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Abstract

We learn to compute optical flow by combining a classi-

cal spatial-pyramid formulation with deep learning. This

estimates large motions in a coarse-to-fine approach by

warping one image of a pair at each pyramid level by the

current flow estimate and computing an update to the flow.

Instead of the standard minimization of an objective func-

tion at each pyramid level, we train one deep network per

level to compute the flow update. Unlike the recent FlowNet

approach, the networks do not need to deal with large mo-

tions; these are dealt with by the pyramid. This has several

advantages. First, our Spatial Pyramid Network (SPyNet)

is much simpler and 96% smaller than FlowNet in terms of

model parameters. This makes it more efficient and appro-

priate for embedded applications. Second, since the flow

at each pyramid level is small (< 1 pixel), a convolutional

approach applied to pairs of warped images is appropri-

ate. Third, unlike FlowNet, the learned convolution filters

appear similar to classical spatio-temporal filters, giving

insight into the method and how to improve it. Our results

are more accurate than FlowNet on most standard bench-

marks, suggesting a new direction of combining classical

flow methods with deep learning.

1. Introduction

Recent years have seen significant progress on the prob-

lem of accurately estimating optical flow, as evidenced by

improving performance on increasingly challenging bench-

marks. Despite this, most flow methods are derived from

a “classical formulation” that makes a variety of assump-

tions about the image, from brightness constancy to spatial

smoothness. These assumptions are only coarse approxi-

mations to reality and this likely limits performance. The

recent history of the field has focused on improving these

assumptions or making them more robust to violations [7].

This has led to steady but incremental progress.

An alternative approach abandons the classical formula-

tion altogether and starts over using recent neural network

architectures [17, 42]. Such an approach takes a pair (or se-

quence) of images and learns to directly compute flow from

them. Ideally such a network would learn to solve the corre-

spondence problem (short and long range), learn filters rel-

evant to the problem, learn what is constant in the sequence,

and learn about the spatial structure of the flow and how it

relates to the image structure. The first attempts are promis-

ing but are not yet as accurate as the classical methods.

We argue that there is an alternative approach that com-

bines the best of both approaches. Decades of research

on flow has produced well engineered systems and prin-

ciples that are effective. But there are places where these

methods make assumptions that limit their performance.

Consequently, here we apply machine learning to address

the weak points, while keeping the engineered architecture,

with the goal of 1) improving performance over existing

neural networks and the classical methods upon which our

work is based; 2) achieving real-time flow estimates with

accuracy better than the much slower classical methods; and

3) reducing memory requirements to make flow more prac-

tical for embedded, robotic, and mobile applications.

Computing flow requires the solution to two problems.

One is to solve for long-range correlations while the other

is to solve for detailed sub-pixel optical flow and precise

motion boundaries. The previous neural network method,

FlowNet [17], attempts to learn both of these at once. In

contrast, we tackle the latter using deep learning and rely

on existing methods to solve the former.

To deal with large motions we adopt a traditional coarse-

to-fine approach [20] using a spatial pyramid1. At that top

level of the pyramid, the assumption is that the motions be-

tween frames are smaller than a few pixels and that, conse-

quently, the convolutional filters can learn meaningful tem-

poral structure. At each level of the pyramid we solve for

the flow using a convolutional network and up-sample the

flow to the next pyramid level. As is standard, with classical

formulations [38], we warp one image towards the other us-

ing the current flow, and repeat this process at each pyramid

level. Instead of minimizing a classical objective function

at each level, we learn a convolutional network to predict

the flow increment at that level. We train the network from

1This, of course, has well-known limitations, which we discuss later.
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coarse to fine to learn the flow correction at each level and

add this to the flow output of the network above. The idea

is that the displacements are then always less than one (or a

few) pixels at each pyramid level.

We call the method SPyNet, for Spatial Pyramid Net-

work, and train it using the same Flying Chairs data as

FlowNet [17]. We report similar performance as FlowNet

on Flying Chairs and Sintel [11] but are significantly more

accurate than FlowNet on Middlebury [4] and KITTI [19]

after fine tuning. The total size of SPyNet is 96% smaller

than FlowNet, meaning that it runs faster, and uses much

less memory. The expensive iterative propagation of classi-

cal methods is replaced by the non-iterative computation of

the neural network.

