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Abstract

Confidence measures estimate unreliable disparity as-

signments performed by a stereo matching algorithm and,

as recently proved, can be used for several purposes. This

paper aims at increasing, by means of a deep network,

the effectiveness of state-of-the-art confidence measures ex-

ploiting the local consistency assumption. We exhaustively

evaluated our proposal on 23 confidence measures, includ-

ing 5 top-performing ones based on random-forests and

CNNs, training our networks with two popular stereo al-

gorithms and a small subset (25 out of 194 frames) of the

KITTI 2012 dataset. Experimental results show that our ap-

proach dramatically increases the effectiveness of all the 23

confidence measures on the remaining frames. Moreover,

without re-training, we report a further cross-evaluation

on KITTI 2015 and Middlebury 2014 confirming that our

proposal provides remarkable improvements for each confi-

dence measure even when dealing with significantly differ-

ent input data. To the best of our knowledge, this is the first

method to move beyond conventional pixel-wise confidence

estimation.

1. Introduction

Stereo is a popular technique to infer depth from two or

more images and several approaches have been proposed

to tackle this problem. However, reliability in challenging

conditions still remains an open research issue and realistic

datasets, such as KITTI [7, 17] and Middlebury 2014 [29],

clearly emphasized this fact. Although some failures such

as occlusions [5], low signal-to-noise ratio and reduced dis-

tinctiveness [14] are intrinsically related to stereo, the im-

pact on accuracy is amplified in practical applications deal-

ing with poor illumination conditions, reflective surfaces

and so on. Therefore, determining the degree of reliability

of each inferred depth point is crucial to obtain more mean-
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Figure 1. Confidence prediction performed by our approach pro-

cessing PKRN [11]. (a) Reference image, (b) Disparity map,

(c) Original PKRN measure, (d) Corresponding confidence map,

PKRN+, computed by our framework. More confident points are

encoded with brighter values, disparity map with colormap jet.

ingful 3D data for later processing stages. Moreover, ef-

fective confidence measures can be used for other purposes.

For instance, to improve stereo accuracy [6, 23, 22, 25, 30]

or for depth sensor fusion [15, 18].

Confidence measures, reviewed and evaluated in [11],

are inferred according to different strategies: from the anal-

ysis of the input stereo pair, matching cost curve or dispar-

ity maps. Recently, some authors [9, 31, 22, 25] proposed

effective confidence measures based on machine learning

techniques. The common ground in these approaches is

the joint use of multiple confidence measures and/or hand-

crafted features, extracted from disparity map and/or cost

volume, fed to a random-forest classifier trained on a small

set of stereo pairs with ground truth. More recently, confi-

dence measures have been inferred [26, 30] processing dis-

parity maps with a CNN (Convolutional Neural Network).
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These facts motivated us to investigate whether a ma-

chine learning framework could be used to improve the ef-

fectiveness of confidence measures exploiting local consis-

tency, leveraging on the information available within nearby

points, as assumed by most computer vision algorithms. To

this end, given an input confidence measure, our framework

analyzes its local behavior by means of a CNN, trained on

a subset of a dataset with ground-truth, to provide a more

meaningful estimation. Specifically, by learning informa-

tive patterns on confidence maps, the network is able to in-

fer from local patches a better estimation as shown in Figure

1. In our experimental evaluation, we consider 23 state-of-

the-art confidence measures and, once trained the networks

on 25 out of 194 images of the KITTI 2012 (KITTI 12)

training dataset, we assess the improvements yielded by our

method on the remaining images. Moreover, without re-

training the networks, we perform a further cross-validation

on KITTI 2015 (KITTI 15) and Middlebury 2014 (Mid-

dlebury 14). This extensive evaluation shows that exploit-

ing local consistency enables to dramatically improve all

the 23 state-of-the-art confidence measures, including those

based on machine learning, on all considered datasets and

even dealing with image contents never seen before (e.g.,

on Middlebury 14 dataset).

To the best of our knowledge, this is the first method

to exploit for confidence measures the local consistency as-

sumption moving beyond conventional point-based strategy

adopted by state-of-the-art. Experimental results, with the

end-to-end CNN-based framework proposed in this paper,

clearly confirm the effectiveness of this strategy.

