods that are closely
related to our work.

2.1.LRR and TRR

Given n examples, the existing subspace -cluster-
ing methods generally represent each example by a d-
dimensional vector and stack all vectors as columns to con-
struct a data matrix A € R4*™. LRR seeks the lowest-rank
representation of the data with a model,

mZin||Z||*+THE| 21 st. A=AZ+E, (1)
where || E||2,1 sums £2 norms of columns of E, and || Z||.. is
the nuclear norm of Z that sums all its singular values.

It has been pointed out that (1) needs prior knowledge
on the structures of the errors, which usually is unknown in
practice [29]. TRR overcomes this limitation by eliminating
the effects of errors from the projection space with a model

of thresholding ridge regression [31],

min | 2| + 7|4 - AZ| st Zi=0, (@)

where small values in Z will be truncated to zero by thresh-
olding.

2.2. Two-Dimensional PCA 2DPCA)

Given an image X € R**’ and a unitary vector p €
RP, the projected feature vector of X can be obtained by
the transformation of y = Xp [36,37]. By defining G; =
E((X — EX)T(X — EX)) with E being the expectation
operator, p can be obtained by

max Tr(S,) & max Tr(p? Gip). 3)
pTp=1 pTp=1
Usually, finding only one optimal projection direction is not
enough [36] and it is necessary to find multiple projection
directions P = [py,pa,--- ,pr] € RP*". Mathematically,
P can be found by solving

Jmax Tr (PTG, P), 4)

where I, is an identity matrix of size r X 7.
3. 2D Variance Regularized Ridge Regression

In this section, we introduce our new model and develop
an optimization scheme.

3.1. Proposed Model

Let X = {X; € R**®}™, be a collection of 2D
examples (or points), and P = [p1,---,p,] € RV,
Q = lq, - ,q) € R, r < min{a,b}, be two pro-

jection matrices that satisfy PT P = QTQ = I,. We define
v(+) to be a vectorization operator, X; ® P := v(X;P),
X;®Q :=v(XI'Q),and

X0 P = [V(XiP), - ,v(X,P)] € R"*"

X©Q = vXIQ), - v(xIQ]err
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Then a new data matrix Y = [y1,--- ,y,] is obtained by

defining y; as
yi = [(X; @ P)T,(X; @ Q)T)T e R+t (6)

It is noted that, with projections P and (), both horizontal
and vertical spatial information is retained in Y. We as-
sume that the projected data points have a self-expressive
property, i.e., Y =~ Y Z, where Z € R"*"™ is the represen-
tation matrix, with z;, 2(jy» and z;; being its i-th row, j-th
column, and ij-th element, respectively. In this paper, we

adopt the following ridge regression model [22,3 1],
min [V = Y Z|[} + 7)1 2%, ™
where 7 > 0 is a balancing parameter. Here, unlike [22,31],

we do not require z;; = 0 because: 1) y; is in the intra-
subspace of y; itself, thus z;; # 0 is meaningful; 2) 7 > 0
already excludes potentially trivial solutions such as I,,; 3)
its effectiveness and efficiency are verified by experiments
in Section 6.

It is noted that (7) starkly differs from the existing sub-
space clustering models, because 2D data are directly used
with projections such that inherent spatial information is re-
tained. Now that our method involves two projection ma-
trices P and @), a necessary question arises: how to find
the optimal projection matrices? To answer this question,
it is essential to jointly construct the most expressive rep-
resentation matrix and retain the most information from the
original data. Here, we decide to adopt the variation or scat-
tering of the 2D data to represent their information content,
inspired by the traditional Fisher’s linear discriminant anal-
ysis. Mathematically, we jointly minimize the fitting errors
of self-expression and maximize total scatters of projected
data, which leads to:

2
in Y —YZ|%
ZpPTP=I,QTQ=1,Tr(PTGpP)Tr(QTGoQ)

trl Z N5, (8)

where G'p and G are defined to be 2D covariance matri-
ces of X;s and X ]T s, respectively. Realizing that G p and
G’Q are usually invertible in real world applications, (8) is
equavilent to solving generalized eigenvalue problems [16]
with respect to P and (). To facilitate optimization and in-
crease the flexibility of (8) such that the terms of fitting er-
rors and retaining the most expressive information can be
better balanced, we change the quotient in (8) into additive
terms and propose the following 2D Variance Regularized
Ridge Regression (VR3) model:

min Y —vZ|? 7112
prpin 5+ 7llZ 1%

+ 1 Te(PTGpP)+7.Tr(QT GQ),

©))