We do not claim to solve the full optical flow problem

with SPyNet; we address the same problem as traditional

approaches and inherit some of their limitations. For exam-

ple, it is well known that large motions of small or thin ob-

jects are difficult to capture with a pyramid representation.

We see the large-motion problem as separate, requiring dif-

ferent solutions. Rather, what we show is that the traditional

problem can be reformulated, portions of it can be learned,

and performance improves in many scenarios.

Additionally, because our approach connects past meth-

ods with new tools, it provides insights into how to

move forward. In particular, we find that SPyNet learns

spatio-temporal convolutional filters that resemble tradi-

tional spatio-temporal derivative or Gabor filters [2, 24].

The learned filters resemble biological models of motion

processing filters in cortical areas, MT and V1 [36]. The

MT-V1 filters have also been shown useful for optical flow

estimation [37, 14]. This is in contrast to the random-

looking filters learned by FlowNet (see Supplemental Mate-

rial). This suggests that it is time to reexamine older spatio-

temporal filtering approaches with new tools.

In summary our contributions are: 1) the combination of

traditional coarse-to-fine pyramid methods with deep learn-

ing for optical flow estimation; 2) a new SPyNet model

that is 96% smaller and faster than FlowNet; 3) SPyNet

achieves comparable or lower error than FlowNet on stan-

dard benchmarks – Sintel, KITTI and Middlebury; 4) the

learned spatio-temporal filters provide insight about what

filters are needed for flow estimation; 5) the trained network

and related code are publicly available for research 2.

2. Related Work

Our formulation effectively combines ideas from “clas-

sical” optical flow and recent deep learning methods. Our

review focuses on the work most relevant to this.

Spatial pyramids and optical flow. The classical for-

mulation of the optical flow problem involves optimizing

2https://github.com/anuragranj/spynet

the sum of a data term based on brightness constancy and

a spatial smoothness term [25]. Such methods suffer from

the fact that they make assumptions about the image bright-

ness change and the spatial structure of the flow that do not

match reality. Many methods focus on improving robust-

ness by changing the assumptions; for a review, see [38].

The key advantage of learning to compute flow is that we

do not hand craft these assumptions. Rather, the variation

in image brightness and spatial smoothness are embodied in

the learned network.

The use of spatial pyramids for flow estimation has a

long history [10, 20]. Typically Gaussian or Laplacian pyra-

mids are used to deal with large motions. These methods

are well known to have problems when small objects move

quickly. Brox et al. [8] incorporate long range matching

into the traditional optical flow objective function. This ap-

proach of combining image matching to capture large mo-

tions, with a variational [32] or discrete optimization [21]

for fine motions, can produce accurate results.

Of course spatial pyramids are widely used in other ar-

eas of computer vision and have recently been used in deep

neural networks [16] to learn generative image models.

Spatio-temporal filters. Burt and Adelson [2] lay out

the theory of spatio-temporal models for motion estima-

tion and Heeger [24] provides a computational embodiment.

While inspired by human perception, such methods did not

perform well at the time [6].

Various methods have shown that spatio-temporal filters

emerge from learning, for example using independent com-

ponent analysis [43], sparseness [31], and multi-layer mod-

els [12]. Memisevic and Hinton learn simple spatial trans-

formations with a restricted Boltzmann machine [29], find-

ing a variety of filters. Taylor et al. [41] use synthetic data

to learn “flow like” features using a restricted Boltzmann

machine but do not evaluate flow accuracy.

Dosovitskiy et al. [17] learn spatio-temporal filters for

flow estimation using a deep network, yet these filters do

not resemble classical filters inspired by neuroscience. By

using a pyramid approach, here we learn filters that are visu-

ally similar to classical spatio-temporal filters, yet because

they are learned from data, produce good flow estimates.

Learning to model and compute flow. Possibly the first

attempt to learn a model to estimate optical flow is the work

of Freeman et al. [18] using an MRF. They consider a sim-

ple synthetic world of uniform moving blobs with ground

truth flow. The training data was not realistic and they did

not apply the method to real image sequences.

Roth and Black [33] learn a field-of-experts (FoE) model

to capture the spatial statistics of optical flow. The FoE can

be viewed as a (shallow) convolutional neural network. The

model is trained using flow fields generated from laser scans

of real scenes and natural camera motions. They have no

images of the scenes (only their flow) and consequently the
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method only learns the spatial component.