2. Related work

Many confidence measures for stereo have been pro-

posed in the literature [4, 5, 11]. In the review proposed

by Hu and Mordohai [11], such measures are categorized

into six main groups according to the to cue exploited to in-

fer depth reliability: analysis of matching costs, local prop-

erties of the cost curve, analysis of local minima within

the cost curve, analysis of the matching curve, consistency

between left and right disparity maps and distinctiveness-

based measures. The same authors also defined an evalu-

ation protocol based on ROC curve analysis and reported

results on indoor [28] and outdoor [32] datasets.

Confidence measures can be used for several purposes;

for instance to detect uncertain disparity assignments [23,

27] and occlusions [10, 19], improve accuracy near depth

discontinuities [6], improve overall disparity map accu-

racy [12, 20, 8, 22, 25] and for sensor fusion [15, 18].

More effective confidence measures, leveraging on machine

learning techniques, significantly outperform conventional

stand-alone approaches evaluated in [11]. In particular, in

[9, 31, 22, 25] the reliability of disparity assignments is

inferred by feeding a random forest with a features vec-

tor containing multiple confidence measures [9, 31, 22]

and/or hand-crafted clues extracted from the disparity map

[31, 22, 25]. Compared to stand-alone confidence measures,

Ensemble [9], GCP [31], Park [22] and O1 [25] achieved

significant improvements with O1, based on features ex-

tracted only from the disparity map, outperforming other

methods based on random-forests [25].

Deep learning techniques have also been recently de-

ployed to deal with confidence prediction and stereo match-

ing. Concerning the first goal, in [30] a confidence mea-

sure is inferred with a CNN analyzing hand-crafted features

extracted from left-right and right-left disparity maps. In

[26] this abstraction strategy is pushed forward inferring,

from scratch with a CNN, a confidence measure from the

the raw left-right disparity map. Both approaches outper-

form Park [22]. Finally, in [21] is described a methodol-

ogy aimed to infer training data from stereo sequences by

exploiting multiple viewpoints and contradictions in depth

maps. Concerning stereo with CNNs, in [34] is proposed

how to learn a general-purpose similarity function and in

[35, 36] a patch-based matching cost. This latter strategy

turned out to be very effective and, coupled with an adaptive

cost aggregation strategy [37] and disparity refinement steps

based on SGM [10], has excellent performance on KITTI 12

and 15 datasets. The architecture proposed in [36] is about

80 times faster than the accurate one with an increase in er-

ror rate smaller than 1% on both KITTI datasets. Other fast

architectures for patch-based cost computation with CNNs

are [1, 13] while Mayer et al. [16] proposed the first end-to-

end architecture for stereo matching. The large amount of

training samples required by this latter method is addressed

deploying a large, yet realistic, synthetic dataset. Finally, in

[24] a CNN was trained to combine the outcome of multiple

stereo algorithms in order to obtain more accurate results.

Recently has been proved that the joint use of effective

confidence measures and stereo enables to improve accu-

racy. In [31] the matching costs of points with the higher

estimated reliability are modified in order to appear like

an ideal cost curve and then the entire cost volume is re-

fined by means of a MRF framework. In [22], the cost

curve is modulated according to the estimated reliability of

each point and, in [25], the estimated confidence along each

SGM scanline is deployed to weight cost aggregation ac-

cordingly. Finally, in [30], the inferred confidence measure

is plugged into SGM [10] to dynamically change parame-

ters P1 and P2.

3. Proposed method

This work aims at improving the reliability of standalone

confidence measures, learning from their local behavior ef-

fective informative patterns making the assumption that,

as for most computer vision algorithms, locality matters.

Considering that the reference image and the disparity map
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are locally consistent, we expect a similar behavior for the

confidence maps. Moreover, we expect different confi-

dence measures to expose specific local patterns that can

be identified with an ad hoc training. To this end we lever-

age on a deep network, appropriately trained on a dataset

with ground-truth, aimed at learning and detecting effective

informative patterns for each examined confidence mea-

sure. Exhaustive experimental results on challenging stereo

pairs confirm that the proposed strategy enables to dramat-

ically improve the effectiveness of state-of-the-art confi-

dence measures.

3.1. Enforcing local consistency

A confidence measure k assigns a value to a pixel p of

the disparity map computed with respect to the reference

image according to Ck, a function taking as arguments one

or more of the following cues: the matching cost curve c,

reference left L and right image R of the stereo pair, the

disparity maps DL and DR obtained, respectively, using as

reference L and R.

