
Filter Flow made Practical: Massively Parallel and Lock-Free

Sathya N. Ravi

University of Wisconsin-Madison

ravi5@wisc.edu

Yunyang Xiong

University of Wisconsin-Madison

yxiong43@wisc.edu

Lopamudra Mukherjee

University of Wisconsin-Whitewater

mukherjl@uww.edu

Vikas Singh

University of Wisconsin-Madison

vsingh@biostat.wisc.edu

Abstract

This paper is inspired by a relatively recent work of

Seitz and Baker which introduced the so-called Filter Flow

model. Filter flow finds the transformation relating a pair

of (or multiple) images by identifying a large set of lo-

cal linear filters; imposing additional constraints on cer-

tain structural properties of these filters enables Filter Flow

to serve as a general “one stop” construction for a spec-

trum of problems in vision: from optical flow to defocus

to stereo to affine alignment. The idea is beautiful yet the

benefits are not borne out in practice because of signifi-

cant computational challenges. This issue makes most (if

not all) deployments for practical vision problems out of

reach. The key thrust of our work is to identify mathemat-

ically (near) equivalent reformulations of this model that

can eliminate this serious limitation. We demonstrate via a

detailed optimization-focused development that Filter Flow

can indeed be solved fairly efficiently for a wide range of in-

stantiations. We derive efficient algorithms, perform exten-

sive theoretical analysis focused on convergence and par-

allelization and show how results competitive with the state

of the art for many applications can be achieved with neg-

ligible application specific adjustments or post-processing.

The actual numerical scheme is easy to understand and, im-

plement (30 lines in Matlab) — this development will enable

Filter Flow to be a viable general solver and testbed for nu-

merous applications in the community, going forward.

1. Introduction

Understanding how two or more images of the same

scene are related, is a fundamental problem in computer vi-

sion. Often, the coordinate systems of the respective im-

ages are related by a camera motion whereas in other cases,

the scene illumination may change, the shading may dif-

fer and/or the exposure, zoom and other parameters of the

camera may be modified from one image to the other. These

effects typically lead to a systemic (but otherwise arbitrary)

transformation in the image intensities. To enable follow-up

analysis, an important first step is to recover the parameters

describing the relationship between the images.

While technically accurate, the above description actu-

ally covers a large class of problems with a broad stroke.

In practice, instead of a common strategy, most problems

in this class are addressed piecemeal, by posing it as a par-

ticular instantiation of the high-level “transformation esti-

mation” objective. One makes explicit use of additional in-

formation pertaining to the specific problem to be solved

(such as acquisition details, parameters to be estimated and

application specific constraints). The representative prob-

lems in this class correspond to a number of core topics in

modern vision literature: optical flow[30, 24, 38], decon-

volution [21, 27], non-rigid morphing [25], stereo (plus its

variations)[34, 23, 37], defocus [22] and so on — these are

all distinct problems but at the high level, deal with esti-

mating the relationship between two or more images. This

compartmentalized treatment has, over the years, provided

highly efficient algorithms and industry-strength implemen-

tations for numerous problems. Such solutions now drive

any number of downstream turnkey applications.

Despite this diversity of highly effective and mature al-

gorithms for each stand-alone problem, an interesting scien-

tific question is the following. Given that many of these for-

mulations seek to estimate a transformation which explains

the change in image intensities over two (or more) images,

can we design a unified formulation that is rich enough to

model a broad class of transformations and yet offers the

flexibility to precisely express the nuances of each distinct

problem listed above? In an interesting paper a few years

back, Seitz and Baker, provided precisely such a framework

called Filter Flow [35]. Filter Flow models image transfor-

mations as a to-be-estimated space-variant (pixel-specific)

13549

linear ‘filter’ relating a pair of images I1 and I2 as,

I2 = TI1, T ∈ Γ, (1)

where T can be thought of as a filter (or operator) whose

rows act separately on a vectorized version of the source im-

age I1. Observe that the inverse problem of computing the

transformation, T , specified by the first identity is severely

under constrained. For Model (1) to make sense, T ∈ Γ
must serve as a placeholder for the entire set of additional

constraints on the filter which enables a unique solution that

satisfies our expectations for particular problems of inter-

est, e.g., optical flow, stereo with illumination change or

affine alignment. But imagine if the problem specific re-

quirements can actually be encoded as a feasibility set, Γ –

then – the Filter Flow formulation offers an interesting “one

stop” model where the unknown transformation we seek to

estimate is linear. It turns out that an entire catalog of vision

problems fit very nicely into this formulation: from defocus

to stereo with higher order priors to optical flow with rich

domain specific priors, each with its own specific feasibil-

ity set Γ. Such a formulation offers several advantages: (a)

it reparametrizes traditionally non-linear or variational for-

mulations into an optimization problem that may be solved

via just linear programming; (b) the form in (1) can be eas-

ily modified to incorporate additional domain specific pri-

ors which may alternatively need more significant structural

modifications in an algorithm designed for a particular ob-

jective and (c) while it may not be a silver bullet for all prob-

lems expressible in this form, the corresponding solutions

may provide a strong baseline and drive the development of

more efficient algorithms.

