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Abstract

Traditional action recognition methods aim to recognize

actions with complete observations/executions. However,

it is often difficult to capture fully executed actions due to

occlusions, interruptions, etc. Meanwhile, action predic-

tion/recognition in advance based on partial observations

is essential for preventing the situation from deteriorating.

Besides, fast spotting human activities using partially ob-

served data is a critical ingredient for retrieval systems.

Inspired by the recent success of data binarization in effi-

cient retrieval/recognition, we propose a novel approach,

named Partial Reconstructive Binary Coding (PRBC), for

action analysis based on limited frame glimpses during any

period of the complete execution. Specifically, we learn dis-

criminative compact binary codes for partial actions via a

joint learning framework, which collaboratively tackles fea-

ture reconstruction as well as binary coding. We obtain the

solution to PRBC based on a discrete alternating iteration

algorithm. Extensive experiments on four realistic action

datasets in terms of three tasks (i.e., partial action retrieval,

recognition and prediction) clearly show the superiority of

PRBC over the state-of-the-art methods, along with signif-

icantly reduced memory load and computational costs dur-

ing the online test.

1. Introduction

During the last decade, human action recognition [1, 43,

26, 28, 44, 5, 4, 40] has been extensively studied and most

existing approaches aim to analyze after-the-fact actions,

i.e., fully observed/executed actions (Fig. 1(a)). However,

it is often too luxurious to capture complete actions, when

∗ indicates equal contributions.
† indicates corresponding author.

What is this action?

(a)

What will this action be?

(b)

What c this action be?

(c)

Figure 1. (a) Traditional action recognition/retrieval with full ob-

servations; (b) action prediction with partial observations at the be-

ginning; (c) partial action recognition/retrieval with observations

at any time (if partial observations are very limited and of un-

known observation ratios, this turns into our problem).

devices or actions of interest are occluded, video transmis-

sions are interrupted, etc. In these cases, we can only have

partially observed actions and we refer to the problem as

partial action recognition (PAR) (Fig. 1(c)). Particularly, if

partial observations are only available from the beginning

of full action executions, PAR becomes action prediction

(AP) (Fig. 1(b)). Note that in this paper, we refer to a

‘full/complete action’ as a video clip containing at least

one complete action execution, and a ‘partial/incomplete

action’ means a shorter temporal segment of the video clip

including incomplete observations of the complete action.

Recognizing partial actions is essential for a wide range

of applications. For instance, in surveillance systems, it is

desirable to prevent potential harmful activities from hap-

pening by raising an alarm in advance based on partial

observations. In smart homes, the robot needs to predic-

t people’s future activities and provide necessary services

in time. In addition, content-based action retrieval systems

can benefit a lot. With the help of PAR, there is no need

to obtain complete actions before searching for their similar

ones, which enhances efficiencies of retrieval systems a lot.

Several methods [41, 3, 18, 15, 11, 56, 61, 14, 10] have

been proposed for PAR and AP, and most of them addressed
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the latter one. For instance, Ryoo et al. [41] developed two

variants of bag-of-words (BoW) representations, i.e., inte-

gral BoW and dynamic BoW, to identify unfinished activ-

ities from videos. Lan et al. [18] proposed a max-margin

learning framework for action prediction based on a hierar-

chical representation. Kong et al. [15] formulated the task

as a structured SVM learning problem and proposed the

multiple temporal scale SVM (MTSSVM) for action pre-

diction. A kernelized extension of MTSSVM was further

introduced in [14].

Existing PAR methods usually require sufficient obser-

vations of complete actions to achieve acceptable perfor-

mance. However, in most real-world cases, we should take

actions immediately based on limited observations before

the situation becomes worse, e.g., traffic accidents. And

more observations will usually induce more memory usage

and processing time. On the other hand, AP methods re-

quire partial observations available from the beginning of

complete actions. However, video transmission interrup-

tions or camera occlusions could happen at any time, which

makes AP methods lack generality. Furthermore, most ex-

isting methods (e.g., [3, 15, 14]) hold an impractical as-

sumption that observation ratios (ORs)1 of partial actions

are known during testing. Therefore, to overcome the above

shortcomings, this paper aims at addressing a more general

and practical case, where only a short temporal segment of

unknown ORs, observed during any period of the complete

execution is utilized for action analysis.

In addition, as we mentioned, PAR methods contribute

a lot to video retrieval systems. However, existing meth-

ods are developed based on high-dimensional video data,

whose memory usage and computational costs are unac-

ceptable. For instance, if we represent 10 million videos us-

ing 4096-d features, the memory load is more than 300GB,

which is apparently infeasible for PCs or even workstation-

s. Recently, learning-based binary coding/hashing methods

[34, 8, 33, 12, 36, 30, 46, 31, 37, 27, 38, 35] have been

exploited for large-scale image/video retrieval and classifi-

cation. Based on these methods, high-dimensional video

data can be embedded by short binary codes (e.g., we only

need about 150MB memory to load the data if embedded by

128-bit codes). Meanwhile, computational efficiency can be

substantially improved since arithmetic operations are re-

placed by rapid XOR operations. Therefore, if we could

develop the PAR method by incorporating the spirits of bi-

nary coding, our solution will be more scalable.

