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Abstract

3D reconstruction of dynamic fluid surfaces is an open

and challenging problem in computer vision. Unlike pre-

vious approaches that reconstruct each surface point inde-

pendently and often return noisy depth maps, we propose

a novel global optimization-based approach that recovers

both depths and normals of all 3D points simultaneously.

Using the traditional refraction stereo setup, we capture the

wavy appearance of a pre-generated random pattern, and

then estimate the correspondences between the captured im-

ages and the known background by tracking the pattern.

Assuming that the light is refracted only once through the

fluid interface, we minimize an objective function that incor-

porates both the cross-view normal consistency constraint

and the single-view normal consistency constraints. The key

idea is that the normals required for light refraction based

on Snell’s law from one view should agree with not only

the ones from the second view, but also the ones estimated

from local 3D geometry. Moreover, an effective reconstruc-

tion error metric is designed for estimating the refractive

index of the fluid. We report experimental results on both

synthetic and real data demonstrating that the proposed ap-

proach is accurate and shows superiority over the conven-

tional stereo-based method.

1. Introduction

The problem of 3D reconstruction of dynamic fluid sur-

faces has attracted much attention from many areas, includ-

ing computer vision [19], oceanology [14] and computer

graphics [8]. Effective solutions can benefit many appli-

cations, e.g. physics-based fluid simulation [10] and fluid

imaging [2]. The problem is challenging for several rea-

sons. First, similar to glass and crystal, most fluids are

transparent and do not have their own colors. They acquire

their colors from surrounding backgrounds. Hence, tradi-

tional color-based stereo matching cannot work for such

view-dependent surfaces. Second, tracing the light path in-

volved in fluid surface reconstruction is non-trivial because

of the non-linearity inherent in refraction. Even worse is

that light refraction depends not only on the 3D shape but

also on the medium’s property, i.e. refractive index, which is

usually unknown. Third, compared to static transparent ob-

jects, accurately reconstructing wavy fluid surfaces is even

harder because real time capture is required.

In computer vision, the problem is usually solved via

shape from refraction. Typically, a known background is

placed beneath the fluid surface and 3D reconstruction is

performed by analyzing pixel-point correspondences. That

is, for each pixel, the corresponding location of the light

source in the background is acquired. However, shape

from pixel-point correspondence is known to have ambi-

guities: the 3D surface point can lie at any position along

the camera ray that goes through the pixel. Recent meth-

ods resolve the ambiguities along two directions. Some

methods [29, 31, 34], instead of using pixel-point corre-

spondences, acquire ray-ray correspondences, i.e. the inci-

dent ray emitted from the background and the exit ray go-

ing to the camera, using special devices (e.g. Bokode [31],

light field probes [29]). Alternatively, a number of methods

[7, 19] propose to employ stereo/multiple cameras to cap-

ture the fluid surface, which basically utilize a cross-view

normal consistency constraint: the normals computed us-

ing the pixel-point correspondences acquired from different

views should be consistent. Nevertheless, for the above two

groups, a common limitation is that they result in reliable

normals only but noisy depths. The final 3D points of the

fluid surface are then obtained by normal integration. To get

the boundary condition for integration, they either assume

that the surface is flat at the boundary [7, 31] or estimate the

boundary using the noisy depths [19, 29].

To cope with the above limitations, we propose a global

optimization-based approach to reconstruct a dynamic, ho-

mogeneous and transparent fluid surface, from which spec-

ular reflection is assumed to be negligible. Our approach is

based on pixel-point correspondences. By assuming light is

redirected only once through the fluid surface, we first use

two perspective cameras to capture the distortion of a ran-
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dom pattern through the wavy surface. Hence, our acquisi-

tion system is easy to implement and requires no special op-

tics. Compared to a conventional stereo-based method [19],

the proposed approach can obtain both accurate, consistent

depths and normals without the error-prone surface integra-

tion step. Specifically, rather than doing a point-by-point

reconstruction, we formulate a global optimization func-

tion, which exploits not only the cross-view normal con-

sistency but also the single-view normal consistency con-

straints. By doing so, we jointly reconstruct depths and

normals. Our method addresses the fundamental limitation

of existing methods on surface integration without accurate

boundary conditions. Besides, a new reconstruction error

metric is designed to search the refractive index of liquid

with very encouraging results.