'In practice, they are estimated by Gp = 37, (X; — X)T(X; — X)
and Gg = 30 1 (X; — X)(X; — X)T, where X = %Z?:1 Xi.

where Gp = C;'}Sl, Ggo = G'g?lz, and v1,v2 > 0, are
two balancing parameters. It is seen that by minimizing the
above objective function, the projections enables us to cap-
ture the most variational information from the 2D data and
construct the most expressive self-expression, which lead to
a powerful data representation.

Remark. Rather than using £5 ; or {; norm to measure the
fitting errors, we adopt the Frobenius norm in the first term
of (9) for the following reasons: 1) The projections ensure
the most variational information is used for constructing
the representation, while the adverse effects from less im-
portant information, noise, and corruptions are alleviated,
thus providing enhanced robustness; 2) [30] shows that the
Frobenius norm can well model the fitting errors when the
most important features are used for representation learn-
ing, which motivates us to use a {5 norm-based loss model
in (9); 3) The Frobenius norm-based model leads to effi-
cient optimization with a mathematically provable conver-
gence guarantee; 4) Extensive experimental results verify
the effectiveness of (9) in Section 6.

3.2. Optimization

Now, we develop an efficient alternating optimization
procedure to solve (9).

3.2.1 Calculating )
The subproblem of optimizing @) is
Q%nQigI IX®Q— (X®Q)Z|[F +1Tr(QTGeQ). (10)

Theorem 1. Deﬁne F1 = Z?:l XiXiT, F2 = Z?:l Z?:l
zjiXiX]T, and F3=3""_, 2?21 z(i)z(q;.)XinT. The prob-
lem of (10) is a constrained quadratic optimization, and
admits a closed-form solution,

eig (F1 — 2F> + F3 ++vGg), (11)

where Fy —2F> + F5+~G is positive definite and eig . (F')
returns eigenvectors of F' associated with its r smallest
eigenvalues.

Proof. Tt is seen that the first term in (10) is

X®Q-(X®Q)Z||%

“L o2 e,
i=1 j=1

(12)
n n
—Tr (Z QT X, X7 Q) —Tr (QTXi 3 Xt Q)
i=1 j=1
2In singular case, in the implementation, we define Gp = (G‘ P+

elp)~1, where € > 0 is a small value. Similar approach can be found
in [21], where the Schatten norm is smoothed by adding el to guaran-
tee differentiability. In the experiments, we always observe that G p is
nonsingular and thus positive definite. Similar strategy is adopted for G .
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+ Tr((éZﬂX]TQ)T(iZﬂXﬂTQ>)
:Ti'(QT(iXiXiT)Q) —2Tr(QT(ji12jiX' JT)Q)

+ “(QT( i Z(z‘)Z(Y})XinT)Q)
i,j=1
~Tr(Q"FQ) - 2Tr(Q"FQ) + Tr(Q" FQ)
=Tr(Q" (Fy — 2F> + F3)Q).
Therefore, (10) is reduced to

qu%iEI Tr(Q" (Fy —2F, + F3+7%Go) Q). (13)

It is easy to verify that Fy — 2F, + F5 + 772G is posi-
tive definite due to the nonnegativity of (10), and thus the
optimal solution is obtained by (11). O

3.2.2 Calculating P
The subproblem of optimizing P is
Jmin [XoP - (Xo P)Z||% + 1 Te(PTGpP). (14)

Theorem 2. Define Hy = Y. XX, Hy = Y,

21 2 X[ X, and Hy = 3701 370 2)%(;) Xi X
The problem of (14) is a constrained quadratic optimiza-
tion and admits a closed-form solution,

eig. (Hy —2Hy + H3 +vGp), (15)
where Hy — 2H5 + Hs + yGp is positive definite.

Proof. 1t can be shown similarly to that of Theorem 1. [

3.2.3 Calculating Z
The subproblem of optimizing Z is
min [Y =Y Z|[% + 7| Z|1%, (16)
which admits the following solution
Z =Y +7L) ' (YTY). (17)

Theorem 3. Denoting the objective function of (9) by
J(Q,P,Z), under the updating rules of (11), (15)
and (17), the value sequence of the objective function
{j(Qk,Pk,Zk)}koil is non-increasing and converges,
where k denotes the iteration number.