Sun et al. [15] describe the first fully learned model that

can be considered a (shallow) convolutional neural network.

They formulate a classical flow problem with a data term

and a spatial term. The spatial term uses the FoE model

from [33], while the data term replaces traditional derivative

filters with a set of learned convolutional image filters. With

limited training data and a small set of filters, it did not fully

show the full promise of learning flow.

Wulff and Black [46] learn the spatial statistics of optical

flow by applying robust PCA [22] to real (noisy) optical

flow computed from natural movies. While this produces

a global flow basis and overly smooth flow, they use the

model to compute reasonable flow relatively quickly.

Deep Learning. The above learning methods suffer

from limited training data and the use of shallow mod-

els. In contrast, deep convolutional neural networks have

emerged as a powerful class of models for solving recogni-

tion [23, 40] and dense estimation [13, 28] problems.

FlowNet [17] represents the first deep convolutional ar-

chitecture for flow estimation that is trained end-to-end.

The network shows promising results, despite being trained

on an artificial dataset of chairs flying over randomly se-

lected images. Despite promising results, the method lags

behind the state of the art in terms of accuracy [17]. Deep

matching methods [21, 32, 44] do not fully solve the prob-

lem, since they resort to classical methods to compute the

final flow field. It remains an open question as to which ar-

chitectures are most appropriate for the problem and how

best to train these.

Tran et al. [42], use a traditional flow method to create

“semi-truth” training data for a 3D convolutional network.

The performance is below the state of the art and the method

is not tested on the standard benchmarks. There have also

been several attempts at estimating optical flow using un-

supervised learning [3, 47]. However these methods have

lower accuracy on standard benchmarks.

Fast flow. Several recent methods attempt to balance

speed and accuracy, with the goal of real-time processing

and reasonable (though not top) accuracy. GPU-flow [45]

began this trend but several methods now outperform it.

PCA-Flow [46] runs on a CPU, is slower than frame rate,

and produces overly smooth flow fields. EPPM [5] achieves

similar, middle-of-the-pack, performance on Sintel (test),

with similar speed on a GPU. Most recently DIS-Fast [27]

is a GPU method that is significantly faster than previous

methods but is also significantly less accurate. Our method

is also significantly faster than FlowNet, which has a run-

time of 80ms/frame (FlowNetS).

Size is also important but has attracted less attention than

speed. For optical flow on embedded processors, aerial ve-

hicles, phones, etc., the algorithm needs a small memory

footprint. Our network is 96% smaller than FlowNetS, us-

ing only 9.7 MB for the model parameters, making it easily

small enough to fit on a mobile phone GPU.

3. Spatial Pyramid Network

Our approach uses the coarse-to-fine spatial pyramid

structure of [16] to learn residual flow at each pyramid level.

Here we describe the network and training procedure.

3.1. Spatial Sampling

Let I be an m×n image with dimensions that are powers

of 2. Let d(.) be the downsampling function that decimates

I to the corresponding image d(I) of size m/2 × n/2. Let

u(.) be the reverse operation that upsamples images by a

factor of 2. These operators are bilinear and are also used

for resampling the the optical flow field, V . We also define a

warping operator w(I, V ) that warps the image, I according

to the flow field, V , using bi-linear interpolation.

3.2. Inference

Let {G0, ..., GK} denote a set of trained convolutional

neural network (convnet) models, each of which computes

residual flow, vk

vk = Gk(I
1
k , w(I

2
k , u(Vk−1)), u(Vk−1)) (1)

at the k-th pyramid level. The convnet Gk computes the

residual flow vk using the upsampled flow from the previ-

ous pyramid level, Vk−1, and the frames {I1k , I
2
k} at level

k. The second frame I2k is warped using the flow as

w(I2k , u(Vk−1)) before feeding it to the convnet Gk. The

flow, Vk at the k-th pyramid level is then

Vk = u(Vk−1) + vk. (2)

As shown in Fig. 1, we start with downsampled images

{I10 , I
2
0} and an initial flow estimate that is zero everywhere

to compute the residual flow v0 = V0 at the top of the pyra-

mid. We upsample the resulting flow, u(V0), and pass it to

the network G1 along with {I11 , w(I
2
1 , u(V0))} to compute

the residual flow v1. At each pyramid level, we compute

the flow Vk using Equation (2). The flow Vk is similarly

propagated to higher resolution layers of the pyramid until

we obtain the flow VK at full resolution. Figure 1 shows

the working of our approach using a 3-level pyramid. In

practice, we use a 5-level pyramid (K = 4).