2. Related Work

The single-view based method was first introduced by

Murase [20] in computer vision, where surface normals are

recovered by capturing video with an orthographic camera

of a flat background through wavy water. To eliminate the

ambiguity in pixel-point correspondences, earlier efforts fo-

cus on proposing additional constraints, e.g. statistical ap-

pearance assumption of a fluid sequence [20], known aver-

age fluid height [14]. Recently, Shan et al. [25] improve

Murase’s method by solving all surface points at the same

time under orthographic projection. However, their imple-

mentation requires a long exposure time (about 0.5 seconds)

for each frame and thus is applicable to static objects only.

By modeling the surface as a cubic B-spline, Liu et al. [18]

introduce a parametric solution for reconstructing both mir-

ror objects and transparent surfaces using pixel-point corre-

spondences.

Ray-ray correspondence based methods are developed to

avoid the ambiguity of pixel-point correspondences under a

single-view setup. By placing a color screen at the focal

length of a big lens, Zhang and Cox [34] associate each 2D

source point of the background with a ray direction under

orthographic projections. The incident rays are then easily

obtained after getting pixel-point correspondences. Ye et al.

[31] establish a similar setup by using a perspective cam-

era. Wetzstein et al. [29] acquire ray-ray correspondences

with light field probes [28]. Specifically, they replace the

big lens with a lenslet array. A color pattern is then placed

under the array, which encodes positional and angular cor-

respondences using different color channels. All the above

ray-ray correspondence based methods rely on special op-

tics, which introduces many practical issues, e.g. calibrating

the ray directions of background points [15] and making the

setup waterproof [31]. In addition, as reported in their pa-

pers [29, 31], the surface positions obtained by intersecting

the incident and exit rays are less accurate than that of the

normals obtained by Snell’s law. Furthermore, a surface in-

tegration algorithm is required to obtain the 3D shape from

the normal information.

Another group of methods utilize multiple viewpoints

to tackle the problem. Morris and Kutulakos [19] first pro-

pose using a stereo camera system to capture a dynamic

fluid surface. By placing a checkerboard underneath the

fluid surface, their approach can estimate both depths and

normals based on pixel-point correspondences. Following

their stereo setup, our approach not only inherits the ad-

vantage of easy implementation (e.g. no special devices re-

quired and can work under perspective projection) but also

provides the following novel improvements: (1) In addition

to cross-view normal consistency, our approach exploits a

novel single-view normal consistency which takes local sur-

face geometry into account; (2) Unlike their method which

solves for each individual point independently, ours em-

ploys a global optimization scheme to recover all surface

points simultaneously which results in higher accuracy in

both depth and normal; (3) Since they compute depths and

normals in separate steps, the surface obtained by mesh fit-

ting based on the depth map and the one estimated via nor-

mal integration do not guarantee consistency. Typically,

their normals are more accurate than the corresponding

depths. Thus an additional surface integration from normals

is required. In comparison, we simultaneously reconstruct

depths and normals, which are both accurate and, most im-

portantly, are consistent with each other; (4) We define a

new error metric to recover the unknown refractive index

without requiring to compute the complex inverses of pixel-

point correspondences as in their method. It is noteworthy

that the refraction stereo formulation has been extended to

using a camera array [7], where the fluid surface is recon-

structed by specular carving. However, the major limita-

tions of [19] discussed above remain unsolved.

3D fluid surfaces can also be recovered based on light

reflections [17, 32]. In addition, our work is also closely

related to the problem of reconstructing static transparent

objects [11, 16, 22, 26, 37] and dynamic gas flows [3, 15,

30]. Interested readers are referred to the surveys [12, 13]

of this field.

