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Abstract

We present a method for localizing facial keypoints on

animals by transferring knowledge gained from human

faces. Instead of directly finetuning a network trained to

detect keypoints on human faces to animal faces (which is

sub-optimal since human and animal faces can look quite

different), we propose to first adapt the animal images to

the pre-trained human detection network by correcting for

the differences in animal and human face shape. We first

find the nearest human neighbors for each animal image us-

ing an unsupervised shape matching method. We use these

matches to train a thin plate spline warping network to warp

each animal face to look more human-like. The warping

network is then jointly finetuned with a pre-trained human

facial keypoint detection network using an animal dataset.

We demonstrate state-of-the-art results on both horse and

sheep facial keypoint detection, and significant improve-

ment over simple finetuning, especially when training data

is scarce. Additionally, we present a new dataset with 3717

images with horse face and facial keypoint annotations.

1. Introduction

Facial keypoint detection is a necessary precondition for

face alignment and registration, and impacts facial expres-

sion analysis, facial tracking, as well as graphics methods

that manipulate or transform faces. While human facial key-

point detection is a mature area of research, despite its im-

portance, animal facial keypoint detection is a relatively un-

explored area. For example, veterinary research has shown

that horses [16, 11], mice [25], sheep [3], and cats [17] dis-

play facial expressions of pain – a facial keypoint detector

could be used to help automate such animal pain detection.

In this paper, we tackle the problem of facial keypoint de-

tection for animals, with a focus on horses and sheep.

Convolutional neural networks (CNNs) have demon-

strated impressive performance for human facial keypoint

detection [33, 47, 41, 54, 20, 61, 6, 56], which makes CNNs
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Figure 1. Main idea. (a) Directly finetuning a human keypoint de-

tector to horses can be suboptimal, since horses and humans have

very different shapes and appearances. (b) By warping a horse

to have a more human-like shape, the pre-trained human keypoint

detector can more easily adapt to the horse’s appearance.

an attractive choice for learning facial keypoints on animals.

Unfortunately, training a CNN from scratch typically re-

quires large amounts of labeled data, which can be time-

consuming and expensive to collect. Furthermore, while a

CNN can be finetuned when there is not enough training

data for the target task, a pre-trained network’s extent of

learning is limited both by the amount of data available for

fine-tuning, as well as the relatedness of the two tasks. For

example, previous work demonstrate that a network trained

on man-made objects has limited ability to adapt to natural

objects [52], and additional pretraining data is only benefi-

cial when related to the target task [18].

While there are large datasets with human facial key-

point annotations (e.g., AFLW has ∼26000 images [23]),

there are, unfortunately, no large datasets of animal facial

keypoints that could be used to train a CNN from scratch

(e.g., the sheep dataset from [51] has only ∼600 images).

At the same time, the structural differences between a hu-

man face and an animal face means that directly fine-tuning

a human keypoint detector to animals can lead to a sub-

optimal solution (as we demonstrate in Sec. 4).

In this paper, we address the problem of transferring

knowledge between two different types of data (human and
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animal faces) for the same task (keypoint detection). How

can we achieve this with a CNN? Our key insight is that

rather than adapt a pre-trained network to training data in

a new domain, we can first do the opposite. That is, we

can adapt the training data from the new domain to the pre-

trained network, so that it is better conditioned for finetun-

ing. By mapping the new data to a distribution that bet-

ter aligns with the data from the pre-trained task, we can

take a pre-trained network from the loosely-related task of

human facial keypoint detection and finetune it for animal

facial keypoint detection. Specifically, our idea is to explic-

itly warp each animal image to look more human-like, and

then use the resulting warped images to finetune a network

pre-trained to detect human facial keypoints. See Fig. 1.

Intuitively, by warping animal faces to look more

human-like we can correct for their shape differences, so

that during finetuning the network need only adapt to their

differences in appearance. For example, the distance be-

tween the corners of a horse’s mouth is typically much

smaller than the distance between its eyes, whereas for a

human these distances are roughly similar – a shape dif-

ference. In addition, horses have fur, and humans do not

– an appearance difference. Our warping network adjusts

for the shape difference by stretching out the horse’s mouth

corners, while during finetuning the keypoint detection net-

work learns to adjust for the appearance difference.