3.3. Training and Network Architecture

We train each of the convnets {G0, ..., GK} indepen-

dently and sequentially to compute the residual flow vk
given the inputs {I1k , w(I

2
k , u(Vk−1)), u(Vk−1)}. We com-

pute target residual flows v̂k as a difference of target flow V̂k

at the k-th pyramid level and the upsampled flow, u(Vk−1)
obtained from the trained convnet of the previous level

v̂k = V̂k − u(Vk−1). (3)
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Figure 1. Inference in a 3-Level Pyramid Network [16]: The network G0 computes the residual flow v0 at the highest level of the pyramid

(smallest image) using the low resolution images {I10 , I
2

0}. At each pyramid level, the network Gk computes a residual flow vk which

propagates to each of the next lower levels of the pyramid in turn, to finally obtain the flow V2 at the highest resolution.

Figure 2. Training network Gk requires trained models

{G0...Gk−1} to obtain the initial flow u(Vk−1). We ob-

tain ground truth residual flows v̂k by subtracting downsampled

ground truth flow V̂k and u(Vk−1) to train the network Gk using

the EPE loss.

As shown in Fig. 2, we train each of the networks, Gk, to

minimize the average End Point Error (EPE) loss between

the residual flow vk and v̂k

1

mknk

∑

x,y

√

(vxk − v̂xk)
2 + (vyk − v̂yk)

2

where the mk × nk is the image dimension at level k and

the x and y superscripts indicate the horizontal and vertical

components of the flow vector.

Each level in the pyramid has a simplified task relative to

the full optical flow estimation problem; it only has to esti-

mate a small-motion update to an existing flow field. Con-

sequently each network can be simple. Here, each Gk has 5

convolutional layers; this gave the best combination of ac-

curacy, size, and speed. We train five convnets {G0, ..., G4}
at different resolutions of the Flying Chairs dataset. The

network G0 is trained with 24x32 images. We double the

resolution at each pyramid level and finally train the con-

vnet, G4 with a resolution of 384x512.

Each convolutional layer is followed by a Rectified Lin-

ear Unit (ReLU), except the last one. We use 7x7 convo-

lutional kernels for each layer; these worked better than

smaller filters. The number of feature maps in each convnet,

Gk are {32, 64, 32, 16, 2}. The image I1k and the warped

image w(I2k , u(Vk−1)) have 3 channels each (RGB). The

upsampled flow u(Vk−1) is 2 channel (horizontal and ver-

tical). We stack image frames together with the upsampled

flow to form an 8 channel input to each Gk. The output is 2

channel flow corresponding to velocity in x and y.

Using Torch73, we train five networks {G0, ..., G4} such

that each network Gk uses the previous network Gk−1 as

initialization. The networks are trained using Adam [26]

optimization with β1 = 0.9 and β2 = 0.999. We use a

batch size of 32 across all networks with 4000 iterations

per epoch. We use a learning rate of 1e-4 for the first 60

epochs and decrease it to 1e-5 until the networks converge.

We use We use the Flying Chairs [17] dataset and MPI

Sintel [11] for training. We trained G0 for three days and

{G1, G2, G3, G4} for one day each on a single Titan X.

We include various types of data augmentation during

training. We randomly scale images by a factor of [1, 2]
and apply rotations at random within [−17◦, 17◦]. We then

apply a random crop to match the resolution of the con-

vnet, Gk being trained. We include additive white Gaussian

noise sampled uniformly from N (0, 0.1). We apply color

jitter with additive brightness, contrast and saturation sam-

pled from a Gaussian, N (0, 0.4). We finally normalize the

images using a mean and standard deviation computed from

a large sample of Imagenet [34] data in [23].