From a theoretical perspective, Model (1) is simple and

elegant. Unfortunately, a direct optimization of (1) is in-

tractable for image sizes we typically encounter in prac-

tice. Running the model in a medium to large scale set-

ting, e.g., for video sequences, is simply not possible. This

may seem counter intuitive, especially since the objective

and constraints are linear. So why is the model not solvable

by large scale linear programming solvers? It turns out that

while this approach guarantees global optimality, the con-

straint matrix arising from practical problem sizes, cannot

be instantiated, even on a high end workstation. Even when

multi-resolution pyramid schemes are adopted as a practi-

cal heuristic, the running times range from 9 to 20+ hours,

depending on the type of problem and the associated con-

straints, a weakness acknowledged by the authors [35]. Fur-

thermore, some problems require adding terms in the objec-

tive that are non-convex; these are solved via a series of lin-

ear programs (obtained using linear approximations at each

iteration). In summary, the potential scope and applicabil-

ity of this interesting formulation has not been fully real-

ized, in large part due to its serious computational footprint.

The main goal of this paper is to remove this limitation and

make Filter Flow practical.

Related Work: The main motivation of this paper is to

devise practical algorithms for Filter Flow [35]. In addi-

tion, we discuss several case studies in Section 5, specific

to problems which can be modeled as Filter Flow. The lit-

erature dealing with these problems such as Optical Flow

[18, 1], Affine Alignment [20] and Stereo matching[14, 17]

is quite mature and is not discussed at length here to avoid

digressing from the main algorithmic focus of the paper.

Before moving on, we point out that Fleet et al., [10] also

proposed linear motion models to represent varied or com-

plex motions and many of our constructions will be appli-

cable to the ideas in these earlier papers.

We highlight some application domains where the filter

flow model has been recently applied fairly successfully. In

[16], the authors proposed an approach which made the fil-

ter flow construction efficient for space-variant Multiframe

Blind Deconvolution. Later, [9] used this formulation for

computing scene depth from a stereo pair of cameras un-

der a sequence of illumination directions. Filter Flow has

been used effectively for fast removal of Non-uniform Cam-

era Shake and the resultant blurs in [15]. Others [32] have

reformulated the smoothness prior in Filter Flow, to make

it suitable in various applications including alpha matting.

These methods demonstrate that the applicability of Filter

Flow to a set of diverse problems is possible but has of-

ten involved disparate solution schemes. We believe that

once the computational challenges are resolved, filter flow

approaches will be more widely adopted in vision.

Contributions. Our earlier discussion suggests that

commercial Linear Programming (LP) solvers are not well

suited for solving (1). However, we find that in most in-

stantiations of Filter Flow (in the context of specific vision

problems), the problem has significant structure that can be

exploited via specialized optimization schemes. In partic-

ular, we see that for each of the five case studies cover-

ing problems such as affine alignment and optical flow de-

scribed in [35], a nearly equivalent reformulation allows the

applicability of numerical optimization schemes that cuts

down the running time from tens of hours to several min-

utes on a standard workstation, without making use of any

heuristic strategies. By nearly equivalent, we mean that the

problems have the same optimal solution up to chosen tol-

erance. On the modeling side, we propose a new convex

term that encourages sparsity which is called the compact-

ness term, an ℓ2 data term and a valid inequality that re-

duces the search space of the parameters. On the algorith-

mic side, with some more manipulation, the problems re-

veal additional structure appropriate for massively parallel

lock-free implementations. To that end, we propose an ef-

ficient asynchronous parallel algorithm that solves our for-

mulation 30 times faster than the previous model and are

empirically competitive to the state of the art solvers both

3550

quantitatively and quantitatively. A detailed description of

these properties and the corresponding algorithms with con-

vergence guarantees is our main contribution.

Notations: We use ei’s to represent the standard basis

vectors and 1 denotes the vector of all 1’s. Also, ∆ gives

the probability simplex in appropriate dimensions. Small

alphabets represent vectors over R; upper-case letters rep-

resent linear maps between vector spaces over R. All proofs

are included in the appendix due to space constraints.

2. A brief overview of Filter Flow

We briefly review the key components of Filter Flow [35]

to set up our discussion. Let I1 and I2 be a pair of images

for which Filter Flow is to be computed. In our formulation,

I1 and I2 can be assumed to be vectors in R
n, where n is the

total number of pixels in image I1 (or I2). Then filter flow

can be formulated as the following optimization problem1,

min
T∈Rn×n

||TI1 − I2||22. (2)

Equivalently, the ith entry of TI1 is the linear combina-

tion of intensities of I1. The authors in [35] further decom-

pose T as T = MK where M is a motion matrix and K
is a kernel matrix. M−1 encodes the motion from I2 to I1,

so we can write the objective as ||MI2 − KI1||22. In par-

ticular, in the case of pure motion, K is the identity matrix.