Contributions. Our contributions are three fold: First, we

introduce a novel approach for animal facial keypoint de-

tection that transfers knowledge from the loosely-related

domain of human facial keypoint detection. Second, we

provide a new annotated horse facial keypoint dataset con-

sisting of 3717 images. Third, we demonstrate state-of-

the-art results on keypoint detection for horses and sheep.

By transforming the animal data to look more human-

like, we attain significant gains in keypoint detection ac-

curacy over simple finetuning. Importantly, the gap be-

tween our approach and simple finetuning widens as the

amount of training data is reduced, which shows the prac-

tical applicability of our approach to small datasets. Our

data and code are available at https://github.com/

menoRashid/animal_human_kp.

2. Related work

Facial landmark detection and alignment are mature top-

ics of research in computer vision. Classic approaches

include Active Appearance Models [8, 32, 35, 43], Con-

strained Local Models [10, 9, 36, 1], regression based meth-

ods [44, 48, 5, 49] with a cascade [13, 26, 59], and an en-

semble of exemplar based models [2]. Recent work extends

cascaded regression models by learning predictions from

multiple domain-specific regressors [60] or by using a mix-

ture of regression experts at each cascade level [42]. These

models also demonstrate good performance when solved si-

multaneously with a closely related task, such as face detec-

tion [28], 3D face reconstruction [7], and facial action unit

activation detection [46].

In the deep learning domain, coarse-to-fine approaches

refine a coarse estimate of keypoints through a cascade [40,

58, 55, 56] or with branched networks [27]. Others assist

keypoint detection by using separate cluster specific net-

works [45], augmenting it with related auxiliary tasks [57],

initializing with head pose predictions [50], correcting for

deformations with a spatial transformer [6], incorporating

shape basis and thin plate spline transformations [53], for-

mulating keypoint detection as a dense 3D face model fit-

ting problem [20, 61], or using deep regression models in

combination with de-corrupt autoencoders [54]. Recent

work explore using recurrent neural networks [33, 47, 41].

While deep learning approaches demonstrate impres-

sive performance, they typically require large annotated

datasets. Rather than collect a large dataset, [31] uses do-

main specific augmentation techniques to synthesize pose,

shape, and expression variations. However, it relies on the

availability of 3D face models, and addresses the related but

separate problem of face recognition. Similarly, [12] lever-

ages large datasets available for face recognition to train a

deep network, which is then used to guide training of an

expression recognition network using only a small amount

of data. However, while [12] transfers knowledge between

two different tasks (face recognition and expression recog-

nition) that rely on the same type of data (human faces), we

transfer knowledge between two different data sources (hu-

man and animal faces) in order to solve the same task (facial

keypoint detection).

To the best of our knowledge, facial keypoint detection

in animals is a relatively unexplored problem. Very re-

cently, [51] proposed an algorithm for keypoint detection

in sheep, using triplet interpolated features in a cascaded

shape regression framework. Unlike our approach, it re-

lies on hand-crafted features and does not transfer knowl-

edge from human to animal faces. Keypoint localization on

birds has been explored in [39, 37, 30, 29], though these

approaches do not focus on facial keypoint detection.

3. Approach

Our goal is to detect facial keypoints in animals with-

out the aid of a large annotated animal dataset. To this end,

we propose to adapt a pre-trained human facial keypoint

detector to animals while accounting for their interspecies

domain differences. For training, we assume access to key-

point annotated animal faces, and keypoint annotated hu-

man faces and their corresponding pre-trained human key-

point detector. For testing, we assume access to an animal

face detector (i.e., we focus only on facial keypoint detec-

tion and not face detection).
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Figure 2. We approximate facial pose using the angle generated

from the keypoint annotations. The keypoints used to compute

the angle-of-interest depend on which facial parts are visible. For

example, on the right, the horse’s right eye and right mouth corner

are not visible, so the three keypoints used are the left eye, nose,

and left mouth corner. While simple, we find this approach to

produce reliable pose estimates.