4. Experiments

We evaluate our performance on standard optical flow

benchmarks and compare with FlowNet [17] and Clas-

3http://torch.ch/
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Method Sintel Clean Sintel Final KITTI Middlebury Flying Chairs Time (s)

train test train test train test train test test

Classic+NLP 4.13 6.73 5.90 8.29 - - 0.22 0.32 3.93 102

FlowNetS 4.50 7.42 5.45 8.43 8.26 - 1.09 - 2.71 0.080

FlowNetC 4.31 7.28 5.87 8.81 9.35 - 1.15 - 2.19 0.150

SPyNet 4.12 6.69 5.57 8.43 9.12 - 0.33 0.58 2.63 0.069

FlowNetS+ft 3.66 6.96 4.44 7.76 7.52 9.1 0.98 - 3.04 0.080

FlowNetC+ft 3.78 6.85 5.28 8.51 8.79 - 0.93 2.27 0.150

SPyNet+ft 3.17 6.64 4.32 8.36 8.25 10.1 0.33 0.58 3.07 0.069

SPyNet+ft* - - - - 3.36 4.1 - - - -

Table 1. Average end point errors (EPE). Results are divided into methods trained with (+ft) and without fine tuning. SPyNet+ft* uses

additional training data compared to FlowNet+ft. Bold font indicates the most accurate results among the convnet methods. All run times

are measured on Flying Chairs and exclude image loading time.

Method Sintel Final Sintel Clean

d0-10 d10-60 d60-140 s0-10 s10-40 s40+ d0-10 d10-60 d60-140 s0-10 s10-40 s40+
FlowNetS+ft 7.25 4.61 2.99 1.87 5.83 43.24 5.99 3.56 2.19 1.42 3.81 40.10

FlowNetC+ft 7.19 4.62 3.30 2.30 6.17 40.78 5.57 3.18 1.99 1.62 3.97 33.37

SpyNet+ft 6.69 4.37 3.29 1.39 5.53 49.71 5.50 3.12 1.71 0.83 3.34 43.44

Table 2. Comparison of FlowNet and SpyNet on the Sintel benchmark for different velocities, s, and distances, d, from motion boundaries.

sic+NLP [38], a traditional pyramid-based method. We

compare performance using average end point errors in Ta-

ble 1. We evaluate on all the standard benchmarks and find

that SPyNet is the most accurate overall, with and without

fine tuning (details below). Additionally SPyNet is faster

than all other methods.

Note that the FlowNet results reported on the MPI-Sintel

website are for a version that applies variational refinement

(“+v”) to the convnet results. Here we are not interested in

the variational component and only compare the results of

the convnet output.

Flying Chairs. SPyNet achieves better performance than

FlowNetS [17] on the Flying Chairs dataset, however

FlowNetC [17] performs better than ours. We show the

qualitative results on Flying Chairs dataset in Fig. 3 and

compare the performance in Table 1.

MPI-Sintel. The resolution of Sintel images is 436x1024.

To use SPyNet, we scale the images to 448x1024, and use

6 pyramid levels to compute the optical flow. The networks

used on each pyramid level are {G0, G1, G2, G3, G4, G4}.

We repeat the network G4 at the sixth level of pyramid for

experiments on Sintel. Because Sintel has extremely large

motions, we found that this gives better performance than

using just five levels.

We evaluate the performance of our model on MPI-Sintel

[11] in two ways. First, we directly use the model trained on

Flying Chairs dataset and evaluate our performance on both

Frame 1 Frame 2 Ground Truth SPyNet

Figure 3. Visualization of optical flow estimates using our model

(SPyNet) and the corresponding ground truth flow fields on the

Flying Chairs dataset.

the training and the test sets. Second, we extract a validation

set from the Sintel training set, using the same partition as

[17]. We fine tune our model independently on the Sintel

Clean and Sintel Final split, and evaluate the EPE. The fine-

tuned models are listed as “+ft” in Table 1. We show the

qualitative results on MPI-Sintel in Fig. 4.

Table 2 compares our fine-tuned model with FlowNet

[17] for different velocities and distances from motion

boundaries. We observe that SPyNet is more accurate than
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Frames Ground Truth FlowNetS FlowNetC SPyNet

Figure 4. Visual comparison of optical flow estimates using our SPyNet model with FlowNet on the MPI Sintel dataset. The top five rows

are from the Sintel Final set and the bottom five rows are from the Sintel Clean set. Each set of 5 rows is sorted in the order of increasing

average displacements. SPyNet performs particularly well when the motions are relatively small.

FlowNet for all velocity ranges except the largest displace-

ments (over 40 pixels/frame). SPyNet is also more accurate

than FlowNet close to motion boundaries (see Figure 4),

which is important for many problems.

KITTI and Middlebury. We evaluate KITTI [19] scenes

using the base model SPyNet trained on Flying Chairs.