Proof. According to Theorems 1 and 2, it is easy to see that
j(Qk+1 Pk‘+1 Zk+1) <\7(Qk+1 Pk“rl Zk)
<T@, P2 < J(QF P, Z5),

It is obvious that 7 (Q, P, Z) > 0 by its definition. There-
fore, {J(Qk, Pk, Zk)}iil converges. O

(18)

4. Nonlinear VR3

In this section, we expand our VR3 model to account for
nonlinearity in the instance space.

4.1. Proposed Nonlinear Model

The above proposed VR3 model learns a representation
of the projected data in the Euclidean space, which only
considers the linear relationship of the data. Because non-
linear relationship in the instance space usually exists and
is important in real world applications, it is important to
take into consideration such nonlinearity. We decide to ac-
count for nonlinear structures of the data on manifold in-
spired by [3]. We suppose the following assumption on the
representation matrix Z is true: If two data points y; and
y; are close on the manifold, then their new representations
given by z; and z; should be also close, which leads to min-
imizing the following quantity:

1 n n
52> wisllz = %13

i=1 j=1

=2 digs 5 = 3D w5
j=1 i=1j=1
=Tr(ZDZ") — Te(ZW ZT) = Te(ZL2Z7),
where W = [w;;] is the similarity matrix with w;; being

the similarity between y; and y;, and D is a diagonal matrix
withd; =5 y W;;. Here, we aim to consider the nonlinear
relationship of the projected data with both projection ma-
trices; therefore, we construct two manifolds using X ® P
and X ® @, respectively, which leads to our model of Non-
linear VR3 (NVR3):

i P,Z Te(ZLpZT
Z,PTP:I’I;:%TQ:ITJ(Q’ ) ) + m r( P ) (20)

+1pTi(ZLoZ"),

where Lp (resp. Lg) is obtained from Dp — Wp (resp.
Dg — Wg), which are based on X ©® P (resp. X ® Q).
Various weighting schemes can be used to define the simi-
larities between projected data points [3]; however, it is out
of the scope of this paper regarding how to choose the best
weighting scheme. In this paper, for simplicity yet without
loss of generality, we use dot-product weighting to define
Wp by [Wpeli; = (X; © P)T(X; ® P), such that a fully
connected graph is constructed. Similar strategy is adopted
to construct We. It is seen that the manifolds are learned
adaptively, such that the processes of learning projections,
representations, and manifold mutually enhance, thus lead-
ing to a powerful data representation.

4.2. Optimization

Now, we discuss the optimization procedure of (20).
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4.3. Calculating Q
The subproblem for (Q-minimization is

i X —(X A
oiin IX©Q - XeQ)2|x on

+7Tr(Q" GoQ) +mTr(ZLq ZT).

Theorem 4. Define Fy = 37 320 |1z — 23X X] .
Given that Z is bounded, the problem in (21) is a con-
strained quadratic optimization, and admits a closed-form
solution,

eig,(F1 — 2F, + F3 + 12Go + %E;), (22)

where Fy, Fs, and Fs are defined in Theorem 1.

Proof. Omitting the factor 7, the last term in (21) is

Tr(ZLoZ™T)
1 n n
=3 Sz — 13X 0 QT (X; ®Q)
i=1 j=1
1 n n T
i=1 j=1 s=1
1 T n n
=52 (DD lm - 13X XT )a,
s=1 i=1 j=1
1 T
=§T1'(Q FyQ).

Let );(-) be the ith largest eigenvalue of the input matrix,
then (21) is equivalent to minimizing (21)-"5- A, (F}). Based
on the proof of Theorem 1, the subproblem associated with
Q is to minimize Tr(Q” CQ), with constraint Q7 Q = I,
where C' = F| —2F+ F5+7G o+ 2 Fy— B X\o(Fy)l,. It
is easy to verify that C' is positive definite and eig,.(C') gives
the optimal solution to (21). It is also easy to verify that
eig, (C) is equivalent to (22), which concludes the proof.

O

4.4. Calculating P
The subproblem of optimizing P is

min |Xo P - (X0 P)Z|};
Q=1 (24)
+ 1 Te(PTGpP) +mTe(ZLpZT).