3. Proposed Approach

3.1. Correspondence Acquisition and Matching

Our approach computes the 3D shape of a transparent

fluid surface based on how it refracts light. Specifically, for

each pixel, the position of the corresponding background

point is required, i.e. pixel-point correspondence. As shown

in Fig. 1(a), we place a pre-generated pattern at the bottom

of a tank, and capture the scene from two different view-

points with Camera 1 and Camera 2, respectively. For each

camera, we first capture the pattern without water as a refer-

ence image B. The cameras are synchronized for capturing
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Figure 1. Acquisition setup (a) and the corresponding refraction

stereo geometry (b). Note that Camera 3 in the left figure is for

accuracy assessment only and not used during 3D reconstruction.

dynamic surfaces after adding water. Note that an additional

camera (Camera 3) is used for accuracy evaluation using

an image-based rendering method in our real experiments,

which is discussed in Sec. 4.2.

Fig. 1(b) illustrates the acquisition setup in 2D. Con-

sider two perspective cameras centered at O1 and O2 ob-

serving a refractive surface against a flat background. Tak-

ing Camera 1 for example, for each pixel (xi, yi) in Cam-

era 1, light originating from the corresponding point P1(i)
on the reference plane gets refracted at surface point Si.

Let I1(xi, yi, t) be the tth captured frame of the refraction

distorted pattern. Here, the goal is to estimate the light

source point P1(i) for each pixel (xi, yi). We first ap-

ply the coarse-to-fine variational framework [5] to compute

the optical flow (ui, vi) between I1 and B1. Then the for-

ward projection (x′
i, y

′
i) of point P1(i) is easily computed

as (xi+ui, yi+vi). Suppose the relative poses between the

cameras and the reference plane are calibrated beforehand

and fixed during acquisition, the 3D coordinates of P1(i)
is estimated by intersecting ray O1P1(i) with the reference

plane.

The choice of the displayed pattern is critical for accu-

rate correspondence matching and subsequent 3D recon-

struction. Traditional methods [7, 19] use a checkerboard

pattern and track the feature corners. Correspondences of

non-corner pixels are obtained by interpolation. However,

these methods assume that the first frame of the liquid sur-

face is nearly flat, which is usually impractical, so that a re-

liable initial correspondence field can be obtained. In con-

trast, inspired from the successful applications of random

patterns in single-shot structured light [9], we choose a bi-

nary random pattern generated from Bernoulli distributions

[27] as shown in Fig. 9. Different from a regular checker-

board, a Bernoulli random pattern contains fewer repetitive

structures, which helps to reduce ambiguities while search-

ing correspondences in a local window. Besides, the binary

random pattern extends the advantage of a checkerboard

in handling light absorption, dispersion, chromatic abber-

ations, etc, compared to color-based ones [6, 29].

The correspondence matching for Camera 2 works anal-

ogously. The same procedure is applied to different frames.

So far, we have obtained the pixel-point correspondences

of a liquid motion sequence from two cameras. Next, we

present a novel reconstruction framework that solves the

following problem: Given the pixel-point correspondence

function P1() and P2() of each frame from two views, how

to recover the depths and the normals of the dynamic sur-

face, as well as the refractive index?

3.2. Stereo­Based Reconstruction

Our approach formulates a global optimization frame-

work which enforces two forms of normal consistency con-

straints. Specifically, for each 3D point, the normals es-

timated based on light refraction from two different view-

points should be consistent. On the other hand, they are

also required to agree with the normal estimated based on

single-view local shape geometry.