Among various hashing methods, there has been a se-

ries of deep learning based ones [23, 60, 59, 24]. Although

they show promising results in retrieval tasks, they are not

suitable for our problem due to the intrinsically inconsisten-

cy between queries (i.e., partial actions) and the database

1Observation ratio: the ratio of the duration time t of the partial action

to the duration time T of the corresponding full action, i.e., OR = t
T

.

(i.e. full actions). Besides, cross-modality hashing (CMH)

[2, 17, 58, 6, 22] (e.g., CVH [17] and SePH [22]) is most-

ly related to our problem. CMH performs binary coding

for multimodal data (e.g., visual/text features). If we re-

gard partial and full actions as data from two modalities,

we may directly employ CMH to address PAR. Commonly,

CMH learns either bidirectional projections or a joint pro-

jection for multi-modal data. In our problem, however, we

are mostly interested in unidirectionally projecting partial

data to the feature space of full data. Thus, CMH is not

specially developed for our problem.

To address the aforementioned problems, we propose a

novel approach to learning discriminative binary codes for

partial actions of unknown ORs during any period of the

complete action execution. We start with exploiting corre-

lations between partial and full actions via an intuitive fea-

ture reconstruction method. After reconstruction, partial da-

ta can capture crucial discriminative information from ful-

l data. Subsequently, we incorporate the spirits of binary

coding and discretely learn compact similarity-preserving

binary codes. Various tasks can then be efficiently solved

by matching the Hamming distances between binary codes

of reconstructed partial test data and full training data.

The proposed method is motivated by the following t-

wo considerations. First, we would like to seek a ‘recon-

structed’ binary representation for the partial action, there-

fore, we aim to minimize the reconstruction error between

the reconstructed binary codes of partial actions and that

of the corresponding full one. Second, we try to encour-

age ‘discriminative capability’ of the learned binary codes.

As a common practice, we require that binary codes of the

actions from the same category possess minimal distances

while those from different classes are separated sufficiently.

Moreover, to alleviate cumulative errors when addressing

the above two considerations separately, we propose a nov-

el joint learning framework, named Partial Reconstructive

Binary Coding (PRBC), which is illustrated in Fig. 2. Our

main contributions are three-fold:

1) We propose a novel binary coding approach for par-

tial action analysis with limited observation ratios. Unlike

AP methods, we can analyze partial actions observed during

any period of complete executions. Moreover, our method

significantly differs from existing PAR methods, since we

can deal with partial actions with unknown and very limited

ORs (typically less than 30%).

2) A joint learning framework, which collaboratively ad-

dresses feature reconstruction and binary coding, is pro-

posed based on discrete alternating iteration. High-quality

binary codes are learned without any relaxation. To our best

knowledge, this is the first work proposing discrete binary

coding techniques for partial action analysis in videos.

3) We present our approach in both supervised and unsu-

pervised fashions and systematically evaluate it on four ac-
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tion benchmarks in terms of three tasks, i.e., partial action

retrieval, recognition and prediction. Compared to conven-

tional methods, PRBC can achieve better accuracies with

less memory load and fewer testing computational costs.

2. Partial Reconstructive Binary Coding

Given N full actions from some categories, the goal is to

learn discriminative binary codes for any partial action and

then perform partial action analysis (i.e., retrieval, recog-

nition and prediction). The duration of a partial action is

much shorter than that of a full action. Commonly, more

observations contribute more to analyzing partial actions.

Therefore, we first learn a feature reconstruction function

that recovers partial actions to approximate the correspond-

ing full ones. Secondly, we embed the reconstructed partial

actions into compact binary codes. Finally, we couple the

two problems and propose a joint optimization framework.

2.1. Feature Reconstruction for Partial Actions

We aim at learning a feature reconstruction function g(·)
that transfers crucial information from full data to partial
data. Specifically, to learn this function, we choose M
short temporal segments from each of N full actions to
construct M × N corresponding partial actions.2 After u-
tilizing video representation techniques (e.g., local spatial
temporal features [7, 19, 51] and global deep structural fea-
tures [49, 13]), full and partial actions are represented by
yi ∈ R

D and xm
i ∈ R

D, respectively, where i = 1, ..., N
and m = 1, ...,M . xm

i denotes the representation of the
m-th partial action w.r.t. the i-th full action. The projection
function g(·) is learned as illustrated:

X = [x1
1, . . . ,x

M
1 , . . . ,x

1
i , . . . ,x

m
i , . . . ,x

M
i , . . . ,x

1
N , . . . ,x

M
N ]

⇓ g(·)

Y = [y1, . . . ,y1︸ ︷︷ ︸ , . . . ,yi, . . . ,yi︸ ︷︷ ︸ , . . . ,yN , . . . ,yN︸ ︷︷ ︸]

M times M times M times

Particularly, we define the feature reconstruction func-

tion as a linear projection function: g(xm
i ) = WTxm

i + c,

where W ∈ R
D×D and c ∈ R

D is the bias vector. If we

denote x̃ = [xT, 1]T and W̃ = [W; cT], it is equivalent to

the projection without the bias. Therefore, we will omit c

and the projection thus becomes g(xm
i ) = WTxm

i .