Our construction can be employed for a nontrivial K but we

assume that K is the identity matrix to simplify our presen-

tation and without loss of generality swap I2 and I1. Since

this formulation is under constrained, [35] proposes some

natural constraints on M , described below.

Non-Negativity: Negative coefficients are meaningless;

so one imposes the constraint that M ≥ 0.

Row Simplex Constraint: We also require that, the sum

of coefficients in each row of M to be 1, i.e., each pixel in

I2 is a convex combination of pixels in I1. In addition, we

define a neighborhood of each pixel i as N (i) and ensure

that pixels outside this neighborhood do not participate in

the convex combination. Hence, we can write the optimiza-

tion problem that we seek to solve as,

min
M≥0

||MI1 − I2||22 (3)

s.t.
∑

j∈N (i)Mij = 1,
∑

j 6∈N (i)

Mij = 0, ∀i = 1 to n.

While the above description serves as the basic template of

the Filter Flow model, various additional constraints and

terms are added in problem (3) to model the underlying

computer vision problem of interest. Specific examples in-

clude: (i) for the Affine alignment problem, the requirement

1Via personal communication [35], we know that the norm was chosen

to allow applicability of LP solvers and not central to the model otherwise.

that all pixels in I1 are transformed by an affine matrix A
(the so-called GLOBA-M constraints in [35]); (ii) for op-

tical flow, we encourage smoothness on the affine motion

of neighboring pixels; (iii) for precise integer flow, terms

encouraging sparsity are introduced; (iv) for stereo, we re-

quire smoothness between the rows of M . Specific details

of these terms will be described later in case studies.

3. Algorithmic Reformulations

Our basic hypothesis is that reformulating the filter flow

problem will enable us to design practical algorithms with

global convergence guarantees. Unfortunately, additional

terms/constraints (described in the previous section) that are

used in specific formulations of standard computer vision

problems, make this task non-trivial. The reason is two-

fold: (i) non-convexity in some of the decision variables

and, (ii) even when the optimization problem is convex, the

additional terms lead to composite functions or constraints.

For example, in imposing affine smoothness (used in op-

tical flow), we add the term
∑

i

∑

j∈N (i) ||Ai − Aj ||22 in

the objective, where Ai is the affine motion associated with

pixel i. Such terms make it hard to optimize the problem

using standard off the shelf solvers, since it requires multi-

ple passes over the data to compute the gradient. Our goal

with the reformulations is to mitigate such issues while also

preserving the overall behavior of the filter flow model.

Next, we will identify a few high-level issues that make

the optimization challenging for the constraints mentioned

in [35] and offer alternatives. Our line of attack (or work-

flow) is as follows. We will first address the main (compu-

tationally) problematic pieces of the Filter Flow model and

provide tractable reformulations for each. Our hope will be

that these reformulations will satisfy “nicer” technical con-

ditions that will guide the choice of the overall optimiza-

tion scheme. We will then describe how this scheme can

be further specialized by exploiting the problem structure

for particular computer vision problems (case studies). The

objective will be that each specific instantiation should be

implementable just by modifying a few lines of code of the

overall optimization and still preserve efficiency benefits.

3.1. Reformulating Compactness

Ideally, we want to find a correspondence between the

pair of images where each pixel in I1 is mapped exactly

to a single pixel in I2. To ensure sparsity, [35] proposed a

compactness term, defined as,

∑

i

∑

j∈N (i)

Mij ||(j − i)−
∑

ij

Mij(j − i)||22 (4)

But the compactness term makes the objective function

nonconvex (in fact, concave), therefore, a linearization ap-

proach had to be used in [35]. Initially the compactness

3551

term is set to zero and the optical flow is computed with-

out the compactness term. After the first iteration, a linear

approximation of the compactness function is used and the

corresponding linear program (LP) is solved. This requires

solving a huge LP problem multiple times (even though em-

pirically the number of iterations used was only 3−4). Sec-

ondly, the solver needs to do a full pass of the data (or im-

age) in order to compute the linear approximation of com-

pactness, which is expensive.

A Convex Compactness term? To successfully replace

the compactness term with a more efficient substitute, we

first consider some useful properties that such a term needs

to encode: 1) as the regularization parameter increases, it

should tend towards keeping a single non-zero entry in each

row, 2) the value of the function and its derivative should be

efficiently computable and, 3) it should be easy to optimize.

To this end, the ℓ1 norm is a natural choice to get sparse

solutions. But it turns out that the ℓ1 norm is constant (= 1)

on the feasible set of our problem, so it is not applicable.