Ck(p) = f(c(p), L,R,DL, DR) (1)

Excluding more recent approaches based on machine-

learning, a conventional confidence measure can be ob-

tained [11] analyzing matching costs, local properties of the

cost curve or of the entire curve, local minima, consistency

between left and right disparity maps and distinctiveness

among image pixels. Typically, a more complex analysis al-

lows to achieve a more accurate correctness prediction. For

example, the Matching Score Measure (MSM) [11], which

is the simplest confidence measure, only relies on the min-

imum matching cost value. It has been adopted as baseline

method, showing that most of the other confidence mea-

sures outperform it [11]. Another one based on very simple

analysis is the Left-Right Consistency (LRC) [11], aimed at

detecting inconsistent points between left and right dispar-

ity maps. This measure performs very well near depth dis-

continuities, and is mainly useful to detect occluded pixels.

However, it is not very informative due to its discretized na-

ture. Both measures typically fail in presence of some well-

known issues of stereo matching, such as low textured areas

or repetitive patterns, where multiple local minima concur-

ring to the role of minimum would yield to high confidence

according to MSM. Similarly, the absence of discontinuities

might lead LRC, to label a pixel as confident even if it has

wrong disparities on both maps.

In our proposal, in order to predict the correctness of a

disparity assignment enforcing the locality constraint, it is

useful to encode match reliability with a confidence map.

That is, given a confidence measure k, for each pixel p

belonging to the reference image L, the confidence map

Mk ∈ [0, 1] is obtained as follows:

Figure 2. Proposed CNN architecture to prediction match reliabil-

ity enforcing local consistency on the input confidence map.

Mk(p) =
Ck(p)−minp∈L Ck(p)

maxp∈L Ck(p)−minp∈L Ck(p)
(2)

Observing confidence maps we can notice that some

measures apparently do not show distinctive patterns, look-

ing like noisy images to human observers. Conversely,

some others clearly present such distinctive patterns, re-

lated to particular features of the disparity map. Starting

from these observations, we assume that local properties

of confidence maps can be exploited to improve their relia-

bility with respect to their original counterpart by learning

specific image patterns of each measure. Such properties,

within the neighborhood of a pixel p, are sought in the con-

fidence map Mk analyzing a N × N patch centered on p

with a CNN, trained to infer a new confidence estimation

for the examined point.

3.2. Deep network architecture

To learn a locally consistent confidence prediction, we

propose to train a custom CNN to assign the new value for

the pixel under investigation, using image patches extracted

from confidence maps. For this purpose we rely on a deep

network architectures structured as in Figure 2.

In order to infer the final pixel-wise confidence score, in

our experiments we evaluated different CNN architectures

made of different convolutional layers, depending on the

perceptive field of the network, and fully-connected layers.

Convolutional layers extracts f feature maps by applying

3 × 3 kernels from the input feature maps fed by the pre-

vious layer, fully-connected containing n neurons. The sin-

gle final neuron is in charge of the regression stage. Each

layer is followed by activation operators, in particular we

used Rectifier Linear Units (ReLU) and we applied a Sig-

moid operator on the output of the last neuron. Following

the successful deployment of CNNs for stereo [36] and con-

fidence estimation [26], we chose convolutional kernels of

fixed 3 × 3 size and we did not include any pooling oper-

ator. The remaining hyper-parameters of our architecture,

such as the size of the perceptive field and the number of

neurons, have been tuned during the experimental phase.
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Given a patch of size N × N , referred to as PN×N
Mk(p)

, ex-

tracted from a confidence map Mk centered on pixel p, the

value predicted by the network is:

Mk+(p) = F (PN×N
Mk

(p)) ∈ [0, 1] (3)

where F (PN×N
Mk(p)

) is the output of the network processing

PN×N
Mk(p)

. According to this terminology, we will refer, for

example, to the learned version of the PKRN confidence

measure as PKRN+ (PKRN plus).

In testing, after the network has been trained, we replace

the fully-connected layers with convolutional layers made

of 1 × 1 kernels. This new model is functionally identi-

cal to the one used for training but, with the same network,

it allows to process input of different size enabling a sin-

gle forward pass of the full resolution confidence map Mk

rather than forwarding all the single PN×N
Mk

patches. This

strategy greatly reduces the time required to obtain the final

confidence map Mk+ . The absence of pooling allows us to

maintain full resolution output by applying zero-padding to

the original Mk according to the size of the perceptive field.