Our approach has three main steps: (1) finding nearest

neighbor human faces that have similar pose to each animal

face; (2) using the nearest neighbors to train an animal-to-

human warping network; and (3) using the warped (human-

like) animal images to fine-tune a pre-trained human key-

point detector for animal facial keypoint detection.

3.1. Nearest neighbors with pose matching

In order to fine-tune a (loosely-related) human facial

keypoint detector to animals, our idea is to first warp the

animal faces to have a more human-like shape so that it

will be easier for the pre-trained human detector to adapt

to the animal data. One challenge is that an arbitrary animal

and human face pair can exhibit drastically different poses

(e.g., a right-facing horse and a left-facing person), which

can making warping extremely challenging or even impos-

sible. To alleviate this difficulty, we first find animals and

humans that are in similar poses.

If we had pose classifiers/annotations for both animal

and human faces, then we could simply use their classifi-

cations/annotations to find compatible animal and human

pairs. However, in this work, we assume we do not have ac-

cess to pose classifiers nor pose annotations. Instead, we ap-

proximate a face pose given its keypoint annotations. More

specifically, we compute the angular difference between a

pair of human and animal keypoints, and then pick the near-

est human faces for each animal instance.

For each animal training instance Ai, we find its nearest

human neighbor training instance Hj∗ based on pose:

nn(Ai) = Hj∗ = argmin
Hj

|∡∗Ai − ∡
∗Hj |, (1)

where j indexes the entire human face training dataset, and

the angle of interest ∡∗ is measured in two different ways

depending on the animal face’s visible keypoints. When

both eyes and the nose are present, we use ∡∗ = ∡NEcV ,

where Ec is the midpoint between the eye centers, N is the

nose position, and V is a vertical line centered at Ec. If only

the left eye is visible, then we use the left eye, nose, and left

mouth keypoints: ∡∗ = ∡ElNMl (and ∡ErNMr if the

right eye is visible). These cases are illustrated in Fig. 2.

Figure 3. For each animal image (1st column), we find the nearest

human neighbors in terms of pose. These human neighbors are

used to train a warp network that warps an animal to have human-

like face shape.

While simple, we find this approach to produce reliable

pose estimates. In our experiments, we find the K = 5 near-

est human neighbors for each animal face. Fig. 3 shows

some examples. Since we use the TPS transformation for

warping animals to humans (as described in the next sec-

tion), we only compute matches for animal faces with at

least three keypoints and ignore human matches whose key-

points are close to colinear, which can cause gross artifacts

in warping. Note that we do not do pose matching dur-

ing testing, since we do not have access to ground-truth

keypoints; instead we rely on the ensuing warping network

to have learned the “right” warp for each animal face pose

(based on its appearance) during training.

3.2. Interspecies face warping network

Now that we have the nearest human faces (in terms of

pose) for each animal face, we can use these matches to

train an animal-to-human face warping network. This warp-

ing network serves to adapt the shape of the animal faces

to more closely resemble that of humans, so that a pre-

trained human facial keypoint detector can be more easily

fine-tuned on animal faces.

For this, we train a CNN that takes as input an animal

image and warps it via a thin plate spline (TPS) [4] transfor-

mation. Our warping network is a spatial transformer [19],

with the key difference being that our warps are directly su-

pervised, similar to [6].1 Our network architecture is sim-

ilar to the localization network in [38]; it is identical to

Alexnet [24] up to the fifth convolutional layer, followed by

a 1 × 1 convolution layer that halves the number of filters,

two fully-connected layers, and batch normalization before

every layer after the fifth. During training, the first five lay-

ers are pre-trained on ImageNet. We find these layer/filter

1In contrast, in [19] the supervision only comes from the final recog-

nition objective e.g., keypoint detection. We show in Sec. 4 that direct

warping supervision produces superior performance.
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Figure 4. Our network architecture for animal facial keypoint detection. During training, the input image is fed into the warping network,

which is directly supervised using keypoint-annotated human and animal image pairs with similar pose. The warping network warps

the input animal image to have a human-like shape. The warped animal face is then passed onto the keypoint detection network, which

finetunes a pre-trained human keypoint detection network with the warped animal images. During testing, the network takes the input

image and produces 5 keypoint predictions for left eye, right eye, nose, left mouth corner, and right mouth corner.

choices to enable good TPS transformation learning without

overfitting. See Fig. 4 (left).