However, observe that the constraints on the matrix M im-

ply that M is a row stochastic matrix. So, if we consider

each row of M to be a probability distribution on n vari-

ables, then we need the optimal probability distribution to

have small support, that is, we want our compactness term

to behave like a linear combination of the fewest number

of delta functions. In [28], the authors showed that a re-

laxed version of this problem can be solved by n second

order cone programs in parallel. Later, [8] provided a con-

vex formulation that encourages sparsity on the simplex and

showed that it is more robust. Using these ideas which are

demonstrated empirically in the appendix, we can write our

problem as,

min
M≥0

||MI1 − I2||22 + λ1

n
∑

i=1

||M[:,i]||2 (5)

s.t.
∑

j∈N (i)

Mij = 1,
∑

j 6∈N (i)

Mij = 0, ∀ i

where λ1 > 0 is fixed and M[:,i] denotes the i−the column

of M and λ1 is the regularization parameter. Intuitively,

the penalty is a group lasso type penalty with the groups

given by the columns of M . Therefore, this term encour-

ages that there are few nonzero entries along the columns

and together with the sum to one constraint on the rows

makes the rows sparse, achieving the desired property.

3.2. Reformulating Affine Smoothness

Ensuring smoothness of the transformation across the

pixels is important for several problems such as Optical

Flow. Affine smoothness terms, in such instances were

shown in [35] to outperform other second order smooth-

ness terms and yield a smoother flow field in practice. To

encourage affine smoothness, we define an explicit 6 pa-

rameter affine transformation at each pixel i, denoted by

Ai ∈ R
2×3. Intuitively, Ai captures the motion of the cen-

troid of the filter at pixel i. To do so, [35] imposes a hard

“LOCA-M” constraint (set the flow equal to the centroid).

Instead, we use the dual form and add the terms in the ob-

jective function (λ2 > 0), that is,

λ2

∑

i

||Aii− M̄i||22 (6)

where M̄i ∈ R
2 is the centroid of filter at pixel i and i ∈ R

3

is the pixel i in homogeneous coordinates with third entry

equal to 1. We fix the value of λ2 whenever approximate so-

lutions are enough. We treat them as a quadratic penalty if

more accurate solutions are required which guarantees (see

[26]) that the equality constraint is satisfied when our algo-

rithm terminates, exactly as desired in [35]. Finally, to get

a smooth flow, the following term is added to the objective

function (λ3 > 0),

λ3

∑

i

∑

j∈N (i)

||Ai −Aj ||22 (7)

Now, we give a result showing an interesting property of

the affine transformation matrix and is relevant in informing

the choice of algorithm in the next section.

Lemma 3.1 ||Ai||2F ≤ C is a valid inequality for a suffi-

ciently large C > 0.

Intuitively, this lemma says that the magnitude of each

individual element of Ai’s is bounded (with C chosen ap-

propriately). Observe that i ≥ 1 (coordinatewise) and the

restriction of the movement of a pixel to be within the filter

implies that M̄i is bounded by the neighborhood size giving

us the tightest choice for C. This lemma implies that (one

of) the optimal solution(s) of the least squares problem is

contained in a convex compact set. More importantly, this

lemma shows that we have not compromised any theoretical

property by adding this inequality.

3.3. Which solver should we use?

One of the key differences between the model in [35]

and our approach is that the we replaced the ℓ1 norm with

special type of compactness encouraging norm making the

objective a smooth convex function. In this section, we will

see how this change of norm together with the above lemma

enables leveraging recently developed convex optimization

techniques that can speed up the optimization time by sev-

eral orders of magnitude, assuming that the case study spe-

cific terms can also be manipulated and reformulated to be

amenable to our optimization scheme.

We now discuss how two key properties viz., approxima-

tion and randomization will guide the choice of an appro-

priate optimization scheme. We motivate these choices next

in the context of our model.

3552

A) Approximation: Consider the problem of solving

a finite dimensional optimization problem over a compact

convex set. Such problems are often solved using projected

gradient methods (over multiple iterations), which involves

projection of the objective at each step on the feasible set.

This requires optimizing a quadratic function on the feasible

set. These algorithms allow large changes in the working

set at each iteration unlike active-set methods and therefore

can be applied to large size problems. The primary disad-

vantage, however, is that even when the feasible set is very

simple such as probability simplex, ellipsoids, ℓ1 norm ball,

the corresponding projection subproblem is nontrivial. On

the other hand, there are constrained optimization methods

that consist of optimizing a linear function over the feasible

set at each iteration. In the literature, methods which solve

problems of the above form are referred to as feasible direc-

tions method [3]. Specifically, Conditional Gradient Meth-

ods (CGM) is a class of feasible directions method which

has been shown to have better theoretical convergence rates

[3] and is applicable to our Filter Flow model. Recently,

CGMs have performed well in solving many machine learn-

ing problems including SVMs and nuclear norm regular-

ized problems, see [12, 19] though have only been sparingly

used in vision. Indeed, the method thrives in practice when

the following two properties are satisfied: i) feasible set is

compact convex; and ii) optimizing a linear function over

the feasible set is easy.