4. Experimental results

In this section we describe in detail the methodology

adopted for the training phase on a subset of the KITTI 12

[7] dataset. Then, we compare, on KITTI and Middlebury

datasets, the learned confidence measures to their original

counterparts1. In particular, we evaluate the performance in

terms of correctness prediction by analyzing the Area Under

Curve (AUC) [11] on the remaining images of the KITTI 12

[7] dataset as well as on the whole KITTI 15 [17] and Mid-

dlebury 14 [28] datasets without re-training the networks.

Since the ground-truth is required for training and for

AUC evaluation, as common in this field [9, 22, 26, 25],

for each considered dataset we rely on the evaluation train-

ing sets of KITTI 12 (194 images, 25 for training and 169

for testing), KITTI 15 (200 images) and Middlebury 14 (15

images). Moreover, we compute confidence measures ac-

cording to the output of two algorithms: AD-CENSUS, ag-

gregating matching costs (computed with the Hamming dis-

tance on 5 × 5 census transformed image patches) on a fixed

support region of size 5 × 5, and MC-CNN algorithm [36].

4.1. Training phase

For each confidence measure we trained the CNN, on

a subset of the KITTI 12 dataset, according to stochastic

gradient descend, in order to minimize the binary cross en-

tropy, with batch size set to 128 patches. Each network ran

15 training epochs with a learning rate equal to 0.003, re-

duced by a factor 10 after the 11th epoch, a momentum of

1Source code and trained networks available on http://vision.

disi.unibo.it/˜mpoggi/code.html

0.9 and shuffled the training examples before the training

phase. Network models and training phase have been im-

plemented with the Torch 7 framework [2].

In our experiments we tested different amounts of train-

ing data to generate learned confidence maps and we

achieved the best results considering 25 stereo images (ı.e.,

from frame 000000 to 000024) of the KITTI 12 dataset [7].

Increasing the training set did not improve noticeably the

quality of the learned confidence measures. From these 25

frames, we extracted patches centered on pixels with avail-

able ground-truth, obtaining approximatively 2.7 million

samples for each confidence measure. Patches centered on

points having a disparity error ≤ 3 (following the threshold

suggested in [7, 17]) are labeled as confident and encoded

as ones, the remaining as zeros.

In our evaluation we considered 18 state-of-the-art stand-

alone confidence measures and 5 approaches based on

machine-learning. Regarding the first group, they are:

Matching Score Measure (MSM), Peak Ratio (PKR) and

Peak Ratio Naive (PKRN), Winner Margin (WMN) and

Winner Margin Naive (WMNN), Negative Entropy Mea-

sure (NEM), Number Of Inflection points (NOI), Maxi-

mum Margin Naive (MMN), Maximum Likelihood Mea-

sure (MLM), Attainable Maximum Likelihood (AML),

Curvature (CUR), Local Curve (LC), Left Right Consis-

tency (LRC), Left Right Difference (LRD), Distinctive

Similarity Measure (DSM), Uniqueness Constraint (UC),

Self-Aware Matching Measure (SAMM) and Perturbation

(PER). Excluding PER [9], UC [3] and LC [33] the other

confidence measures have been reviewed in [11]. Regard-

ing the specific parameters setting, we set σMLM = 0.3 and

σAML = 0.1 as suggested in [11]), sPER = 120, γ = 480
for LC as suggested in [9]. SAMM has been computed in

its symmetric version, within the range [−dmax

2 , dmax

2 ], as

suggested by the authors.

Regarding confidence measures based on machine-

learning we considered Ensemble [9] (in its more effective

configuration with 23 features), GCP [31], Park [22] (in its

more effective configuration with 22 features) and the two

methods proposed in [25] and [26] referred, to as, respec-

tively, O1 and CCNN. We implemented these 5 approaches

following exactly the guidelines reported in each paper and

trained, as for our proposal, each one on the same 25 im-

ages of the KITTI 12 dataset. Before being fed to the deep

network, each confidence map was normalized according to

equation 2.