After reconstruction, g(xm
i ) should be as close as possi-

ble to the corresponding full data yi. To this end, we intro-

duce a least-squares style objective function as follows:

min
W

N∑

i=1

M∑

m=1

||yi−g(xm
i )||22 =

N∑

i=1

M∑

m=1

||yi−W
T
x
m
i ||22. (1)

Formula (1) may seem too strict since it enforces all recon-

structed partial actions (including those with very limited

2If the duration time T of a full action is long enough, i.e., T � M × t

(where t is the duration time of segments/partial actions), we randomly

choose segments without overlaps. Otherwise, we choose with overlaps.

motions) to approximate full ones. One may prefer more

sophisticated schemes (e.g., multiple instance learning) for

reconstruction. However, we find in our experiments that

this simple formulation can fulfill the task well enough.

Without any additional terms, (1) can be explicitly

solved. However, the solution is trivial since no supervision

(i.e., semantic labels) is leveraged. We will consider this

while introducing the following binary coding problem.

2.2. Discrete Binary Coding

We employ the widely-adopted sign function to obtain

the L-bit binary codes bm
i for the reconstructed partial data

point xm
i , i.e., bm

i = h(g(xm
i )) = sign(PTg(xm

i )), where

the ‘sign(·)’ function returns ‘1’ if the argument is positive

and ‘-1’ otherwise, and P ∈ R
D×L is the coding matrix.

Similar to most learning-based hashing methods, we aim

at preserving similarities between data points based on their

semantic labels. In other words, a good binary code is ex-

pected to map points from the same class in the original

space to similar binary codes in the Hamming space. Thus,

we have the following objective function:

min
B,P

N∑

i,j=1

M∑

m,n=1

s
m,n
i,j dh(b

m
i , b

n
j ), s.t. b = sign(PTg(x)),

(2)

where B = {bm
i }, i = 1, ..., N and m = 1, ...,M , dh is

the Hamming distance and the semantic affinity

s
m,n
i,j =

⎧
⎪⎨

⎪⎩

1.5, if i = j and Labelmi = Labelnj ,

1, if i �= j and Labelmi = Labelnj ,

−1, otherwise,

(3)

where Labelmi and Labelnj denote action classes for xm
i and

xn
j respectively. In other words, s

m,n
i,j is positive if xm

i and

xn
j come from the same semantic action class, and other-

wise s
m,n
i,j is negative. We further adopt a larger value (i.e.,

1.5) if partial actions xm
i and xn

j are from the same full ac-

tion, since they are more correlated with each other.

Since the Hamming distance between binary codes can

be derived from the squared Euclidean distance [22], (i.e.,

dh(b
m
i , bn

j ) =
1

4
||bm

i − bn
j ||22), problem (2) can be rewrit-

ten as more tractable for optimization:

min
B,P

N∑

i,j=1

M∑

m,n=1

s
m,n
i,j ||bm

i − b
n
j ||

2
2, s.t.b = sign(PTg(x)).

(4)

Generally, this problem is NP-hard due to the discrete na-
ture of the ‘sign(·)’ function. Most existing hashing meth-
ods (e.g., [53, 52, 47, 39]) obtain approximate solutions by
simply relaxing the discrete constraint. This usually yields
the sub-optimal solution and will lead to less effective per-
formance especially when learning long codes. Inspired by
the recent success of discrete hashing [45, 46, 32], we keep
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Figure 2. The overall framework of PRBC. We collaboratively learn a joint framework for feature reconstruction and binary coding. The

learned binary codes are similarity-preserving and discriminative for action recognition/retrieval from partially observed actions.

the binary constraints in our problem and reformulate prob-
lem (4) as

min
B,P

N∑

i,j=1

M∑

m,n=1

s
m,n
i,j ||bm

i − b
n
j ||

2
2

+ μ

N∑

i=1

M∑

m=1

||bm
i −P

Tg(xm
i )||22 + λ||P||2F

s.t. B ∈ {−1, 1}L×MN
, (5)

where || · ||2F denotes the Frobenius norm, μ is the penalty

parameter and λ is the regularization parameter. We pose an

L2 regularizer on P to avoid overfitting and ensure numeri-

cal stability during coding. The penalty term models the fit-

ting error induced by the continuous function. In practice,

we can tolerate small differences between b and PTg(x).
Moreover, P can handle realistic out-of-sample problem.