B) Randomization: As mentioned earlier, the double

summation terms in (7) is a computational bottleneck, since

it needs to make a full pass over the data to compute the gra-

dient. It has been shown [2, 29] that approximate first order

information can be used to solve such large scale optimiza-

tion problems, referred to as randomized or stochastic algo-

rithms. These methods are much faster than the traditional

algorithms and are often provably robust to noise [13].

Our strategy is to combine Conditional Gradient meth-

ods with randomization to develop efficient Randomized

Block Coordinate Conditional Gradient [6, 5] algorithm

(RBC-CGM) with strong sparsity and convergence guaran-

tees to solve standard Filter Flow formulations. We show

how RBC-CGMs can be efficiently used in tandem with

powerful distributed convex optimization schemes result-

ing in practical algorithms for these problems. Before we

present the randomized version, we briefly review the (de-

Algorithm 1 Conditional Gradient Method (CGM)

Pick a starting point x0 ∈ C.

for t = 0, 1, 2, · · · , T do

g ← ∇f(xt)
s← argmins∈C s

tg (*)
xt+1 ← (1− γt)xt + γts

end for

terministic) Conditional Gradient Method.

Conditional Gradient Method (CGM): CGM solves

problems of the form, minx∈C f(x), where f is a finite di-

mensional smooth convex function and C is compact con-

vex set. Given a feasible starting point, each iteration of

the algorithm solves a linear approximation of f over C and

chooses a point in the line segment joining the current point

and the solution to the linear approximation. This makes

sure that the new point is also feasible. The basic algorithm

for CGM is shown in Alg. 1.

Assuming that the gradient can be computed easily, step

(*) in Algorithm 1 determines the complexity of CGM. Ob-

serve that the requirement of C to be bounded is necessary

since otherwise s from step (*) will be unbounded. CGM

finds the global optimal solution of the reformulated Filter

Flow problem since M is bounded by construction in (5),

and Ai’s are bounded by lemma (3.1). This suggests that

if we temporarily do not worry about the problem specific

reformulations, CGM can be deployed easily.

Randomized Block Coordinate CGM (RBC-CGM):

We propose an asynchronous randomized block coordinate

descent variant of the classical CGM for our purposes.

The simplest form of our algorithm is outlined in Alg.

2. The reformulations made in section 3 have resulted in

simple subproblems (#) as desired. To compute sd, we find

the index corresponding to the minimum element of gd and

set it to 1 leaving all others to be 0 and sA = −CgA/||gA||
which requires the computation of a norm. This makes our

algorithm very simple to implement and efficient.

Algorithm 2 RBC-CGM

while convergence do

Pick an arbitrary pixel i.
for t = 0, 1, 2, · · · , T do

gd ← ∇M[i,:]
f , gA ← ∇Ai

f

sd, sA ← argmins∈∆,||q||2
F
≤C stgd, q

tgA (#)
[M[i,:];Ai]← (1− γt)[M[i,:];Ai] + γt[sd; sA]

end for

end while

4. Analysis of Algorithm and Convergence

We now discuss some technical properties of the algo-

rithm presented above.

Space Complexity and Iteration Bounds: If a pixel i is ac-

cessed t times, it is clear that the number of nonzero entries

in T[i,:] is at most t. In other words, after a few iterations,

it is possible to obtain a reasonable estimate of the flow of

the pixel i. Moreover, the neighborhood sizes in general are

small relative to the size of the image which implies that af-

ter a few iterations it identifies the regions of the image to

which the current pixels are moved to. Empirically, we can

3553

stop after 100 epochs, (i.e., when each pixel is accessed 100

times by the processor) if the filter size is [−10, 10]2. Sec-

ond, we can easily estimate the number of iterations needed

before starting the algorithm for a fixed amount of memory.

We will now prove a lemma (proof in appendix) that es-

tablishes a block-descent property for this algorithm which

can be used to trivially parallelize the algorithm.

Lemma 4.1 Denote the objective as f(y) : Rn → R where

f is convex, smooth and that y is partitioned into J =
{1, ..., J} blocks, i.e., y = [y1, y2, ..., yJ] such that yi ∈ Yj ,

then we have that dTi ∇if(y
i(t)) ≤ −C ′||di(t)||22, where di

is the direction of update i.e., yi(t + 1) = yi(t) + γtdi(t)
and C ′ > 0 is a constant.

Parallelization: Using the above lemma and proposition 5.1

in [4], we can deploy an asynchronous algorithm assum-

ing that the time delay between the updates of processors is

bounded. Of course, this does not prove that each update

decreases the objective function maintaining feasibility. In

fact, this is rarely true in conditional gradient type meth-

ods except if we use line search methods to compute step

sizes γt that satisfy Armijo condition. But this defeats the

purpose of asynchronous methods because each processor

will take arbitrarily long to do a single update thus affect-

ing the convergence rate. Moreover, constant step size poli-

cies usually depend on parameters of the objective function

and constraints that are hard to compute a priori. Fortu-

nately, in the convergence proofs of this method, we show

that a particular choice of stepsize sequence determined a

priori guarantees convergence (see [19]) and only depends

on the iteration number making the algorithm naturally easy

to parallelize [4]. It is useful to see that the convergence is

established using the duality gap principle and not just using

the primal optimization problem. The above lemma shows

the correctness of our algorithm, that is, any limit point of

the sequence generated by our algorithm converges to the

optimal solution at the rate equal to its sequential version,

that is, O(1/
√
N). For explicit convergence rates, see [36].