The AUC values reported in Section 4.2 and Section 4.3

for AD-CENSUS and in Section 4.4 for MC-CNN were ob-

tained tuning the previously described hyper-parameters of

our network as follows: 9 × 9 perceptive field, f = 128
kernels per convolutional layer, n = 384 neurons (i.e. 1 ×

1 kernels at test time) per fully-connected layer. The 9 × 9

perceptive field enabled to achieve on average the best per-
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Figure 3. Average AUC for the 18 stand-alone confidence measures on the 3 considered datasets with AD-CENSUS. (a) Evaluation on

KITTI 12 images excluded from training (169 frames, from 000025 to 000193), (b) evaluation on KITTI 15 dataset (200 frames), (c)

evaluation on Middlebury 14 dataset (15 frames). In blue AUC related to the original confidence measure (e.g., AUCPKRN ), in green the

AUC related to its learned counterpart (e.g., AUCPKRN+ ). The red line shows the optimal AUC value (AUCopt), computed according to

5.

Confidence KITTI 12 (169/194) KITTI 15 (200/200) Middlebury 14 (15/15)

measure AUCk AUCk+ ∆k AUCk AUCk+ ∆k AUCk AUCk+ ∆k

PKRN 0.231682 0.187407 35.74% 0.220458 0.154534 49.90% 0.152359 0.112248 47.76%

PKR 0.251132 0.155664 66.61% 0.222827 0.134693 65.54% 0.144349 0.101848 55.94%

MSM 0.274919 0.211803 37.77% 0.260329 0.202062 33.88% 0.186604 0.166312 17.16%

MMN 0.244250 0.167334 56.37% 0.236990 0.153026 56.49% 0.162109 0.115097 50.15%

WMN 0.224146 0.148876 64.70% 0.202390 0.130410 63.12% 0.127015 0.099424 47.05%

MLM 0.273479 0.219593 32.52% 0.257940 0.204421 31.56% 0.180903 0.164901 14.22%

PER 0.260978 0.210076 33.23% 0.240324 0.198303 27.65% 0.171692 0.153460 17.65%

NEM 0.386211 0.314742 25.67% 0.328761 0.295701 13.75% 0.307148 0.259922 19.78%

LRD 0.240665 0.165342 56.69% 0.232831 0.150244 57.16% 0.153181 0.110457 50.38%

CUR 0.355582 0.176552 72.25% 0.316048 0.157221 69.76% 0.223898 0.123904 64.30%

DSM 0.274579 0.211731 37.68% 0.260062 0.202075 33.77% 0.186157 0.166489 16.70%

AML 0.287019 0.169239 65.72% 0.265626 0.155299 62.23% 0.219605 0.116534 68.16%

NOI 0.419441 0.311631 34.59% 0.345756 0.308789 14.36% 0.340609 0.276457 23.57%

SAMM 0.204491 0.150287 56.06% 0.171475 0.12176 59.81% 0.214449 0.133298 55.55%

WMNN 0.223139 0.162058 52.96% 0.211146 0.150363 49.50% 0.144132 0.109271 46.01%

LRC 0.242911 0.159512 61.73% 0.218156 0.147458 54.47% 0.174806 0.120645 50.89%

LC 0.335298 0.183496 66.73% 0.303691 0.164670 64.56% 0.211085 0.121464 62.80%

UC 0.296917 0.165900 69.28% 0.263651 0.146081 67.07% 0.215678 0.104459 75.50%

Optimal 0.107802 0.088357 0.068375
Table 1. Average AUC for the 18 stand-alone confidence measures on the 3 considered datasets with AD-CENSUS. Last row reports the

optimal AUC. The table is split into three blocks: left block reports evaluation on KITTI 12 images excluded from training (169 frames,

from 000025 to 000193), middle block reports evaluation on KITTI 15 dataset (200 frames), right block reports evaluation on Middlebury

14 dataset (15 frames). Each block contains AUC for the original measure (AUCk), its learned counterpart (AUCk+ ) and the improvement

(∆k) yielded by our proposal, with respect to AUCopt, computed according to equation 5.

formance. The resulting CNN architecture has more than

600 thousand parameters and, with a full resolution confi-

dence map of the KITTI dataset, it requires just 5 GB of

memory and about 0.1 sec to infer a new confidence esti-

mation with a Titan X GPU.

Finally, we stress the fact that in our experimental eval-

uation we performed a single training procedure on 25 im-

ages of the KITTI 12 dataset even when dealing with dif-

ferent datasets (ı.e, KITTI 15 and Middlebury 14) and the

remaining 169 images of KITTI 12.
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(a) (b) (c) (d)

Figure 4. Qualitative comparison of three stand-alone confidence measures and their learned counterparts. (a) Reference image, (b) Dispar-

ity map computed by AD-CENSUS, (c) PKR and (d) learned PKR+. Higher confidence values are brighter. The disparity map is encoded

with colormap jet.