3.2.1 Normal Definitions

Here we first explain the definitions of the different types

of normals mentioned above. Similar to color-based stereo

matching, we set Camera 1 as the primary camera and the

fluid surface is represented by a depth1 map D in the scope

of Camera 1. As shown in Fig. 1(b), for the ith surface point

Si associated with pixel (xi, yi) of Camera 1, let di be its

hypothesized depth. The 3D coordinates of Si can then be

computed by first assuming that the camera’s parameters are

known. Given the pixel-point correspondence P1(i), we get

the ray direction ri by connecting P1(i) and Si. Then, the

normal of Si can be computed based on Snell’s law, given

the incident and exiting rays ri and ei, respectively. We re-

fer to this normal as the LeftSnell normal, denoted by n1(i).
Snell’s law states that the normal n1(i), the incident ray ri

and the exiting ray ei are co-planar, and thus n1(i) can be

represented as a linear combination of ri and ei. That is,

n1(i) = (ηlri − ηaei)/‖ηlri − ηaei‖, where ηl and ηa de-

note the refractive index of liquid and air, respectively. We

set ηa = 1 in our experiments and here the medium’s re-

fractive index ηl is assumed to be known. How to deal with

fluid surface with an unknown refractive index is discussed

in Sec. 3.3.

On the other hand, by connecting Si and O2, we get ray

ej and the forward projection (xj , yj). Similarly, since the

correspondence source function P2(j) is acquired before-

hand, we can also compute another normal of Si by Snell’s

law given light rays rj and ej . We refer to this normal as

the RightSnell normal, denoted by n2(i). In a similar vein,

n2(i) is estimated by n2(i) = (ηlrj−ηaej)/‖ηlrj−ηaej‖.

1In this paper, depth is defined as the distance between a 3D point and

the camera center along the z axis.

1271



In addition, the normal of a 3D point can be computed

from its local shape geometry. That is, from the 3D loca-

tions of the neighboring points of Si, we can fit a tangent

plane. Then the normal of Si is approximated by the nor-

mal of the tangent plane. In particular, we estimate this nor-

mal by Principal Component Analysis (PCA) [24], which is

referred to as the PCA normal and denoted by np(i). The

basic idea is to analyze the eigenvectors and eigenvalues of

a covariance matrix constructed from nearby points of the

query point. More specifically, the covariance matrix M at

the point Si is defined as:

M =
1

|N (i)|

∑

k∈N (i)

(Sk − Si)(Sk − Si)
⊤, (1)

where N (i) denotes the local neighborhood of pixel i and

|N (i)| the size of N (i). The PCA normal np(i) is thus the

eigenvector of M with minimal eigenvalue.

3.2.2 Objective Function

To this end, we obtain three different normal estimations

computed from different sources for each surface point Si.

Ideally, the three estimates should be the same. Therefore,

the difference between each pair of normals can be used to

defined a normal consistency error. That is:

E12(i) = 1− n1(i) · n2(i), (2)

E1p(i) = 1− n1(i) · np(i), (3)

E2p(i) = 1− n2(i) · np(i), (4)

where E12 measures the cross-view normal consistency er-

ror, which is the one used in [19]. E1p and E2p are our new

single-view normal consistency errors.

Furthermore, assuming that the fluid surface is piece-

wise smooth, we define the depth smoothness term at the

ith point as:

Eso(i) =
∑

k∈G(i)

(di − dk)
2, (5)

where G(i) is the neighborhood pixel set containing the bot-

tom and the right pixel of pixel i in our implementation.

Summing the above error terms and considering all the

surface points, we obtain the following global minimization

problem:

min
di∈D

∑

i∈Ω1

(αE1p(i) + βE2p(i) + γE12(i) + λEso(i)) ,

(6)

where Ω1 denotes the pixel set containing all the surface

points in the region of interest. Hence, Eq.(6) couples

both cross-view and single-view normal consistency con-

straints to optimize for the depths of all points simultane-

ሺݔ′� , �ݔሻ ሺ�′ݕ ,  ሻ�ݕ
Liquid  

Air 

�1 

Reference Plane 

�′� 
�′� 
�′� 

Figure 2. Ray tracing geometrically to estimate the shape-based

optical flow field.

ously, whereas previous methods [7, 19] consider the cross-

view error term E12 only and solve for each point indepen-

dently. α, β, γ and λ are the parameters balancing different

terms.