Many aspects that are considered in [36] like collisions, de-

layed updates do not affect the problems considered here

since the delay between individual workers is negligible.

So, our proof is much simpler. We will now see how the

update schemes change for specific problems.

5. Case Studies

We study three specific problems, that immediately benefit

from the fast filter flow formulation. We also discuss paral-

lel solvers, if applicable.

Affine Alignment: The Affine Alignment problem deals

with the task of finding global affine alignment between a

pair of images. It can be formulated as

min
M,A
||MI1 − I2||22

s.t. M [i, :] ∈ ∆, ||A||2F ≤ C,Ai = M̄i ∀i
(8)

where A ∈ R
2×3 is the global affine matrix capturing the

affine warp between I1 and I2 and ∆ is the unit simplex.

Let Ai be the affine matrix for each pixel i. Then, we can

write an equivalent form of (8) as,

min
M,A
||MI1 − I2||22

s.t. M [i, :] ∈ ∆,Aii = M̄i, Ai = A, ||Ai||2F ≤ C ∀i
(9)

After dualizing the equality constraints Ai = A, we can

write the optimization problem as (λ > 0),

min
M,A
||MI1 − I2||22 + λ

∑

i

||Ai −A||2F

s.t. M [i, :] ∈ ∆, Aii = M̄i, ||Ai||2F ≤ C ∀i
(10)

Note that this problem satisfies the two properties men-

tioned in section 3.3.

Parallelization: The model (10) can be easily parallelized

as follows. Each worker picks a pixel i, solves the corre-

sponding optimization problem and updates Ai. Observe

that we do not explicitly impose that ||A||2F ≤ C in the

model. After all the workers update Ai, A can be updated

as,

A← argmin
A

∑

i

||Ai −A||2F (11)

But the above optimization problem simply computes the

mean of all Ai’s which can be done in time linear in the

number of pixels. We use incremental gradient descent

method with 0 < α < 1 as the dual step size to update

λ, see [2], λ← λ+ α · (∑i ||Ai −A||2F).
Optical Flow: Putting together the objective and con-

straints from Section (3) pertaining to optical flow, we can

write the optimization problem as follows:

min
M≥0,Ai

||MI1 − I2||
2
2 + λ1

n∑

i=1

||M[:,i]||2

+
∑

i

λ
i
2||Aii− M̄i||

2
2 + λ3

∑

i

∑

j∈N (i)

||Ai −Aj ||
2
2

s.t.
∑

j∈N (i)

Mij = 1,
∑

j 6∈N (i)

Mij = 0, ||Ai||
2
F ≤ C ∀i

(12)

Note that λ1 and λ3 are parameters for the optimization

problem, therefore user specified constants. The main dif-

ference in this model from the affine alignment problem is

that we use a different dual variable λi
2 for each pixel. This

is often useful since optical flow is computed using a pyra-

mid approach, so we get a good initialization of Ai’s locally.

Again, we see that this problem satisfies the two properties

3554

Figure 1: Optical flow results: The first 4 columns shows results on the MPI Sintel dataset, the last 4 columns show results on the Middlebury dataset.

Columns 1 to 3 (5 to 7) show the ground truth, our result and the Epicflow result respectively. Column 4 (and 8) shows the error map. AEE’s of column 4

are 1.08, 1.15, 1.03 for rows 1 to 3. AEE’s for column 8 are 0.06, 0.042, 0.033 for rows 1 to 3. Our results are marked in red.

mentioned in section 3.3.

Parallelization: Each worker solves the following problem,

min
M[i,:],Ai

(M t
[i,:]I1 − etiI2)

2 + λi
2||Aii− M̄i||22

+
∑

j∈N (i)

||Ai −Aj ||22 + λ1

n
∑

i=1

||M[:,i]||2

s.t. M[i,:] ∈ ∆, ||Ai||2F ≤ C

(13)

The optimization problems and the λi
2 can be updated and

stored locally in each worker. This gives us a lock free asyn-

chronous parallel algorithm. After each worker finishes the

above subproblem, λi
2 are updated as,

λi
2 ← λi

2 + α ·
(

||Aii− M̄i||22
)

(14)

Stereo: Stereo matching problem is formulated using a

local smoothness model instead of global affine smoothness

as follows:

min
M≥0

||MI1 − I2||22 + λ1

n
∑

i=1

||M[:,i]||2 + λ3

∑

i,j

||Mi −Mj ||22

s.t.
∑

j∈N (i)

Mij = 1,
∑

j 6∈N (i)

Mij = 0, ∀i (15)

Updates here are a special case of updates for the optical

flow problem, so the same parallelization scheme applies.