2.3. Joint Optimization

Since b is a function of g(x), cumulative errors may oc-
cur if we consider feature construction and binary coding
in isolation. In other words, errors induced by problem (1)
will be further amplified after solving (5). Here, we propose
Partial Reconstructive Binary Coding (PRBC) to collabo-
ratively address problems (1) and (5). The joint objective
function is defined as follows.

min
B,W,P

∑

i

∑

m

||yi − g(xm
i )||22 +

∑

i,j

∑

m,n

s
m,n
i,j ||bm

i − b
n
j ||

2
2

+ μ
∑

i

∑

m

||bm
i −P

Tg(xm
i )||22 + λ||P||2F

= min
B,W,P

||Y −W
T
X||2F +

∑

i,j

∑

m,n

s
m,n
i,j ||bm

i − b
n
j ||

2
2

+ μ||B−P
T
W

T
X||2F + λ||P||2F

s.t. B ∈ {−1, 1}L×MN
, (6)

where X, Y ∈ R
D×MN . Since the joint problem is non-

convex, there is no global optimal solution. Here, we de-

velop an alternating iteration algorithm to achieve the local

optimum. Specifically, we iteratively optimize one variable

while fixing the other two. In this way, we can achieve

the local minimum of each variable. Since problem (6) is

lower bounded, we can further guarantee the convergence

of our method. Similar techniques are widely adopted in

[46, 25, 45].

P-Step. By fixing B and W, (6) is equivalent to the regu-

larized least squares and P has a closed-form solution:

P = (g(X)g(X)T +
λ

μ
ID)−1g(X)BT

, (7)

where g(X) = WTX and ID is a D ×D identity matrix.

W-Step. With fixed B and P, we obtain the solution to W

by directly setting the derivative of (6) w.r.t. W to 0. Thus,

W = (XX
T)−1(XY

T + μXB
T
P

T)(ID + μPP
T)−1

. (8)

B-Step. If all variables are fixed except B, problem (6)
turns into

min
B

∑

i,j

si,j ||bi − bj ||
2
2 + μ||B−P

T
W

T
X||2F

s.t. B ∈ {−1, 1}L×MN
, (9)

where for simplicity, we will omit m and n in problem
(6) from now on, by setting i, j = 1, ...,MN . To gener-
ate high-quality codes, we address the problem via a dis-
crete coordinate descent algorithm. Specifically, we find
a closed-form solution to one column bi of B with all the
other columns fixed. In other words, we iteratively learn the
binary codes for each data point. Since {bj}MN

j �=i are fixed,

and bT

i bi = L (∀i), the following equations hold:

min
B

∑

i,j

si,j ||bi − bj ||
2
2 + μ||B−P

T
W

T
X||2F

= min
bi

∑

i,j

si,j ||bi − bj ||
2
2 + μ||bi −P

T
W

T
xi||

2
2 + const

= min
bi

−2bT
i (

∑

j �=i

si,jbj + μP
T
W

T
xi) + const

s.t. bi ∈ {−1, 1}L, i = 1, ...,MN. (10)
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Algorithm 1: Anchor Approximation Strategy (AAS)

Input: B̂ = {bak
}Kk=1, {si,j}

MN
i,j=1.

Output: B = {bi}
MN
i=1 .

1 for i = 1 : MN do

2 Find subset {xaj
}K̂j=1 so that si,aj

=1;

3 j∗ = argmin
j

||xi − xaj
||22, j = 1, ..., K̂;

4 βi = aj∗ ;

5 end

6 return B = {bβi
}MN
i=1 .

The above problem has the optimal discrete solution:

bi = sign(
∑

j �=i

si,jbj + μP
T
W

T
xi)

= sign(B¬isi,¬i + μP
T
W

T
xi),

(11)

where
{
si,¬i = (si,1, ..., si,i−1, si,i+1, ..., si,MN )T

B¬i = [b1, ...,bi−1,bi+1, ...,bMN ],
(12)

i.e., B¬i indicates B excluding the i-th column bi. We can

observe that computing the binary code for each data point

relies on the rest pre-learned (MN -1) data points. Thus, we

need to update B for MN times in the B-Step. Particularly,

if we set the maximum iteration of our PRBC method as t,

B should be updated for tMN times in total.

Anchor Approximation Strategy. Although optimal bina-

ry codes can be learned using all training points, we can-

not guarantee the efficiency of the learning process when

dealing with large-scale training set, i.e., large N . To this

end, we propose the anchor approximation strategy (AAS).

Specifically, some anchor points {xak
}Kk=1

(K ≪ N )

are randomly selected to learn the optimal codes B̂ =

Algorithm 2: Partial Reconstructive Binary Coding

Input: MN pairs of training data points {xi,yi}
MN
i=1 w.r.t.

partially and fully observed actions; semantic

affinities {si,j}
MN
i,j=1; number of anchor points K;

code length L; maximum iteration t; parameters μ

and λ.