Note that Eq.(6) is defined w.r.t. a single frame. It is pos-

sible to solve the depth maps of all points from all frames

by including them in Eq.(6) at the same time, which yield

a large system that is computationally expensive. In con-

trast, we solve each frame independently and use the result

of the last frame to initialize the current frame, which not

only drastically reduces the running time and memory con-

sumption but also maintains temporal coherence.

In addition, because of the complex operations involved

computing the three normals, it is difficult to analytically

derive the derivatives of Eq.(6). To tackle that, the previous

method [19] employs the gold-section search [21] for pix-

elwise 1D optimization, which is computationally intensive

when the number of unknowns is large and thus, the method

is not applicable to our global objective function. Instead,

in our implementation, we use the L-BFGS-B [36] method

to optimize Eq.(6) using numerical differentiation.

3.3. Optimizing Depths and Refractive Index

As mentioned in Sec. 3.2.1, computing the LeftSnell and

RightSenll normals both require the refractive index of the

fluid. Given different refractive index hypotheses, solving

Eq.(6) returns different depth maps. Hence, additional steps

are required to get the desired 3D model when the index is

unknown. Following previous methods [19, 22, 25], here

we use a brute-force search approach. That is, we enumer-

ate possible index hypotheses, evaluate the corresponding

models based on a novel reconstruction error metric and

pick the index with the minimal residual error.

The main idea of our proposed reconstruction error met-

ric is based on the consistency of two optical flow fields

estimated using different methods. On the one hand, as in-

troduced in Sec. 3.1, for the ith pixel in Camera 1, we can

compute the displacement vector (ui, vi) between the fluid

image I1 and the reference image B1 using image-based

cues [5]. On the other hand, since the 3D shape of the fluid

surface is reconstructed, the flow field can also be obtained

using shape-based cues. As shown in Fig. 2, for the ith
pixel (xi, yi), we trace along each camera ray e′i and locate
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its intersection with the fluid surface. The refracted ray r′i
is then obtained by Snell’s law. Finally, the pixel coordi-

nates (x′
i, y

′
i) are obtained by projecting back to the camera

center along the direction v′i, and the shape-based displace-

ment vector is computed as (u′
i, v

′
i) = (x′

i − xi, y
′
i − yi).

Ideally, the image-based flow (IBF) vector (ui, vi) and the

shape-based flow (SBF) vector (u′
i, v

′
i) should be the same.

A similar analysis can be applied to Camera 2. Hence, we

design a novel error metric as follows:

EPE(k) =
√

(uk − u′
k)

2 + (vk − v′k)
2, k ∈ Ω1 ∪ Ω2,

(7)

which is based on the popular endpoint error (EPE) used in

evaluating optical flow results [4]. Ωc denotes the pixel set

of the cth camera.

It is noteworthy that the proposed error metric Eq.(7) is

different from the one used in [19]. Their error metric re-

quires to compute the inverses of the correspondence func-

tions P1() and P2(), which unfortunately may not be gen-

erally invertible when multiple pixels receive contributions

from the same point. In contrast, our metric does not have

such a problem.

In practice, a coarse-to-fine optimization procedure is

implemented to search for both the optimal depth map and

the best refractive index. We first downsample the acquired

correspondence functions P1() and P2() to 1/4 of the orig-

inal resolution. Then, for each index hypothesis in a given

range, we optimize Eq.(6) and evaluate the produced depths

based on Eq.(7) under the coarse resolution. The index

value that gives the smallest reconstruction error is selected.

The final shape is reconstructed using the full correspon-

dence functions and the optimal index.

4. Experiments

The proposed approach is evaluated on both synthetic

and captured data. The parameter settings α = β =
1, γ = 1000, λ = 100 (unit) are used in synthetic data and

α = β = 1, γ = 20, λ = 0.005 (mm) are used in real

experiments. During the coarse-to-fine minimization, the

maximum iteration numbers of L-BFGS-B optimization are

fixed to 200 and 20 for the downsampled and full resolu-

tions, respectively, for the first frame. The iteration num-

bers are reduced by half for the remaining frames. We use

the 5 × 5 and 3 × 3 local neighborhoods N () in Eq.(1) at

the low and full resolution, respectively. Consider comput-

ing the normals n1,n2,np for different points can be per-

formed independently. We implement our algorithm em-

ploying parallelization in MATLAB R2016a on an 8-core

PC with 3.2GHz Intel Core i7 CPU and 24GB RAM.