Theorem 5. Define Hy = 371 >0 |lzi — 2[3X] X;.
Given that Z is bounded, the problem of (24) is a con-
strained quadratic optimization, and admits a closed-form
solution,

eig, (Hy — 2Hy + Hy + 71Gp + S Hy).  (25)

where H1, Ho, and Hs are defined in Theorem 2.
Proof. Similar to proof of Theorem 4. O

4.5. Calculating 7

The subproblem of optimizing Z is

min|Y - Y Z|[% + 7|1 Z||%
z (26)
+mTe(ZLpZT) + e Te(ZLo Z7).

Under the condition in Theorem 6, we update Z by setting
the derivative of (26) to zero:

Y TYZ—-2YTY 427 Z+2m ZLp+20.ZLo = 0. (27)

It is seen that (27) is a Sylvester equation and can be solved
by the MATLAB built-in function ‘lyap’:

7 = lyap(YTY—i-%In,7)1Lp+772LQ+%In, YTY). (28)

Theorem 6. If 7 > —mr(mini {37 X X;)}—
MG X X)) = mar(ming{A(3"7_, XiX[)} — M
(Zz;l XijT)), then (28) is bounded and is the optimal
solution to (26).

Proof. Let 7 = rming{ (37— X7 X;5)} — rA (3]

j=1
XJTXJ‘), and T2 = Tmini{Aa(Z?ZI XZXJT)}_T)\l(Z;L:1
X;XT). Because [Wpli; = >._y pLf X[ X;ps, Te(Wp)
=3 pz(Z?:1 XjTXj)ps <rh (Z?:l XJTXJ')’ im-
plying that X;(Wp) < X\ (Wp) <A (37—, X[ X;). For
Dp, [Dplis = 3251 [Weliy = Ximy ps (=) X X5)ps
> (7o, X X)), Let ST (diag{\i(Wp)})S be
the eigenvalue decomposition of Wp, then Dp —
Wp = ST(diag{[Dplii — Mi(Wp)})S, implying that
)\1(Dp - Wp) 2 mll’ll{[Dp]”} - )\Z(Wp) 2 rmini
(2T X XG) A (007 X X)), bew Mi(Lp) = 1.
Similarly, we can prove that A;(Lg) > 2.

Therefore, —ni71I, + mLp and —mna7ol, + 1n2Lq
are positive definite. =~ We decompose the objective in
26) as |Y — YZ|%2 + (1 + mn + pn)|Z|% +
mT(ZLpZ")— mn | Z|| % +meTe(ZLoZ") o | Z ||
=(T+mri+nem)|Z||% +Te(Z(—=m7il, +mLp)ZT)+
Tr(Z(—na7el, +m2Lp)ZT) +||Y — Y Z||%, where the last
three terms on the right hand side of the above equality
are convex. For the first term, it is also convex because
T+ mm + N2 = —mT1 — 272 + M7+ ne1e = 0.
Therefore, the objective in (26) is convex.

Hence, (28) is the optimal solution of (26) by the first
order optimality condition. It is easy to verify that at each
iteration, the solution Z to (26) is bounded.

O

Theorem 7. Let L(Q,P,Z) denote the objective func-
tion of (26). If the condition of Theorem 6 is satis-
fied, then under the updating rules of (22), (25) and
(28), {L(Qk,Pk,Zk)}:il is non-increasing and con-
verges, where k denotes the iteration number.
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Proof. Under the condition of Theorem 6, Theorems 4-6
hold, implying that £(Q*, P*, Z¥) is non-increasing. Ac-
cording to Theorem 0, it is easy to verify the boundedness
of L(Q*, P*, Z*). Therefore, {L(Qk,Pk,Zk)}:;l con-
verges. O

Remark. 1t has been recently studied in spectral graph the-
ory [5] and manifold learning theory [2] that a nearest
neighbor graph on a scatter of data points can effectively
model the local geometric structure. With a more general
construction of Wg and Wp, [27,33] suggest a viable way
for optimization: we first update ¢ and P by (11) and (15);
then we update L and L p accordingly.

5. Subspace Clustering via VR3 and NVR3

Constructing an affinity matrix from a representation co-
efficient matrix is commonly applied as a post-processing
step for many spectral clustering-based subspace clustering
methods [17,26,29]. Similarly, after obtaining Z, we con-
struct an affinity matrix A with the following steps 1) - 3):

1) Let Z = UXVT be the skinny SVD of Z. Define the
weighted column space of Z as Z = UX'/2.