6. Experiments

We present experimental results on three case studies in-

troduced in Section 5. Our goal is to evaluate (a) the de-

gree of runtime improvements of our algorithm over alter-

natives which uses no reformulation strategies; (b) whether

the reformulated Filter Flow model when solved to opti-

mality can, in fact, yield results competitive with dedicated

algorithms developed specifically for each case study; and

(c) whether the overall scheme is efficient enough to enable

rapid prototyping for new problems in vision that fit into the

model in (3). We discuss these issues next.

Setup: First, we briefly describe the experimental setup.

Initialization: We use the Lucas Kanade algorithm to get an

initial estimate of the flow, which works for most settings.

Step Size: The choice of the stepsize γt determines con-

vergence. While line search can be used, it may be sub-

optimal for the (partially) asynchronous aspect of our algo-

rithm (e.g., time delay between processors). For our paral-

lelized version, each processor uses its own iterations count.

We use the strategy proposed in [11] by setting γt =
2

κ+t+2
where κ > 0 is a constant that depends on the objective.

Implementation: We used a 8-core 3.60GHz processor ma-

chine with 12GB RAM, and Intel TBB within C++ for task

parallelism. We fix λ3 = 0.005, λ1, λ2 = 1 for all problems

and all datasets. No other parameter tuning was performed.

Note that evaluating Filter Flow[35] on high resolution

images is problematic because of the cost of solving the

corresponding LP. Therefore, we use a state of the art op-

tical flow method [31] for comparison. For low resolution

images, the results of our method and Filter Flow were qual-

itatively and quantitatively similar (see Appendix).

Optical Flow: We start with the Optical Flow problem

since from a Filter Flow perspective, it is computationally

the most demanding [35]. We used two standard optical

flow datasets: MPI Sintel [7] and Middlebury [1]. MPI Sin-

tel is a large displacement dataset whereas Middlebury has

more nonlinear movements. MPI Sintel consists of two ver-

sions of sequences, clean and final with the same ground

truth. To show the performance (both qualitative and run-

time) of the “standard” Filter Flow formulation in [35], the

model was not augmented with additional constraints to

handle occlusion, blur and lighting effects explicitly. There-

Method Final pass Clean pass

all noc occ d0-10 s10-s40 all noc occ d0-10 s10-s40

F3-MPLF (Ours) 6.272 3.092 32.207 5.042 3.226 4.770 2.062 26.863 3.459 1.883

FlowFields 5.810 2.621 31.799 4.851 3.739 3.748 1.056 25.700 2.784 2.110

FullFlow 5.895 2.838 30.793 4.905 3.373 3.601 1.296 22.424 2.944 2.055

DiscreteFlow 6.077 2.937 31.685 5.106 3.832 3.567 1.108 23.626 3.398 2.277

EpicFlow 6.285 3.060 32.564 5.205 3.727 4.115 1.360 26.595 3.660 2.117

TF+OFM 6.727 3.388 33.929 5.544 3.765 4.917 1.874 29.735 3.676 2.349

NNF-Local 7.249 2.973 42.088 4.896 4.183 5.386 1.397 37.896 2.722 2.245

Figure 2: Optical flow results on the test set of MPI Sintel dataset.

3555

· · ·

Figure 3: Stereo results: (From left to right) First three plots show the evaluation on Middlebury 2011 dataset. Our results match the ground truth closely;

the last three show the evaluation on Recycle pair from 2014 Middlebury dataset; the fifth image is the result after 10% of total epochs whereas the last

image is the result after 50%. This implies that running more epochs progressively gives more accurate solutions. Our results are marked in red.

fore, we report results for our method and Epicflow [31] on

the clean sequences (note that additional terms within Γ can

incorporate these case specific constraints).

Representative qualitative results are shown in Fig. 1 for

MPI Sintel and Middlebury datasets. Results on the test

set of MPI Sintel is shown in Fig. 2. The results in Fig.

1 strongly suggest that qualitatively, our results are clearly

comparable to those obtained from Epicflow. In MPI Sintel

(Fig. 1 (top row)), our results show better consistency with

the ground truth (wedge on the left, small flows in the hair

region). The error discrepancy map in column 4 is nearly all

black. In Fig. 1 (row 2), our solution is able to accurately

recover the flow in the yellow region although the estima-

tion in the head region is more blurred. In Fig. 1 (row

3), the results from both methods are identical. The Av-

erage Endpoint Error (AEE), calculated as Frobenius norm

over the number of pixels, was in the range [0.03, 0.06] and

[1.02, 1.2] for Middlebury and MPI Sintel datasets respec-

tively for the non-occluded pixels. Quantitatively, this is

competitive with recent optical flow papers, that report re-

sults on these datasets. In most other sequences, we see a

similar overall behavior where our solution has good consis-

tency with the ground truth. This is particularly encourag-

ing because other than the constraints described in Section

5, no other optical-flow specific modifications were used.