For each animal and human training image pair, we first

calculate the ground-truth TPS transformation using its cor-

responding keypoint pairs and apply the transformation to

produce a ground-truth warped animal image. We then use

our warping network to compute a predicted warped ani-

mal image. To train the network, we regress on the differ-

ence between the ground-truth warped image and predicted

warped image pixel position offsets, similar to [21]. Specif-

ically, we use the squared loss to train the network:

Lwarp(Ai) =
∑

m

(ppredi,m − p
gt
i,m)2, (2)

where Ai is the i-th animal image, p
pred
i,m and p

gt
i,m are the

predicted offset and ground-truth offset, respectively, for

pixel m.

It is important to note that our warping network requires

no additional annotation for training, since we only use the

animal/human keypoint annotations to find matches (which

are already available and necessary for training their respec-

tive keypoint detectors). In addition, since each animal in-

stance has multiple (K = 5) human matches, the warping

network is trained to identify multiple transformations as

potentially correct. This serves as a form of data augmen-

tation, and helps make the network less sensitive to outlier

matches.

3.3. Animal keypoint detection network

Our warping network from the previous section condi-

tions the distribution of the animal data to more closely re-

semble human data, so that we can harness the large human

keypoint annotated datasets that are readily available for an-

imal keypoint detection. The final step is to finetune a pre-

trained human facial keypoint detection network to detect

facial keypoints on our warped animal faces.

Our keypoint detector is a variant of the Vanilla CNN

architecture used in [45]. The network has four convolu-

tional layers, and two fully-connected layers with absolute

tanh non-linearity, and max-pooling in the last three convo-

lutional layers. We adapt it to work for larger images—we

use 224 × 224 images as input rather than 40 × 40 used

in [45]—by adding an extra convolutional and max-pooling

layer. In addition, we add batch normalization after every

layer since we find the tanh layers in the original network

to be prone to saturation. Fig. 4 (right) shows the archi-

tecture. Our keypoint detection network is pre-trained on

human facial keypoints on the AFLW [23] dataset and the

training data used in [40] (a total of 31524 images).

To finetune our keypoint network, we use the smooth L1
loss (equivalent to the Huber loss with δ=1) used in [15]

since it is less sensitive to outliers that may occur with un-

usual animal poses:

Lkeypoint(Ai) =
∑

n

smoothL1
(kpredi,n − k

gt
i,n), (3)

where Ai is the i-th animal image, k
pred
i,n and k

gt
i,n are the

predicted and ground-truth keypoint position, respectively,

for the n-th keypoint, and smoothL1
is

smoothL1
(x) =

{

0.5x2, if |x| < 1

|x| − 0.5, otherwise.
(4)

We set the loss for predicted keypoints with no cor-

responding ground-truth annotation (due to occlusion) to

zero.

3.4. Final architecture

In our final model, we fit the warping network before

a keypoint detection network that is pre-trained on human

keypoint detection. We use the two losses to jointly fine-

tune both networks. The keypoint detection loss Lkeypoint

(Eqn. 3) is back propagated through both the keypoint de-

tection network, as well as the warping network. Addition-

ally, the warping loss Lwarp (Eqn. 2) is backpropagated
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through the warping network, and the gradients are accu-

mulated before the weights for both networks are updated.

See Fig. 4.

In the testing phase, our keypoint network predicts all

5 facial keypoints for every image. In our experiments, we

do not penalize the network for keypoint predictions that are

not visible in the image and results are reported only for pre-

dicted keypoints that have corresponding ground-truth an-

notation. For evaluation, the keypoints predicted on warped

images are transferred back to the original image using the

TPS warp parameters.