2) Obtain U by normalizing the rows of Z.

3) Construct the affinity matrix A as [A];

(1 [UUT]Z-J-|)¢, where ¢ > 1 controls the sharpness of
the affinity matrix between two data points®.

Subsequently, Normalized Cut (NCut) [32] is performed on
A in a way similar to [1,29].

6. Experiments

In this section, we conduct experiments to verify the ef-
fectiveness of the proposed VR3 and NVR3.

6.1. Algorithms in Comparison

To evaluate the effectiveness of the proposed VR3 and
NVR3, several state-of-the-art or recently developed sub-
space clustering methods are taken as baseline algorithms,
including local subspace affinity (LSA) [35], spectral cur-
vature clustering (SCC) [4], LRR [17], low-rank subspace
clustering (LRSC) [7], SSC [6], kernel SSC (KSSC) [25],
latent LRR (LatLRR) [18], block-diagonal LRR (BDLRR)
[8], block-diagonal SSC (BDSSC) [8], structured sparse
subspace clustering (S3C) [15], nearest subspace neighbor
(NSN) [23], and TRR [31].

We define clustering accuracy= 23" A(map(s;) l;),
where [; and s; denote the true and predicted labels of
X, respectively, map(s;) maps each cluster label s; to the
equivalent label from the data set by permutation such that

@mﬁhmmmmmuwmmw[ ] and set ¢ = 4 in this work

the accuracy metric can be maximized (because clustering
results give clusters up to permutations of labels), and A is
the Kronecker delta function. More details about this metric
can be found in [27,28]. For fair comparison, the number
of clusters, K, is specified for all methods. For the algo-
rithms in comparison, whenever available, we obtain their
results from [6, 15,23,25], where the parameters have been
finely tuned; otherwise, we finely tune their parameters and
report the best results. For our method, we iterate the algo-
rithms with a maximum of 200 iterations or when the dif-
ference between two consecutive objective values is smaller
than 0.001. The parameters are also tuned for our proposed
models. Our code is available online®.

6.2. Face Clustering

Face clustering is an important topic in computer vision.
It refers to finding groups from face images, such that each
group corresponds to an individual person. In this task, we
use Extended Yale B> (EYaleB) data set [13] to evaluate
the performance of our method. EYaleB data collect face
images from 38 persons, of which each has 64 frontal face
images taken under varying lighting conditions. These im-
ages are cropped to 192 x 168 pixels. To reduce cost in com-
putation, we down-sample these images to 48 x42 pixel as
commonly done in the literature [6,17,29]. Subsets contain-
ing different number of subjects, i.e., K € {2,3,5,8,10}
are collected to better investigate the performance of pro-
posed method. To avoid the potentially combinatorially
large number of subsets, we divide these 38 subjects into
four groups, containing subjects 1-10, 11-20, 21-30, and 31-
38, respectively. Then all possible combinations of subsets
with K € {2,3,5,8,10} are collected within each group,
and the collections from the four groups are combined with
respect to each K value to obtain five collections of sub-
sets. This data preprocessing is a common way in litera-
ture [0,29]. For TRR, we project the data to be 10K in di-
mension and fix regularization and thresholding parameters
to be 100 and 9, respectively. Then within each collection,
we conduct experiments on all subsets and report the mean
and median clustering accuracies in Table 1.

From Table 1, it is observed that SSC, NSN, S3C and
TRR are among the most competitive baseline methods.
Competitive performance in both mean and median accu-
racies can be observed for these methods when K increases
from 2 to 10, while the performances of the other baseline
methods degrade significantly. Although LatLRR, DBLRR,
BDSSC, and LRR-H have good performances with small K
values, their performance in the case of large K values may
limit their applications to real world problems. VR3 and
NVR3 are seen to enhance the clustering performance sig-

4https://www.researchgate.net/publication/
315760668_NVR3_code_pub
5http://www.ccs.neu.edu/home/eelhami/codes.htm
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Table 1. Clustering Performance on Extended Yale B data set

No. of Subjects 2 Subjects 3 Subjects 5 Subjects 8 Subjects 10 Subjects
Error Rate (%) H Average Median | Average Median | Average Median | Average Median | Average Median