Here we also fine-tune the model using Driving and

Monkaa scenes from [30] and evaluate the fine-tuned model

SPyNet+ft*. Fine tuning results in a significant improve-

ment in accuracy by about 5 pixels. The large improvement

suggests that better datasets are needed and that these could

improve the accuracy of SPyNet further on general scenes.

For the Middlebury [4] dataset, we evaluate the se-

quences using the base model SPyNet as well as SPyNet+ft,

which is fine-tuned on the Sintel-Final dataset; the Middle-

bury dataset itself is too small for fine-tuning. SPyNet is

significantly more accurate on Middlebury, where FlowNet

has trouble with the small motions. Both learned methods

are less accurate than Classic+NL on Middlebury but both

are also significantly faster.
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FlowNetS

FlowNetC

SPyNet

Gk

32,070,472

32,561,032

1,200,250

240,050

Number of Model Parameters

Figure 5. Model size of various methods. Our model is 96%

smaller than FlowNet.

5. Analysis

Model Size. Combining spatial pyramids with convnets

results in a huge reduction in model complexity. At each

pyramid level, a network, Gk, has 240,050 learned param-

eters. The total number of parameters learned by the entire

network is 1,200,250, with 5 spatial pyramid levels. In com-

parison, FlowNetS and FlowNetC [17] have 32,070,472 and

32,561,032 parameters respectively. SPyNet is about 96 %

smaller than FlowNet (Fig. 5).

The spatial pyramid approach enables a significant re-

duction in model parameters without sacrificing accuracy.

There are two reasons – the warping function and learning

of residual flow. By using the warping function directly, the

convnet does not need to learn it. More importantly, learn-

ing residual flows restricts the range of flow fields in the

output space. Each network only has to model a smaller

range of velocities at each level of the spatial pyramid.

SPyNet also has a small memory footprint. The disk

space required to store all the model parameters is 9.7 MB.

This simplifies deployment on mobile or embedded devices

with GPU support; this is future work.

Visualization of Learned Filters. Figure 6(a) shows ex-

amples of filters learned by the first layer of the network,

G2. In each row, the first two columns show the spatial

filters that operate on the RGB channels of the two input

images respectively. The third column is the difference be-

tween the two spatial filters, hence representing the tempo-

ral features learned by our model. We observe that most of

the spatio-temporal filters in Fig. 6(a) are equally sensitive

to all color channels, and hence appear mostly grayscale.

Note that the actual filters are 7 × 7 pixels and are upsam-

pled for visualization.

We observe that many of the spatial filters appear to

be similar to traditional Gaussian derivative filters used by

classical methods. These classical filters are hand crafted

and typically are applied in the horizontal and vertical di-

rection. Here we observe a greater variety of derivative-like

filters of varied scales and orientations. We also observe fil-

ters that spatially resemble second derivative or Gabor fil-

ters [2]. The temporal filters show a clear derivative-like

structure in time. Note that these filters are very different

(a) (b)

Figure 6. (a) Visualization of filter weights in the first layer of G2

showing their spatiotemporal nature on RGB image pairs using

nearest-neighbor (left) and bilinear (right) interpolation. (b) Evo-

lution of filters across the pyramid levels (from low resolution (0)

to high resolution (4))

from those reported in [17] (Sup. Mat.), which have a high-

frequency structure, unlike classical filters.

Figure 6(b) illustrates how filters learned by the network

at each level of the pyramid differ from each other. Re-

call that, during training, each network is initialized with

the network before it in the pyramid. The filters, however,

do not stay exactly the same with training. Most of the fil-

ters in our network look like rows 1 and 2, where the filters

become sharper with increasing contrast as we progress to-

wards the finer-resolution levels of the pyramid. However,

there are some filters that are similar to rows 3 and 4. These

filters become more defined at higher resolution levels of

the pyramid.

Speed. Optical flow estimation is traditionally viewed as

an optimization problem involving some form of variational

inference. This is computationally expensive, often taking

seconds or minutes per frame. This has limited the appli-

cation of optical flow in robotics, embedded systems, and

video analysis. Using a GPU can speed up traditional meth-

ods [39, 45] but with reduced accuracy. Feed forward deep

networks [17] leverage fast GPU convolutions and avoid it-

erative optimization.