4.2. Evaluation of stand­alone confidence measures

We assess the effectiveness of confidence measures per-

forming ROC curves analysis, a commonly adopted evalu-

ation protocol in this field [11, 9, 31, 22, 26, 25]. In par-

ticular, given a confidence map, the image points are sorted

in descending order according to their confidence values.

Then, top 5% are extracted and the error rate is computed as

the ratio between the number of pixels with disparity errors

larger than 3 (the standard threshold suggested for KITTI

datasets [7, 17], maintained also on Middlebury 14 to be

compliant with the training protocol) and the currently pro-

cessed points, repeating this phase for the top 10%, 15%

and so on. Ties are managed by including all pixels hav-

ing the same confidence value (resulting in an horizontal

curve). The AUC encodes the effectiveness of a confidence

measure: the lower the AUC, the better is the estimation.

Given the percentage ǫ of erroneous pixels in the dispar-

ity map, setting in our experiments threshold 3, the optimal

AUC value can be obtained [11] as:

AUCopt = ǫ+ (1− ǫ) ln (1− ǫ) (4)

Figure 3 summarizes the experimental results with AD-

CENSUS on the 3 datasets involved in our evaluation. On

the left we report results concerning the KITTI 12 dataset

(the remaining 169 stereo pairs out of 194, being 25 used

for training), in the middle concerning KITTI 15 dataset

(200 stereo pairs, none involved in training), on the right

concerning Middlebury 14 dataset (15 stereo pairs, none in-

volved in training). Given a confidence measure k belong-

ing to the pool of 18 stand-alone measures considered, two

bars are depicted, related to the average AUC achieved by

the original measure (AUCk, in blue) and the one obtained

after being processed by our framework (AUC+
k , in green).

The red line represents the optimal value (AUCopt), com-

puted according to equation 4. The closer the AUC is to

AUCopt, the more effective the confidence measure is. The

charts in Figure 3 show that our method always improves

the effectiveness of each confidence measure, achieving a

lower AUC on all the datasets. To perceive more clearly the

benefits yielded by our framework, we report in detail the

AUCs in Table 1. Each row is related to a single stand-alone

confidence measure, the final row contains AUCopt values.

The table is organized into three main blocks, each one re-

lated to one of the charts shown in Figure 3 (left: KITTI 12,

middle: KITTI 15, right: Middlebury 14). For each dataset,

each row reports the original confidence measure AUCk,

the learned counterpart AUCk+ and the the improvement

∆k, defined in 5, yielded by our frameworks with respect to

the optimal AUC (i.e. AUCopt, last row of the table).

∆k =
AUCk −AUCk+

AUCk −AUCopt

(5)

According to 5, given a confidence measure, a ∆k =

100% improvement would be achieved by our framework

obtaining the optimal AUCopt. Concerning the evalua-

tion on KITTI 12 dataset, we can observe how ∆k is al-

ways greater than 25%. In particular, the worst case is

represented by NEM measure, being the AUC of NEM+

25.67% closer to AUCopt with respect to the original ver-

sion. For 6 measures (i.e., PKRN, MSM, MLM, PER,

DSM, and NOI) our framework yields an improvement be-

tween 30% and 50% and for the remaining 11 measures

we report major improvements, up to 72.25% comparing

CUR with CUR+. Extending the analysis to the remaining

datasets, the same behavior is confirmed for all the exam-

ined confidence measures. In particular, observing the re-

sults concerning KITTI 15 dataset, NEM and NOI yield the

smaller improvements, respectively with a ∆k of 13.75%

and 14.36%, PER+ achieves an improvement close to 30%,

5 measures (i.e., PKRN, MSM, MLM, DSM and WMN)

obtain a ∆k between 30% and 50% and the remaining mea-

sures yield major gains, up to 69.76% deploying CUR+.