LSA 67.20 52.34 47.71 50.00 41.98 43.13 40.81 4141 39.58 42.50
Nee 83.38 92.18 61.84 60.94 41.10 40.62 33.89 35.35 26.98 24.22
LRR 90.48 94.53 80.48 85.42 65.84 65.00 58.81 56.25 61.15 5891
LRR-H 97.46 99.22 95.79 97.40 93.10 94.37 85.66 89.94 77.08 76.41
LRSC 94.68 95.31 91.53 92.19 87.76 88.75 76.28 71.97 69.64 71.25
sSC 98.14 100.0 96.90 98.96 95.69 97.50 94.15 95.51 89.06 94.37
LatLRR 97.46 99.22 95.79 97.40 93.10 94.37 85.66 89.94 77.08 76.41

BDLRR 96.09 - 89.98 - 87.03 - 72.30 - 69.16 -

BDSSC 96.10 - 82.30 - 72.50 - 66.80 - 60.47 -
s3c 98.57 100.0 96.91 99.48 95.92 97.81 95.16 95.90 93.91 94.84
NSN 98.29 99.22 96.37 96.88 94.19 95.31 91.54 92.38 90.18 90.94
TRR 97.87 99.22 97.07 98.44 96.17 97.50 95.69 96.48 95.10 95.78
VR3 99.12 100.0 99.23 99.48 98.96 99.38 98.73 98.63 98.85 98.75
NVR3 99.07 100.0 99.26 99.48 99.25 99.38 99.16 99.22 99.38 99.38

«

The best performance is bold-faced.

means that the result is not reported in the corresponding paper. The parameters for VR3

(resp. NVR3) are (6, 10, 1, 5) (resp. (6,5,1,2,2e-4,5e-4)) ordered as (r, T, v1, y2) (resp. (v, T, Y1, ¥2, N1, 12))-

nificantly. The mean and median accuracies of our models
are the best, and they decrease gracefully when K increases,
which shows strong insensitivity to K values. This obser-
vation suggests that our method is potentially more suitable
than those methods in comparison for real world applica-
tions. In general, NVR3 has better performance than VR3
because of its capability of capturing nonlinear structures of
the data.

6.3. Handwritten Digit Clustering

We also test the proposed method in handwritten digit
clustering of Alphadigits data®. This data set contains 36
clusters, including binary digits 0-9 and capital letters A-Z.
Each cluster contains 39 images of size 20 x 16 pixels. Simi-
lar to the experimental settings for face clustering, we divide
this dataset into 4 groups, containing 0-9, A-J, K-T, and U-
Z, respectively. Then subsets with K € {2,3,5,8,10} are
collected in a way similar to EYaleB data. Then we apply
all methods in comparison on this dataset, and report the
mean and median performances within each collection of
subsets in Table 2.

Again, it is observed that VR3 and NVR3 outperform
the other methods in all cases, which indicates the impor-
tance of 2D approach proposed in this paper. Also, the per-
formance of NVR3 improves that of VR3, demonstrating
the importance of learning nonlinear structures of projected
data.

For VR3, we use (r,7,71,72) = (3,600, 5e4, 5e3); for
NVR3, (r,7,71,72) = (3,600,6e4,5e3). For LS3C, we
project data to be 2K in dimension and fix 0.2 and 0.1 for
two regularization parameters. For S3C, we project data
to be 2K in dimension and fix a = 0.25 and 7 = 1000.
For TRR, we project data to be 8K in dimension and fix
regularization and thresholding parameters to be 1000 and
13, respectively.

6http://www.cs.nyu.edu/*roweis/data.html
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Figure 1. Performance of VR3 and NVR3. K = 2 on the left
while K = 10 on the right for (a)-(c).

7(x1071)

6.4. Parameter Sensitivity

For unsupervised learning methods, insensitivity to pa-
rameter variations is demanding for enhancing their stabil-
ity in real world applications. Here, we conduct experi-
ments on Alphadigits data set to illustrate the insensitivities
of VR3 and NVR3 to parameter variations. We fix r = 3
in all cases. In Fig. 1(a), we fix 7 = 600 to show the per-
formance of VR3 with respect to different combinations of
~1 and .. It is evident that competitive performance is ob-
tained over a wide range of parameters. This also suggests
we jointly tune ~; and 5. To demonstrate the effective-
ness of this tunning strategy, we set v; = o = v and (b)
shows the performance of VR3 with various combinations
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Table 2. Clustering Performance on Alphadigits data set