Figure 7 shows the speed-accuracy comparisons of sev-

eral well known methods. All times shown are measured

with the images already loaded in the memory. The errors

are computed as the average EPE of both the clean and final

MPI-Sintel sequences. SPyNet offers a good balance be-

tween speed and accuracy; no faster method is as accurate.

6. Discussion and Future Work

Traditional flow methods linearize the brightness con-

stancy equation resulting in an optical flow constraint equa-

tion implemented with spatial and temporal derivative fil-

ters. Sometimes methods adopt a more generic filter con-
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Figure 7. Average EPE vs. runtime on MPI-Sintel. Zoomed in ver-

sion on the bottom shows the fastest methods. Times were mea-

sured by us. Adapted from [46].

stancy assumption [1, 9]. Our filters are somewhat differ-

ent. The filters learned by SPyNet are used in the direct

computation of the flow by the feed-forward network.

SPyNet is small compared with other recent optical flow

networks. Examination of the filters, however, suggests that

it might be possible to make it significantly smaller still.

Many of the filters resemble derivative of Gaussian filters or

Gabor filters at various scales, orientations, spatial frequen-

cies, and spatial shifts. Given this, it may be possible to

significantly compress the filter bank by using dimension-

ality reduction or by using a set of analytic spatio-temporal

features. Some of the filters may also be separable.

Early methods for optical flow used analytic spatio-

temporal features but, at the time, did not produce good

results and the general line of spatio-temporal filtering de-

cayed. The difference from early work is that our approach

suggests the need for a large filter bank of varied filters.

Note also that these approaches considered only the first

convolutional layer of filters and did not seek a “deep” solu-

tion. This all suggests the possibility that a deep network of

analytic filters could perform well. This could vastly reduce

the size of the network and the number of parameters that

need to be learned.

We observe that first layer filters of FlowNet [17] ap-

pear more random than the Gabor-like filters common to

most neural networks or previous spatio-temporal filters

(see Supplementary Material). We suspect this is because

first layer windows do not overlap common image patches

when the motion exceeds a few pixels. In contrast, our

pyramid structure means that the motions are always small

and the convolutional windows are always looking at re-

lated patches in two neighboring frames. We find that this

leads to filters, even in the first layer, that resemble classical

spatio-temporal filters.

Note that pyramids have well-known limitations for

dealing with large motions [8, 35]. In particular, small

or thin objects that move quickly effectively disappear at

coarse pyramid levels, making it impossible to capture their

motion. Recent approaches for dealing with such large mo-

tions use sparse matching to augment standard pyramids

[8, 44]. Future work should explore adding long-range

matches to SPyNet. Alternatively Sevilla et al. [35] define a

channel constancy representation that preserves fine struc-

tures in a pyramid. The channels effectively correspond to

filters that could be learned.

A spatial pyramid can be thought of as the simple ap-

plication of a set of linear filters. Here we take a standard

spatial pyramid but one could learn the filters for the pyra-

mid itself. SPyNet also uses a standard warping function

to align images using the flow computed from the previous

pyramid level. This too could be learned.

An appealing feature of SPyNet is that it is small enough

to fit on a mobile device. Future work will explore a mobile

implementation and its applications. Additionally we will

explore extending the method to use more frames (e.g. 3

or 4). Multiple frames could enable the network to reason

more effectively about occlusion.

Finally, Flying Chairs is not representative of natural

scene motions. We are exploring new training datasets to

improve performance on common sequences.

7. Conclusions

In summary, we have described a new optical flow

method that combines features of classical optical flow al-

gorithms with deep learning. In a sense, there are two no-

tions of “deepness” here. First we use a “deep” spatial pyra-

mid to deal with large motions. Second we use deep neu-

ral networks at each level of the spatial pyramid and train

them to estimate a flow update at each level. This approach

means that each network has less work to do than a fully

generic flow method that has to estimate arbitrarily large

motions. At each pyramid level we assume that the mo-

tion is small (on the order of a pixel). This is borne out by

the fact that the network learns spatial and temporal filters

that resemble classical derivatives of Gaussians. Because

each sub-task is so much simpler, our network needs many

fewer parameters than previous methods like FlowNet. This

results in a method with a small memory footprint that is

faster than existing methods. At the same time, SPyNet

achieves an accuracy comparable to FlowNet, surpassing it

in several benchmarks. This opens up the promise of optical

flow that is accurate, practical, and widely deployable.
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