Output: Binary codes B = {bi}
MN
i=1 ∈ {−1, 1}L×MN ;

feature reconstruction function g(x) = WTx;

binary coding function h(x) = sign(PTx).
1 Randomly select K pairs of data points {xak

,yak
}Kk=1;

randomly initialize B̂ = {bak
} ∈ {−1, 1}L×K ; initialize

W = (XXT)−1(XYT) and P using Eq. (7);

2 Loop until convergence or reach t iterations:

3 - B-Step: Update B̂ using Eq. (11); Approximate B using

Algorithm 1;

4 - W-Step: Update W using Eq. (8);

5 - P-Step: Update P using Eq. (7).
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Figure 3. Evaluation of AAS on UCF101. The Mean Average Pre-

cision (MAP) and precision within Hamming radius 2 are reported

using 48-bit codes. The total number of training points is 123,200.

{bak
}Kk=1

. We then approximate B with regard to B̂, by re-

constructing B’s missing columns {bi}MN
i �=ak,∀k

based on the

correlations between all points and selected anchor points.

If xi in all data points and xak
in anchor points are nearest

neighbors with the same label, we approximate the binary

code of xi using that of xak
. The AAS is illustrated in Al-

gorithm 1, where βi can be pre-computed. In each iteration,

the approximation of B can operate in constant time. More-

over, to verify the effectiveness of AAS, we show some

action retrieval results on UCF101 [48] in Fig. 3. Unsur-

prisingly, better performance is achieved using more anchor

points. However, training time climbs up dramatically with

increasing code lengths if we use all training data without

AAS. Furthermore, based on 5,000∼8,000 anchor points,

we can achieve competitive performance as compared with

using all training data.

The overall PRBC method is summarized in Algorithm

2. Through our experiments, we find that PRBC can suc-

cessfully converge within t = 3 ∼ 5 iterations.

Unsupervised Learning. Although we cannot obtain the

semantic affinities si,j explicitly in the unsupervised set-

ting, we can employ pseudo affinities based on the posteri-

ori smoothness assumption [29, 38]. Specifically, we first

employ k-means clustering to obtain data clusters based on

the full training set and si,j = 1 if xi and xj belong to the

same cluster, and si,j = −1 otherwise. In this way, our

method is developed in both supervised and unsupervised

fashions, leading to a more general solution.

Online Test. Once the joint learning is finished, we can

obtain the optimal W and P. In the test phase, when a

novel partial action xpart comes, we first recover its repre-

sentation by applying the feature reconstruction function,

i.e., g(xpart) = WTxpart. Then we utilize our binary

coding function to obtain the binary representation, i.e.,

bpart = h(g(xpart)) = sign(PTWTxpart). As for any

full action yfull, we directly apply the sign function to ob-

tain its binary code, i.e., bfull = sign(PTyfull). Vari-

ous action analysis tasks can then be efficiently solved by

matching the Hamming distances between bpart and bfull.
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Table 1. Comparison of action retrieval performance on HMDB51 w.r.t. 16-frame partial actions using 128-bit binary codes.

Method MAP (%)
Precision

@radius2 (%)

Precision

@rank50 (%)

Training

time (s)

Test

coding time (s)

Single-Modality

Binary Coding Methods

Supervised

SDH [46] 29.80 0.11 37.92 477.17 3.8×10−6

FastHash [21] 47.46 0.001 54.05 1.56×103 9.3×10−4

KSH [34] 5.10 0.095 8.77 1.17×103 3.4×10−6

CCA-ITQ [8] 34.71 2.58 42.61 8.90 2.9×10−6

Unsupervised
AGH [33] 3.08 1.27 2.10 35.58 3.8×10−6

PCA-ITQ [8] 2.94 <0.001 2.44 7.62 4.4×10−6

Cross-Modality

Binary Coding Methods

Supervised

SePH [22] 50.20 23.42 54.18 2.14×103 3.7×10−6

SCM [58] 37.14 3.11 43.62 204.52 8.5×10−6

CVH [17] 14.41 1.54 24.98 25.21 2.2×10−6

CMSSH [2] 35.87 1.85 37.85 895.75 6.4×10−6

Unsupervised CMFH [6] 5.02 2.42 3.93 411.37 7.3×10−6

Proposed
Supervised PRBC-Sup 59.71±0.754 32.31±0.521 63.24±0.630 129.01 3.4×10−6

Unsupervised PRBC-Unsup 32.27±0.717 16.94±0.448 39.80±0.692 144.34 3.2×10−6

4096-d C3D Feature (CF) 2.91 - 2.01 - -

4096-d C3D Feature+Reconstruction (CF+R) 12.4 - 10.76 129.01 -

‘C3D Feature (CF)’ means we conduct experiments using original C3D features of full training data (y) and partial test data (x) as the database and queries, respectively.