4.1. Synthetic Data

We first validate our approach on a synthetic si-

nusoidal wave: z(x, y, t) = 2 + 0.1 cos(π(t +

50)
√

(x− 1)2 + (y − 0.5)2/80). In practice, the two cam-

eras are placed at (0, 0, 0) and (0.05, 0, 0), respectively. The

reference plane is at z = 2.5. By mapping a Bernoulli pat-

tern on the reference plane, we start with rendering the ref-

erence image B without the fluid. Then the distorted im-

age with the wavy surface is simulated using a ray-tracer

as illustrated in Fig. 2. The correspondence functions are

obtained by performing the correspondence matching algo-

rithm in Sec. 3.1.

The proposed approach is evaluated using the following

two measures: the root mean square error (RMSE) between

the ground-truth depths and the computed ones, and the av-

erage angular error (AAE) between the true normals and the

recovered LeftSnell normals. Here the LeftSnell normals,

which can be generated by both the existing method [19]

and our approach, are used for fair comparisons. The PCA

and RightSnell normals are used in our formulation only and

the evaluation results based on these two normals are sim-

ilar to the ones presented here; see supplemental materials

[1].

To validate the effectiveness of the proposed constraints,

we first evaluate the algorithm by removing different terms

from Eq.(6). The objective function used in each case is

listed in Fig. 3(e). Case 1 includes the cross-view term E12

only and corresponds to that used in the previous method

[19]. Adding a spatial smoothness term (Case 2) can effec-

tively reduces the errors and hence, the smoothness term is

used for all other comparisons with [19]. Case 3 is equiv-

alent to a single-view solution, where only the correspon-

dence information from Camera 1 is used. Case 4 uses E1p

and E2p, whereas our approach incorporates all three nor-

mal consistency constraints Eq.(2,3,4) in the objective func-

tion Eq.(6) and yields the smallest errors. Moreover, Fig. 3

also shows the robustness and temporal coherence of our

approach over time.

Fig. 4 compares the conventional stereo-based method

[19] with ours. For fair comparisons, the pixel-point cor-

respondences generated using our approach are used. The

results show that, with added smoothness constraint, their

estimated normal maps are similar to ours. However,

their estimated depths are noisy whereas ours are smooth.

More importantly, our approach simultaneously recovers

the depths and the normals, which are both accurate and

consistent with each other.

In addition to obtaining the 3D fluid surfaces, our ap-

proach can recover the refractive index of the fluid. Here

we test the reliability of refractive index estimation. By

setting different refractive indices in simulation, we render

the distorted images with the fluid using our ray-tracer. As

shown in Fig. 5, for each ground-truth index setting, we re-

construct the 3D shape and compute the average EPE Eq.(7)

under each index hypothesis in the range of [1.25, 1.85] with

increments of 0.05. The EPE curve exhibits a minimum that
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Figure 3. Different error measures as a function of frame id for synthetic wave. (a) and (b) shows the error plots when the refractive index

ηl = 1.33 is used in wave simulation. (c) and (d) shows the error curves when ηl = 1.55 is used in wave simulation.

(a) [19]+Smoothness (b) Ours (c) Ground Truth

Figure 4. Visual comparisons between the method in [19] and ours

for an example frame when ηl = 1.33 is used for simulation. From

top to bottom, it shows the LeftSnell normal map, the depth map

and the point cloud colored with LeftSnell normals. Please see the

supplemental materials [1] for the full video sequence as well as

the captured images.
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Figure 5. Average EPE Eq.(7) as a function of refractive index

hypotheses for synthetic data. The vertical dashed lines indicate

the true indices. The left and right figure shows refractive index

estimation on the 0th and 45th frame, respectively. Evaluations

on other testing frames can be found in the supplemental materials

[1].

is close to the true refractive index, which demonstrates that

the new error metric Eq.(7) can effectively estimate the re-

fractive index.