No. of Subjects 2 Subjects 3 Subjects 5 Subjects 8 Subjects 10 Subjects
Error Rate (%) H Average Median | Average Median | Average Median | Average Median | Average Median
LSA 89.30 96.15 77.31 77.78 66.19 66.15 59.24 59.94 57.35 58.72
SSC 94.30 97.44 86.42 91.46 76.74 74.88 70.00 69.99 67.86 67.18
LRR 92.24 96.16 85.79 88.89 76.66 76.41 69.50 69.56 66.33 67.44
LRSC 84.19 91.03 74.35 74.36 62.23 62.05 52.02 51.92 49.23 48.97
KSSC (P) 94.58 97.44 87.15 92.31 77.36 76.92 68.94 67.95 66.15 65.64
KSSC (G) 94.07 97.44 86.36 91.45 76.16 73.85 68.81 68.91 67.52 66.67
LS3C 93.77 96.15 87.33 90.17 74.76 73.85 65.94 66.03 62.99 63.51
s3c 93.34 94.87 86.34 88.03 72.89 71.28 64.17 65.06 62.82 61.79
TRR 95.60 97.44 90.71 93.59 81.02 83.59 72.06 72.44 68.38 69.49
VR3 96.10 98.72 91.14 94.02 81.19 83.08 73.13 74.04 73.85 76.67
NVR3 ‘ ‘ 96.21 98.72 91.84 94.87 81.57 83.59 73.27 74.04 76.41 76.92

of 7 and ~y in Fig. 1(b). It is seen that VR3 has promising
results that are insensitive to various combinations of 7 and
~. Thus, v, and 5 can be tuned jointly. For NVR3, simi-
lar observations can be also made. In fact, if we set n; and
712 to be zero, then Fig. 1(a)-(b) are special cases of NVR3.
In Fig. 1(c), we show the performance of NVR3 with dif-
ferent combinations of 77 and 72, with the others the sane
as Section 6.3. It is evident that competitive performance
is obtained with different combinations and we can jointly
tune 77 and 7y for NVR3.

Remark. As discussed above, {A1, A2} and {11,172} can
be jointly tuned in practice. Also, 7 is usually small as
most variational information can be obtained by a few top
projection directions. Therefore, we only need to tune 3
and 2 parameters for NVR3 and VR3, respectively. Since
this load of tuning is quite common in unsupervised learn-
ing [18,24,29], the promising performance of the proposed
VR3 and NVR3 indicates their potential in real world appli-
cations.

6.5. Feature Extraction and Image Reconstruction

In Fig. 2, we show some component and reconstructed
images to demonstrate the effects of projections obtained
by P and () visually. Here, we use EYaleB data and VR3 as
our examples. We set r = 30 to seek orthogonal projection
directions both horizontally and vertically. It is observed
that the major information is retained by the first several
component images such that the original image can be well
reconstructed by these components. Also, the principal fea-
tures captured by P and () have strong vertical or horizon-
tal patterns, respectively, which verifies the effectiveness of
such projections.

7. Conclusions

In this paper, we present a new subspace clustering
method with two models, VR3 and NVR3, with applica-
tions to 2D data. Our method is capable of directly using
2D data, and thus the spatial information is maximally re-
tained. Two projection matrices are sought, which simulta-
neously keep the most variational information from the data

Figure 2. The top left is the original image. For the rest, the
first (resp. third) row are the ¢th column (row) component image
Xpipt (resp. qi ¢F X), and the second (resp. fourth) row are the
reconstructed images 23':1 ijpjT (resp. Z;zl qjquX) using
the first ¢ column (resp. row) component images, which from left
to right represents ¢ = 1, 3, 8, 15, and 30, respectively.

and learn the most expressive representation matrix as well
as discriminant manifold for the nonlinear variant, such that
these individual learning tasks mutually enhance each other
and lead to a powerful data representation. Moreover, 2D
data are used to construct 2D covariance matrices in our
method, which is more computationally amiable than vec-
torized data. Efficient optimization procedures are devel-
oped to solve the proposed models with theoretical guaran-
tee for the convergence of objective value sequence. Exten-
sive experimental results verify that VR3 and NVR3 outper-
form the state-of-the-art subspace clustering methods. The
superior performance with wide insensitivity to model pa-
rameters suggests the potential of our method for real world
applications.
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