3.5. Horse Facial Keypoint dataset

As part of this work, we created a new horse dataset to

train and evaluate facial keypoint detection algorithms. We

collected images through Google and Flickr by querying for

“horse face”, “horse head”, and “horse”. In addition, we in-

cluded images from the PASCAL VOC 2012 [14] and Ima-

genet 2012 [34] datasets. There are a total of 3717 images

in the dataset: 3531 for training, and 186 for testing. We

annotated each image with face bounding boxes, and 5 key-

points: left eye center, right eye center, nose, left mouth

corner, and right mouth corner.

4. Experiments

In this section, we analyze our model’s keypoint detec-

tion accuracy, and perform ablation studies to measure the

contribution of each component. In addition, we evaluate

our method’s performance as the amount of training data

is varied, and also measure an upper-bound performance if

animal-to-human warping were perfect.

Baselines. We compare against the algorithm presented

in [51], which uses triplet-interpolated features (TIF) in a

cascaded shape regression framework for keypoint detec-

tion on animals. We also develop our own baselines. The

first baseline is our full model without the warping network.

It simply finetunes the pre-trained human facial keypoint

network on the animal dataset (“BL FT”). The second base-

line is our full model without the warping loss; i.e., it fine-

tunes the pre-trained human facial keypoint network and the

warping network with only the keypoint detection loss. This

baseline is equivalent to the spatial transformer setting pre-

sented in [19]. We show results for this with TPS warps

(“BL TPS”). The third baseline trains the keypoint detec-

tion network from scratch; i.e., without any human facial

keypoint detection pretraining and without the warping net-

work (“Scratch”).

Datasets. We pretrain our keypoint detection network on

human facial keypoints from the AFLW [23] dataset and the

training data used in [40] (a total of 31524 images). This

dataset is also used for animal to human nearest neighbor

retrieval. We evaluate keypoint detection on two animals:

LE RE N LM RM ALL

Keypoint

0

5

10

15

20

25

30

35

40

Fa
ilu

re
 R

a
te

 %

OURS

BL TPS

BL FT

SCRATCH

LE RE N LM RM ALL

Keypoint

0

5

10

15

20

25

30

35

40

45

Fa
ilu

re
 R

a
te

 %

OURS

BL TPS

BL FT

SCRATCH

Figure 5. Average keypoint detection failure rate (% of predicted

keypoints whose euclidean distance to the corresponding ground-

truth keypoint is more than 10% of the face bounding box size).

Horses (left) and Sheep (right). Our approach outperforms the

baselines. Lower is better. See text for details.

horses and sheep. For the horse experiments, we use our

Horse Facial Keypoint dataset, which consists of 3531 im-

ages for training and 186 for testing. For the sheep exper-

iments, we manually annotated a subset of the dataset pro-

vided in [51] with mouth corners so that we have the same 5

keypoints present in the human dataset. The dataset consists

of 432 images for training and 99 for testing.

Evaluation metric. We use the same metric for evalua-

tion as [51]: If the euclidean distance between the predicted

and ground-truth keypoint is more than 10% of the face

(bounding box) size, it is considered a failure. We then

compute the average failure rate as the percentage of test-

ing keypoints that are failures.

Training and implementation details. We find that pre-

training the warping network before joint training leads to

better performance. To train the warping and keypoint net-

work, we use K = 5 human neighbors for each animal

instance. These matches are also used to supervise the “GT

Warp” network described in Sec. 4.4.

For the TPS warping network, we use a 5×5 grid of con-

trol points. We optimize all networks using Adam [22]. The

base learning rate for the warp network training is 0.001,

with a 1

10
× lower learning rate for the pre-trained layers. It

is trained for 50 epochs, with the learning rate lowered by
1

10
× after 25 epochs. During full system training, the warp

network has the same learning rates, while the keypoint de-

tection network has a learning rate of 0.01. We train the

network for 150 epochs, lowering the learning rate twice

after 50 and 100 epochs. Finally, we use horizontal flips

and rotations from −10◦ to 10◦ at increments of 5◦ for data

augmentation.