‘C3D Feature+Reconstruction (CF+R)’ means we employ the reconstructed features of test data WTx as queries. The standard deviations of our methods for 10 runs are

also reported. The memory load for 4096-d C3D features and 128-bit binary codes are around 180MB and 90KB, respectively. The computational costs for calculating the

Euclidean/Hamming distances between two features/codes are approximately 1 × 10−3 and 5 × 10−7 seconds.

3. Experiments and Results

We conduct extensive experiments on realistic action

datasets in terms of three tasks, i.e., partial action retrieval,

recognition and prediction. As partial action retrieval and

recognition share similar experimental setup, we will intro-

duce it in the following. As for action prediction, we will

elaborate its setting in Section 3.3.

Datasets. Our approach is evaluated on two large-scale

realistic action datasets, i.e., HMDB51 [16] and UCF101

[48]. HMDB51 is known as a large video database for hu-

man action recognition, containing 6,766 actions from 51

categories collected from various sources. UCF101 con-

tains a set of 13,320 videos from 101 categories. This gives

the largest diversity in terms of actions and is one of the

most challenging action datasets to date.

Action Representation. We adopt the deep neural net-

works namely C3D [49] for spatial-temporal feature extrac-

tion. We strictly follow [49] and split actions into 16-frame

segments with an overlap of 8 frames. The fc6-layer activa-

tions are extracted as 4096-d features for each segment. A

full/partial action is then represented by a 4096-d descrip-

tor, which is the averaged and L2-normalized feature of all

the segments in the full/partial action.

Construction of Partial Actions. Since we employ C3D to

extract features per 16-frame segment, we simply simulate

partial actions using 16/32-frame segments in our experi-

ments. During training, we randomly select M 16-frame or

32-frame segments from each training full action. There-

fore, there are a total of M×N pairs of partially and fully

observed actions regarding the 16/32-frame setting, where

N is the size of the training set. These segments are also

utilized for learning the feature reconstruction function.

Remark. 1) As we randomly choose the segments, par-

tial actions are guaranteed to be observed during any time

of full actions. 2) Although we choose fixed 16/32-frame

segments as partial actions, they are still of unknown

ORs since full actions have various numbers of frames.

This makes our method unique from other counterparts

[3, 15, 14] which require ORs to be known during testing.

3) Since full actions on the two datasets have around 140

frames on average, it is reasonable to utilize 16/32-frame

segments as partial actions which meet the requirement of

limited ORs (i.e., less than 30%).

Protocol. 1) In terms of partial action retrieval, we ran-

domly choose 1,000 actions from each dataset for testing.

We also randomly choose M 16/32-frame segments from

each test full action as partial actions. The 1000M par-

tial actions are used as queries regarding the 16/32-frame

setting. The rest N full actions form the training set as

well as the retrieval database. Queries are performed a-

gainst all full data from the database. Based on Fig. 3,

we randomly choose 5,000 pairs from the training set, to

achieve good performance and ensure high computational

efficiency. We learn the optimized reconstruction and bi-

nary coding functions based on these anchor pairs and the

corresponding semantic affinities. Parameters are tuned vi-

a cross-validation on the training set. Specifically, we set

M = 10, μ = 10, λ = 0.01 and t = 5. Semantic action

labels are utilized as ground truth. Similar to other hashing

methods, experimental results in terms of both hash lookup

(precision) and Hamming ranking (MAP) are reported to e-

valuate performance. Note that we conduct the experiments

in both supervised and unsupervised settings, which corre-

spond to PRBC-Sup and PRBC-Unsup, respectively. For

the unsupervised setting, we obtain the affinities si,j by k-

means clustering on the training set with empirical k =
√
N

[50, 38]. Due to the randomness of choosing test actions,

we report the average performance via 10 runs. 2) As for

partial action recognition, most protocols are equivalent to

those of partial action retrieval, except that we need to pre-

dict labels for 16/32-frame test partial actions rather than

find their similar actions. Therefore, a linear SVM classi-

fier is learned based on binary codes of full training data
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Figure 4. Retrieval results on HMDB51 using 16-frame (left two figures) and 32-frame (right two figures) partial actions as queries.
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Figure 5. Retrieval results on UCF101 using 16-frame (left two figures) and 32-frame (right two figures) partial actions as queries.

and then applied to binary codes of partial test data for final

recognition. We conduct the experiments on a PC with an

Intel quad-core 3.4GHz CPU and 32GB memory.

Compared Methods. Since PRBC is a data binarization

method, we compare it with numerous state-of-the-art bi-

nary coding methods. Single-modality hashing methods in-

clude supervised ones (i.e., SDH [46], FastHash [21], KSH

[34] and CCA-ITQ [8]), and unsupervised ones (i.e., AGH

[33] and PCA-ITQ [8]). We also employ several cross-

modality hashing to respectively learn projections for par-

tial actions and full ones, since cross-modality hashing is

more intrinsically similar to our solution. Cross-modality

supervised hashing methods include SePH [22], SCM with

the sequential learning [58], CVH [17] and CMSSH [2].