4.2. Real Dynamic Water Surfaces

In order to capture real fluid surfaces, we set up a system

as shown in Fig. 1(a). Three synchronized Point Grey Flea2

cameras are used for capturing video at 30fps at a resolution

of 516 × 388. Cameras 1 and 2 are used for 3D recon-

struction and refractive index estimation, whereas Camera

3 is used for accuracy assessment only. We print our bi-

nary random patterns on A4-sized papers using a commod-

ity printer. The pattern is then laminated to be waterproof.

The refraction effect caused by the thin laminated plastic

layer is negligible. The pattern is attached to the bottom of

the tank. Another feasible but more expensive solution is

to use a waterproof tablet for displaying patterns. Before

adding water, we calibrate the relative poses between the

cameras and the pattern using a checkerboard [35].

In Fig. 6, three captured water waves are shown and the

full sequences can be found in the supplemental videos [1].

Both Wave 1 and Wave 2 are generated by randomly per-

turbing the water surface at one end of the tank and both

exhibit large water fluctuations and fast evolutions. How-

ever, two different Bernoulli random patterns with different

block sizes are used for evaluating the robustness of the pro-

posed algorithm against pattern changes; see Fig. 7. Wave

3 is a small rippled case generated by dripping water drops

near one side of the pattern. Our approach can faithfully

recover the propagating annular structures produced by the

water drops.

Novel View Synthesis. To evaluate reconstruction qual-

ity, we first use the reconstructed surface shape to synthe-

size the view at Camera 3 and visually compare it with the

image observed by the camera. In particular, we first com-

pute the IBF field at Camera 3 using the observed image

I3 and the reference image B3 as discussed in Sec. 3.1.

We then compute the SBF field of Camera 3 from the re-

constructed 3D surface using the ray-tracing method as dis-

cussed in Sec. 3.3 and shown in Fig. 2. We can now

warp B3 using either the IBF or the SBF to obtain the

synthesized image IBF (B3) and SBF (B3), respectively2.

By comparing the captured image I3 with IBF (B3) and

SBF (B3), we can qualitatively evaluate the accuracy of

pixel-point correspondences and the quality of 3D recon-

struction, respectively.

As shown in Fig. 7, our approach can faithfully syn-

thesize the observations at Camera 3, whereas the results

of [19] look quite different. The comparison also shows

2Here we use the italic form IBF () and SBF () to denote the func-

tions that compute the synthesized image using IBF and SBF, respectively.
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Figure 6. Point clouds of adjacent frames of Wave 1 (top), Wave 2 (middle), Wave 3 (bottom). It shows that our results are visually temporal

coherent. In this paper, a point cloud is plotted based on its corresponding depth map and colored with LeftSnell normals.

(a) IBF (B3) (b) SBF (B3) [19] (c) Our SBF (B3) (d) Captured Image I3 (e) Composite

Figure 7. View synthesis using an example frame of Wave 1 (top) and Wave 2 (bottom). The shading effects caused by reflection/caustics

(red box) and motion blur effects (green box) can be observed in captured images (d). In (e), we compose the reconstructed 3D surface

onto new scenes using the ray-tracing method as depicted in Fig. 2.
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Case 1 2 3 4 Ours

Mean 18.90 5.96 0.68 0.86 0.50

Stdev. 6.48 2.01 0.36 0.48 0.17

Figure 8. Quantitative evaluation on results generated under dif-

ferent constraints using Wave 1. The top figure plots average EPE

as a function of frame ID. For better visualization, the 10-base log

scale is used for the vertical axis. The bottom table shows the cor-

responding mean and standard deviation (stdev.) of EPE among

all frames.

that: 1) the water surface may reflect environment light and

may generate caustics, which cause intensity differences be-

tween the synthesize view and the captured image; and 2)

the water surface moves very fast, which causes motion blur

in captured images and is not generated in synthesized view.