4.1. Comparison with our baselines

We first compare our full model with our model variant

baselines. Figure 5 (left) and (right) show results on horse

and sheep data, respectively. We outperform all of our base-

lines significantly for both horses and sheep, with an aver-
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Figure 6. Average keypoint detection failure rate across all keypoints for our system vs. our baselines (first two plots) and the Triplet

Interpolated Features (TIF) approach of Yang et al. [51] (last two plots). Our system sustains lower failure rates across stricter failure

thresholds than all baselines.
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Figure 7. Average keypoint detection failure rate for Horses (left)

and Sheep (right). Our approach significantly outperforms the

Triplet Interpolated Features (TIF) approach of Yang et al. [51],

which combines hand-crafted features with cascaded shape regres-

sors. Lower is better.

age failure rate across keypoints at 8.36% and 0.87%, re-

spectively.

Overall, the failure rate for all methods (except Scratch)

for sheep is lower than that for horses. The main reason is

due to the pose distribution of human and sheep data being

more similar than that of human and horse data. The human

and sheep data have 72% and 84% of images in frontal pose

(faces with all 5 keypoints visible) as compared to only 29%

for horses. The majority (60%) of horse faces are side-view

(faces with only 3 keypoints visible). This similarity makes

it easier for the human pre-trained network to adapt to sheep

than to horses. Nonetheless, the fact that our method out-

performs the baselines for both datasets, demonstrates that

our idea is generalizable across different types of data.

These results also show the importance of each com-

ponent of our system. Training with a human pre-trained

network does better than training from scratch (BL FT

vs. Scratch); adding a warping network that is only weakly-

guided by the keypoint detection loss further improves re-

sults (BL TPS vs. BL FT); and finally, directly super-

vising the warping network to produce animal faces that

look more human-like leads to the best performance (Ours

vs. BL TPS). The first two plots in Fig. 6 show the results

of varying the acceptance threshold (on the euclidean dis-

tance between the ground-truth and predicted keypoint) for

a valid keypoint on our and the baselines’ performance. Our

method sustains superior accuracy across thresholds, which

Ours

[51]

Figure 8. Qualitative examples comparing our approach and Yang

et al. [51] on their Sheep dataset. While [51] can produce good

predictions (first column), overall, our method produces signifi-

cantly more accurate results.

again indicates that we predict keypoints more accurately.

Fig. 9 shows qualitative examples of predicted keypoints

and predicted warps for ours and the baselines. Noticeably,

the TPS warps produced without the warping loss (BL TPS

Warp) fail to distinguish between the different horse poses,

and also do not warp the horse faces to look more human

like. On the other hand, our warping network is able to do

both tasks well since it is directly supervised by pose spe-

cific human matches. By warping the horses to have more

human-like shape, our method produces more precise key-

point predictions than the baselines. The last two rows show

typical failure examples due to extreme pose or occlusion.

4.2. Comparison with Yang et al. [51]

We next compare our method to the Triplet Interpolated

Features (TIF) approach of [51], which is the state-of-the-

art animal keypoint detector. The method requires the exis-

tence of all landmarks in all training examples. We there-

fore picked a subset of the horse and sheep images where

all 5 keypoints are visible and marked: 345/100 train/test

images for sheep, and 982/100 train/test images for horses.

Fig. 8 shows qualitative examples comparing our

method’s keypoint predictions vs. those made by TIF. TIF

often fails to handle large appearance and pose variations.

This is also reflected in the quantitative results, which are

shown in Fig. 6 (third) and Fig. 7 (left) for the horse dataset

and Fig. 6 (fourth) and Fig. 7 (right) for the sheep dataset.

We significantly outperform TIF on both datasets (10.44%

and 12.52% points lower failure rate for horses and sheep,
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Ground Truth BL FinetuneBL TPS Warp BL TPSOur PredictionOur Warp

Figure 9. Qualitative examples of predicted keypoints and predicted warps for ours and the baselines. The first five rows show examples

where our method outperforms the baseline. While the baselines also produce reasonable results, by warping the horses to have more

human-like shape, our method produces more precise keypoint predictions. For example, in the first row, the baselines do not localize the

nose and mouth corner as well as ours. The last two rows show typical failure examples due to extreme pose or occlusion.
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Figure 10. (left) Average keypoint detection failure rate as a func-

tion of the number of training instances on the Horse dataset. Our

failure rate increases more gracefully compared to the baselines

as the number of training images is decreased. Lower is better.