CMFH [6] is an unsupervised cross-modality method. For

fair comparisons, we stack both full and partial data with the

corresponding labels into the whole training data, which is

then utilized in the training phase of single-modality meth-

ods. We use public codes of all methods except CVH, which

is implemented by following [17]. Parameters of compared

methods are optimized for best performance, which facili-

tates fair comparisons with ours.

3.1. Partial Action Retrieval

We first test our method on HMDB51 in terms of ef-

fectiveness and efficiency. Table 1 shows the results using

16-frame partial actions as queries with 128-bit codes. Gen-

erally, cross-modality methods outperform single-modality

ones and supervised methods perform better than unsuper-

vised ones. PRBC-Sup clearly outperforms all other meth-

ods. PRBC-Unsup also has significant advantages over oth-

er unsupervised methods and even outperforms several su-

pervised ones. We also show the results using ‘C3D Fea-

ture (CF)’ and ‘C3D Feature+Reconstruction (CF+R)’. The

performance of ‘CF’ is very poor due to significant incon-

sistency between full and partial actions. By feature recon-

struction using W, the performance can be enhanced a lot,

which proves the effectiveness of reconstruction. However,

‘CF+R’ still cannot perform as well as PRBC because of

lacking supervised information. Regarding efficiency, our

method requires less training time in most cases, owing to

our AAS. As for the online coding time, our methods are

comparable to others but much faster than FastHash.

We show the results on HMDB51 across six code length-

s in Fig. 4. Most methods can achieve better performance

with more observations from 16 to 32 frames. Notably,

PRBC-Sup consistently outperforms all compared methods

regardless of code lengths. PRBC-Unsup also shows the su-

periority over other unsupervised methods and even works

better than several supervised ones (e.g., CVH and SDH).

Fig. 5 shows results of different methods on UCF101.

Enhanced results can be obtained with increasing bits, and

the improvement is obvious from 32 to 48. This indicates

extreme short codes may lack discrimination and are unsuit-

able for large-scale complex datasets. Generally, PRBC-

Sup achieves the best performance among all other meth-

ods and PRBC-Unsup also shows its advantage over other

unsupervised methods and several supervised ones.

3.2. Partial Action Recognition

Since our learned binary codes can be regarded as com-

pact features, we evaluate the effectiveness of PRBC regard-

ing partial action recognition. For both datasets, we follow

the standard 3 splits setting [16, 48] and report the aver-

age recognition accuracy. The comparison results across

three code lengths are shown in Table 2. With increas-

ing bits, most methods can obtain more accurate results.

Our PRBC-Sup performs the best across all code lengths.

PRBC-Unsup also achieves promising results. With only

32 bits, our method can already obtain satisfactory results,

i.e., more than 40% and 70% accuracies on HMDB51 and

UCF101 respectively. We also compare PRBC with several
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Table 2. Partial action recognition accuracies (%) of different methods on HMDB51 and UCF101.

Method

16-frame partial actions for testing 32-frame partial actions for testing

HMDB51 UCF101 HMDB51 UCF101

32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

Single-Modality

Binary Coding Methods

SDH [46] 13.91 16.47 19.36 27.63 38.05 44.78 12.31 15.15 19.35 33.06 42.78 50.33

FastHash [21] 16.70 21.08 23.09 37.17 48.57 55.98 15.15 18.14 20.11 39.51 49.31 56.29

CCA-ITQ [8] 17.45 19.03 21.23 49.23 52.59 54.90 19.42 20.80 22.63 52.53 56.77 59.57

KSH [34] 2.23 2.85 2.62 2.87 2.28 2.47 2.58 2.73 2.31 7.98 8.02 8.85

AGH [33] 5.36 6.20 5.5 1.97 1.94 1.47 3.33 3.33 4.62 3.74 4.40 3.82

PCA-ITQ [8] 2.30 3.08 3.22 4.74 4.94 4.74 4.02 3.63 3.87 6.32 7.39 7.11

Cross-Modality

Binary Coding Methods

SePH [22] 32.89 33.97 37.15 57.61 63.61 67.84 37.07 39.58 41.24 59.21 65.06 69.11

SCM [58] 31.78 36.48 38.67 40.94 62.06 68.57 31.57 35.75 37.95 41.03 62.29 68.97

CVH [17] 25.52 31.13 34.93 45.07 56.78 64.70 26.32 31.55 36.04 45.90 57.92 66.17

CMFH [6] 2.65 2.60 3.15 7.04 7.32 7.95 3.94 3.85 4.91 8.84 8.42 9.53

Proposed
PRBC-Sup 42.78 45.80 48.60 70.27 75.11 78.46 46.52 49.32 50.79 71.79 77.47 80.80

PRBC-Unsup 29.64 32.76 34.25 58.06 62.94 67.15 31.64 33.90 34.84 56.15 60.49 64.19

Cross-View

Feature Learning Methods

CCA* [9] 39.51 (2048-d) 70.61 (4096-d) 41.87 (2048-d) 72.26 (4096-d)