Finally, we report a further cross validation on Middle-

bury 14, the most challenging dataset being made of indoor

scenes completely different from the 25 outdoor scenes of

KITTI 12 seen during the training phase. In this case there

are 6 measures (i.e., MSM, MLM, PER, NEM, DSM and

NOI) with a ∆k between 14% and 30%, PKRN, WMN and

WMNN between 30 and 50% and the remaining 9 measures

showing major improvements, up to 74.91% achieved by

UC+.
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(a) (b) (c)
Figure 5. Average AUC for the 5 confidence measures based on machine-learning on the 3 datasets with AD-CENSUS. (a) Evaluation on

KITTI 12 images excluded from training (169 frames, from 000025 to 000193), (b) evaluation on KITTI 15 (200 frames), (c) evaluation

on Middlebury 14 (15 frames). In blue the AUC for the original confidence measure (e.g., AUCGCP [31]), in green the AUC related to its

learned counterpart (e.g., AUCGCP+ ). In red, optimal AUC values (AUCopt) computed according to 4.

Confidence KITTI 12 (169/194) KITTI 15 (200/200) Middlebury 14 (15/15)

measure AUCk AUCk+ ∆k AUCk AUCk+ ∆k AUCk AUCk+ ∆k

Ensemble [9] 0.214929 0.127682 81.44% 0.186504 0.109991 77.96% 0.245227 0.163656 46.12%

GCP [31] 0.152764 0.138078 32.66% 0.139611 0.124286 29.90% 0.109302 0.098367 26.71%

Park [22] 0.144077 0.132393 32.21% 0.131662 0.117529 32.64% 0.104146 0.094084 28.13%

O1 [25] 0.127645 0.124695 14.87% 0.108812 0.105893 14.27% 0.090908 0.086444 19.81%

CCNN [26] 0.123612 0.121257 14.90% 0.105645 0.103645 11.59% 0.086082 0.084485 9.01%

Optimal 0.107802 0.088357 0.068375
Table 2. Average AUC for the considered 5 confidence measures based on machine-learning based on the 3 datasets with AD-CENSUS.

The table is split into three blocks: left block reports evaluation on KITTI 12 images excluded from training (169 frames, from 000025 to

000193), middle block reports evaluation on KITTI 15 (200 frames), right block reports evaluation on Middlebury 14 (15 frames). Each

block contains AUC for the original measure (AUCk), the outcome of our framework (AUCk+ ) and the improvement (∆k) yielded by

our proposal, with respect to AUCopt, computed according to equation 5.

Figure 4 provides a qualitative comparison between PKR

confidence measure and its learned counterparts PKR+ on

the Piano stereo pair from Middlebury 14. Observing the

figure we can clearly notice the improvements yielded by

our framework exploiting local consistency. Confidence

values are much more smooth and consistent (e.g., the floor,

the lampshade, the piano and its bench). Moreover, we can

also notice how our framework can recover from gross fail-

ures of the original confidence measure (e.g., the portion of

the wall at the top-right corner of the image).

4.3. Evaluation of confidence measures based on
machine­learning

Once assessed the effectiveness of our proposal on stand-

alone measures, we extended our evaluation considering

5 state-of-the-art confidence measures based on machine-

learning: Ensemble [9], GCP [31], Park [22], O1 [25] and

CCNN [26]. As already pointed out, we adopt for this eval-

uation the same protocol for training and testing. In this

case, we train the original 5 considered confidence measure

on the same 25 images used to train our framework (frames

from 000000 to 000024 of KITTI 12).

Figure 5 shows the results on the three datasets with AD-

CENSUS, reported in detail in Table 2, according to the

same methodology described in Section 4.2. Observing the

figure we can clearly notice that our proposal always outper-

forms significantly the 5 original confidence measures on all

the three datasets. The improvements are remarkable also

for top-performing confidence measures O1 and CNN be-

ing ∆k, respectively, greater than 14% and 9% in the worst

case. For the other 3 confidence measures the improvement

is, in the worst case, greater than 28% for Park, almost 27%

for GCP and greater than 46% for Ensemble that, in the

best case, improves by more than 81% with our framework.

Interestingly, the learned Ensemble+ confidence measure is

able to outperform the original GCP and Park approaches on

KITTI 12 and KITTI 15. This further evaluation confirms

the effectiveness of our proposal even with the 5 confidence

measures based on machine learning.

Moreover, comparing the results reported in Table 1 and
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Figure 6. Average improvement ∆k (%) on Middlebury 14 with

different amount of training data (first 5, 15, 25 and 35 frames)

from KITTI 12 with AD-CENSUS.