(right) Increasing the number of human face neighbors for an

animal face instance increases performance until noisy neighbors

cause performance to drop.

respectively). The main reason is because we use a high ca-

pacity deep network, whereas TIF is a shallow method that

learns with hand-crafted features. Importantly, the reason

that we are able to use such a high capacity deep network—

despite the limited training data of the animal datasets—is

precisely because we correct for the shape differences be-

tween animals and humans in order to finetune a pre-trained

human keypoint detection network.

4.3. Effect of training data size

In this section, we evaluate how the performance of our

network changes as the amount of training data varies. For

this, we train and test multiple versions of our model and

the baselines, each time using 500 to 3531 training images

in 500 image increments on the Horse dataset.

Figure 10 (left) shows the result. While the performance

of all methods decreases with the training data amount, our

performance suffers much less than that of the simple fine-

tuning and TPS baselines. In particular, when using only

500 training images, our method has a 6.72% point lower

failure rate than the TPS baseline while relying on the same

network architecture, and a 13.39% point lower failure rate

than simple finetuning, without using any additional train-

ing data or annotations.

This result demonstrates that our algorithm adapts well

to small amounts of training data, and bolsters our original

argument that explicitly correcting for interspecies shape

differences enables better finetuning, since the pre-trained

human keypoint detection network can mostly focus on the

appearance differences between the two domains (humans

and animals). Importantly, it also shows the practical appli-

cability of our approach to small datasets.

4.4. Effect of warping accuracy

We next analyze the influence of warping accuracy on

keypoint detection. For this, we first analyze the perfor-

mance of our keypoint detection network when finetuned

GT Warp Ours

Failure Rate % 7.76% 8.36%
Table 1. Average keypoint detection failure rate across all key-

points on the Horse dataset, comparing our approach to an upper-

bound ground-truth warping baseline. Lower is better.

with ground-truth warped images (“GT Warp”), where we

use the ground-truth keypoint annotations between human

and horse faces for warping (i.e., the keypoint detection net-

work is finetuned with ground-truth warped images). In a

sense, this represents the upper bound of the performance

of our system.

Table 1 shows the results on our Horse dataset. First, the

GT Warp upper-bound produces even lower error rates than

our method, which demonstrates the efficacy of the idea of

correcting for shape differences by warping. At the same

time, the non-negligible error rate of GT Warp also hints at

the limitation of our warping network’s training data and/or

pose matching strategy. Better training data, with either a

different algorithm for nearest pose neighbor matching or

an increase in the keypoints that are annotated could poten-

tially lead to a better upper-bound, and would likely provide

improvements for our approach as well.

4.5. Evaluation of Nearest Neighbors

Finally, we evaluate the importance of human nearest

neighbors for our system. We vary the number of nearest

neighbors used for training our full system from K = 1 to

K = 15 at increments of 5 for our full Horse training set.

The result is shown in Figure 10 (right). While the error rate

decreases as the number of neighbors used for training is in-

creased in the beginning, eventually, the noise in retrieved

nearest neighbors causes the error rate to increase.

5. Conclusion

We presented a novel approach for localizing facial key-

points on animals. Modern deep learning methods typically

require large annotated datasets, but collecting such datasets

is a time consuming and expensive process.

Rather than collect a large annotated animal dataset, we

instead warp an animal’s face shape to look like that of a

human. In this way, our approach can harness the readily-

available human facial keypoint annotated datasets for the

loosely-related task of animal facial keypoint detection. We

compared our approach with several strong baselines, and

demonstrated state-of-the-art results on horse and sheep fa-

cial keypoint detection. Finally, we introduced a novel

Horse Facial Keypoint dataset, which we hope the com-

munity will use for further research on this relatively un-

explored topic of animal facial keypoint detection.
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