PLSR* [54] 37.71 (4096-d) 66.83 (4096-d) 40.02 (4096-d) 68.05 (4096-d)

XQDA* [20] 11.53 (512-d) 40.11 (512-d) 14.32 (512-d) 44.14 (512-d)

CVFL [55] 40.32 (4096-d) 70.97 (4096-d) 44.12 (4096-d) 73.13 (4096-d)

C3D Feature (CF) 3.42 (4096-d) 3.92 (4096-d) 4.70 (4096-d) 4.93 (4096-d)

C3D Feature + Reconstruction (CF+R) 24.39 (4096-d) 53.50 (4096-d) 30.09 (4096-d) 55.12 (4096-d)

‘*’ indicates that we test these methods using feature subspaces of different dimensions, ranging from 512-d to 4096-d with step-size 512, and show the best results here. Number

in the bracket denotes the feature dimension w.r.t. the result. Similar to ‘CF+R’, CVFL reconstructs partial data to approximate full data, so its dimension is fixed to 4096.

cross-view feature learning methods (i.e., CCA3 [9], PLSR

[54], XQDA [20] and CVFL [55]) by treating full/partial ac-

tions as different views. PRBC can even outperform state-

of-the-art cross-view learning methods. Although PRBC-

Sup with 32 bits performs slightly worse than CVFL/CCA

with 4096-d (≈2.6×105-bit) features, it reduces memory

load and computational costs significantly.

3.3. Action Prediction

Since AP is a special case of PAR, we also evaluate our

method in the context of AP. We employ the widely used

dataset: UT-Interaction [42], which contains two subsets

and each one has 6 classes of high-level interactions. As

there are only 60 action videos in each subset, we learn

PRBC from all training data instead of using AAS. We fol-

low the standard experimental setting [41]. Specifically, we

adopt the Cuboids descriptors [7] and employ BoW with

800 codewords. Following [41], we adopt the leave-one-

sequence-out scheme, i.e., 10-fold cross validation for each

subset. The average prediction accuracy is reported regard-

ing different ORs. In particular, since we are more interest-

ed in predicting actions with limited observations, we eval-

uate all methods with three small ORs.

Table 3 shows the prediction accuracies. All the com-

pared results are the best ones reported in the original pa-

pers. With increasing ORs, all methods achieve better per-

formance, which proves our assumption that more observa-

tions contribute more to action analysis. In almost all cases,

our method achieves the best accuracies. Performance gains

are especially obvious with small ORs, showing the effec-

tiveness of our method in handling partial actions with very

limited observations. It is worth noting that all compared

methods employ the original 800-d (≈5×104-bit) features,

while we reduce them into 32/64-bit binary codes. This fur-

3CCA regards partial/full actions as two views to learn the common real-valued

subspace, while CCA-ITQ utilizes actions and their labels to learn binary codes.

Table 3. Action prediction accuracies (%) on UT-Interaction

dataset #1 and #2 w.r.t. different observation ratios (ORs).

Method
UT-Interaction dataset #1 UT-Interaction dataset #2

OR=0.1 OR=0.2 OR=0.3 OR=0.1 OR=0.2 OR=0.3

Bayesian [41] 16.7 16.7 16.7 16.7 16.7 17.1

BP-SVM [41] 16.8 21.7 27.8 16.7 24.0 35.5

IBoW [41] 14.5 17.9 30.8 16.8 29.9 34.9

DBoW [41] 15.2 20.2 30.7 16.7 28.9 43.3

SC [3] 18.3 33.3 56.7 21.7 43.3 50.0

MSSC [3] 18.3 40.0 60.0 21.7 40.0 48.3

MTSSVM [15] 36.7 46.7 66.7 33.3 50.0 60.0

RPT [57] 13.3 26.7 56.7 15.0 33.3 63.3

AAC [56] 45.0 46.7 60.0 51.3 53.3 60.0

MOVEMES [18] 38.3 54.5 68.3 31.3 41.3 56.7

MMAPM [14] 46.7 51.7 70.0 36.7 55.0 63.3

PRBC-Sup@64bits 55.0 58.3 63.3 60.0 65.0 75.0

PRBC-Sup@128bits 56.7 58.3 65.0 60.0 63.3 71.7

ther demonstrates the superiority of the proposed PRBC.

4. Conclusion

In this paper, we proposed a novel approach, named Par-

tial Reconstructive Binary Coding (PRBC), for tackling ef-

ficient partial action analysis with limited ratios of observa-

tions. A joint learning framework was developed for feature

reconstruction and discrete optimization of discriminative

binary codes for partial actions. We systematically evalu-

ated the proposed method regarding three tasks, i.e., partial

action retrieval, recognition and prediction on four public

datasets. The results consistently demonstrated the supe-

riority of our method over the state-of-the-arts in terms of

both accuracy and storage/computation efficiency.
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