2, we can notice how with our proposal some stand-alone

confidence measures are able to outperform approaches

based on machine-learning. In particular, Ensemble is out-

performed by all the learned confidence measures, except

MLM+, NEM+ and NOI+ on KITTI 12, MSM+, MLM+,

PER+, NEM+, DSM+ and NOI+ on KITTI 15, NEM+

and NOI+ on Middlebury 14. GCP is outperformed by

WMN+ and SAMM+ on KITTI 12, by PKR+, WMN+ and

SAMM+ on KITTI 15, by PKR+, WMN+, WMNN+ and

UC+ on Middlebury 14. Park is outperformed by WMN+

and SAMM+ on KITTI 15, by PKR+ and WMN+ on Mid-

dlebury 2014. This means that the proposed framework is

not only able to significantly improve the effectiveness of

each considered confidence measure, but in many cases it

enables to achieve even more accurate prediction by pro-

cessing a single confidence measure rather than by com-

bining multiple ones as done by the three machine-learning

approaches Ensemble [9], GCP [31] and Park [22].

Finally, we report in Figure 6 the average improvement

∆k achieved by our networks on Middlebury 14 as a func-

tion of the amount of training data. Observing the figure

we can notice that we obtain the best performance with 25

frames and, more interestingly, our networks trained only

on 5 frames achieve an average improvement greater than

35%.

4.4. Evaluation with MC­CNN

In Table 3 we provide additional experimental results

concerned with state-of-the-art cost function MC-CNN [35,

36]. We trained our networks on the same amount of data

(i.e., 25 images of KITTI 12 dataset) and followed the same

cross validation protocol adopted with the AD-CENSUS al-

gorithm. Due to the lack of space, we report for MC-CNN

only the average improvement ∆k on the three datasets.

The table confirms that, even with the more accurate MC-

CNN algorithm, our proposal achieves notable improve-

ments on each of the 23 examined confidence measures

with ∆k ranging from ≈10% (LC+ in the worst case) to

more than 77% (CUR+ in the best case). Focusing on ap-

Measure KITTI 12 KITTI 15 Middlebury 14

PKRN+ 66.5% 60.8% 29.1%

PKR+ 69.2% 54.7% 23.4%

MSM+ 34.4% 21.9% 23.4%

MMN+ 52.5% 41.4% 40.6%

WMN+ 73.1% 59.4% 23.7%

MLM+ 17.8% 13.5% 14.4%

PER+ 43.6% 33.9% 42.3%

NEM+ 46.6% 32.5% 34.3%

LRD+ 51.8% 41.1% 44.8%

CUR+ 11.4% 49.9% 77.1%

DSM+ 36.2% 23.6% 24.3%

AML+ 63.5% 53.4% 51.1%

NOI+ 46.1% 33.9% 28.9%

SAMM+ 70.9% 64.0% 61.4%

WMNN+ 57.2% 53.0% 23.1%

LRC+ 73.3% 63.7% 30.9%

LC+ 9.8% 25.8% 65.6%

UC+ 75.0% 71.0% 72.3%

Ensemble+ 74.3% 70.5% 38.5%

GCP+ 27.1% 18.5% 26.0%

Park+ 33.5% 28.5% 36.3%

O1+ 26.2% 22.0% 38.9%

CCNN+ 15.6% 10.6% 21.5%
Table 3. Average improvement ∆k yielded by our proposal on the

three datasets with MC-CNN [36].

proaches based on machine-learning we can also notice that

our proposal yields improvements from 10.6% (CCNN+ in

the worst case) to more than 74% (Ensemble+ in the best

case).

5. Conclusions

In this paper we have proposed a methodology aimed

at improving the effectiveness of confidence measures for

stereo by exploiting local consistency. Our framework,

leveraging on a deep network, is able to learn and improve

the local behavior of confidence measures and, to the best

of our knowledge, it is the first method to move beyond

single pixel-wise confidence estimation performed by other

approaches. The exhaustive experimental evaluation with

two stereo algorithms, including a cross-validation on two

additional datasets, shows that our method enables remark-

able improvements on each of the 23 state-of-the-art con-

fidence measures and on each dataset. This confirms the

assumption made in this paper: confidence maps are locally

consistent and a deep network can learn how to exploit this

fact. In particular, results reported with state-of-the-art con-

fidence measures based on machine-learning set the bar a

further step closer to optimality paving the way to further

improvements in this field.
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