Effectiveness of Constraints. Our next experiment aims

to quantitatively verify whether or not the novel single-view

consistency constraints can help to improve reconstruction

accuracy on real data. Since ground truth surfaces are dif-

ficult to obtain for real waves, we here use the EPE mea-

sure Eq.(7) between the IBF and SBF computed at Camera

3 as explained above. If the IBF is properly estimated and

the surface shape is accurately reconstructed, the two flow

fields should be consistent. Note that here we do not com-

pare intensity difference between I3 and SBF (B3) because

we want to ignore shading differences discussed above and

properly evaluate the surface reconstruction error3.

As shown in Fig. 8, the presented approach achieves the

smallest average EPE, which suggests that the 3D shape re-

constructed from two views (Camera 1 and 2) is the most

consistent with the pixel-point correspondences acquired

from the additional view (Camera 3).

Comparisons with [19]. Fig. 9 visually compares our

approach and the traditional method [19] on our real waves.

Because of the global formulation, our depths and normals

are both consistent with the observed image distortions. Our

3We also provide additional evaluations by comparing the binarized I3

and SBF (B3) in the supplemental materials [1].
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(a) Captured Image I1 (b) Point Cloud [19] (c) Our Point Cloud (d) Depth Map [19] (e) Our Depth Map

Figure 9. Visual comparisons between the method of [19] and ours for an example frame of Wave 1 (top) and Wave 2 (bottom). Note that

here we also impose a smoothness term in the algorithm of [19], i.e. Case 2, for fair comparisons.
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Figure 10. Average EPE Eq.(7) as a function of refractive index

hypotheses for real data. The vertical dashed line indicate the re-

fractive index of water, i.e. 1.33.

normals also reconcile with the obtained point clouds. In

comparison, their normal map looks similar to ours but their

depth map is noisy, which is consistent with the reported

results in their paper.

Refractive Index Estimation. Following the previous

work [19], we compute the average EPE Eq.(7) among 10
frames under different hypothesized refractive indices in the

range of [1.25, 1.41] with increments of 0.02. The minima

of both curves in Fig. 10 are each close to the refractive

index of water, i.e. 1.33.

5. Conclusions

We revisit the problem of dynamic refraction stereo [19]

by presenting a new global optimization-based framework.

We first formulate an objective function which couples both

the conventional cross-view normal consistency constraint

and the new single-view normal consistency priors that take

local surface geometry into consideration. By solving all

surface points at the same time, we obtain accurate and con-

sistent depths and normals. Most importantly, our approach

successfully avoids the fundamental limitation of previous

methods that require using surface integration without accu-

rate boundary conditions. Furthermore, we develop a novel

error metric which can reliably estimate the refractive index

of liquid in a computer vision fashion. It is also notewor-

thy that our reconstructed fluid surfaces are highly accurate

for the application of novel view synthesis, which cannot be

achieved in existing methods.

Our approach works under several common assumptions

as in previous refraction-based methods: (i) the fluid is ho-

mogeneous and clean, through which light is refracted ex-

actly once, (ii) the pixel-point correspondences can be ac-

curately acquired and (iii) the fluid waves are sufficiently

smooth. However, real-world fluid phenomena, which in-

clude e.g. bubbles, scattering, breaking waves, are created

by bending light more than once and thus can violate the

above assumptions. In addition, grown out of the surface

smoothness assumption, we also assume that the normal at

a 3D point can be reliably estimated with its neighboring

samples by PCA.

We plan to improve our approach in the following direc-

tions. First, the optical flow-based correspondence match-

ing algorithm cannot handle pattern elimination/separation

[20] caused by severe distortions. In the future, we plan to

investigate two alternative solutions: the single-shot pattern

coding [9] techniques and the temporal environment mat-

ting methods [6, 23] with high-speed acquisition rates. Sec-

ond, we will identify conditions under which a unique so-

lution exists and beyond which the type of ambiguous sur-

faces that may result [19]. Third, we are also interested in

removing the flat background constraint by recovering fluid

surfaces in natural scenes [33].
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