No post-processing other than a median filter was needed.

Stereo: The main difference of the Stereo model from Opti-

cal Flow, is that it does not include the MRF-A terms, mak-

ing the optimization easier. We tested our algorithm on the

Middlebury Stereo 2014 [33] and 2011[1] datasets which

are standard stereo matching datasets. The 2014 dataset is

challenging because it includes 2864 × 1924 images with

large movements. Fig.3 shows representative results from

our algorithm. Our method does very well in finding the

correct matchings for the 2011 dataset with an overall AEE

of just 0.07. The 2014 dataset involves more iterations to

solve because of the size of the datasets, but the results are

comparable to those obtained from other methods.

Affine Alignment: Recall that an affine warp is completely

determined by 6 parameters. To test our algorithm, simi-

lar to [35], we artificially warped an image with an affine

transformation and then analyzed the error between the re-

covered A∗ and true Â. Results show that the quantity

||A∗ − Â||22 was very small (within 10−3) suggesting that

the recovered warp from the Filter Flow model is close to

the true warp. Our numerical scheme roughly takes ≈ 2
minutes to solve, compared to≈ 3 hours mentioned in [35].

Overall, results presented here for 3 case studies show that

our Filter Flow solver provides high quality solutions to var-

ious image transformation problems. Additional results for

these case studies are in the Appendix.

Running Time Finally, we describe how our algorithm per-

forms w.r.t. to running time, which is arguably its most

significant strength. For all experiments, we ran only 150
epochs of our algorithm: the sequential version of our al-

gorithm takes≈ 2 hours, whereas, our parallel implementa-

tion takes≈ 10 minutes for a 640×480 image pair showing

that the parallelized algorithm nearly gets a speedup propor-

tional to #cores. The appendix includes a plot for the con-

vergence of the objective function as directly suggested by

the theory. It gives empirical evidence that 150 epochs are

enough to get an approximate solution. Note that the cor-

responding times reported by Filter Flow [35] is 9+ hours.

7. Conclusions

We propose a reformulation of Filter Flow[35], which

makes it amenable to massively parallel asynchronous op-

timization schemes. Our reformulation is applicable to any

problem expressible in the Filter Flow format. The gen-

erality does not involve any practical compromise — we

show a range of experimental results demonstrating that

a mostly application-agnostic numerical solver can obtain

results that are competitive with specialized state of the art

techniques. Compared to the original model [35], the run-

time reduces from several hours to a few minutes. Interest-

ingly, the overall scheme is easy to implement and teach.

A prototype version of our solver is only about 30 lines of

Matlab code (see Appendix). The fully asynchronous solver

will be made available as a fork of OpenCV.

Acknowledgements This work is supported by NIH R01

AG040396 (VS), NSF CAREER RI 1252725 (VS), NSF

CCF 1320755 (VS), NSF CGV 1219016 (LM) and UW

CPCP (U54 AI117924). We thank Steven Seitz for numer-

ous discussions related to this work and also for contribut-

ing code. The code and the appendix is publicly available

at https://github.com/sravi-uwmadison/fast filter flow.

3556

http://cpcp.wisc.edu/
http://cpcp.wisc.edu/
https://github.com/sravi-uwmadison/fast_filter_flow

References

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for opti-

cal flow. International Journal of Computer Vision, 92(1):1–

31, 2011. 2, 7, 8

[2] D. P. Bertsekas. Incremental gradient, subgradient, and prox-

imal methods for convex optimization: A survey. Optimiza-

tion for Machine Learning, 2010:1–38. 5, 6

[3] D. P. Bertsekas. Nonlinear programming. 1999. 5

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed

computation: numerical methods, volume 23. 6

[5] T. Bonesky, K. Bredies, D. A. Lorenz, and P. Maass. A

generalized conditional gradient method for nonlinear oper-

ator equations with sparsity constraints. Inverse Problems,

23(5):2041, 2007. 5

[6] K. Bredies, D. A. Lorenz, and P. Maass. A generalized con-

ditional gradient method and its connection to an iterative

shrinkage method. Computational Optimization and Appli-

cations, 42(2):173–193, 2009. 5

[7] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012. 7

[8] F. P. Carli, L. Ning, and T. T. Georgiou. Convex clustering

via optimal mass transport. arXiv preprint arXiv:1307.5459,

2013. 4

[9] H. Du, D. B. Goldman, and S. M. Seitz. Binocular photo-

metric stereo. In BMVC, pages 1–11. Citeseer, 2011. 2

[10] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson. Design

and use of linear models for image motion analysis. Inter-

national Journal of Computer Vision, 36(3):171–193, 2000.

2

[11] R. M. Freund and P. Grigas. New analysis and results for the

conditional gradient method. 2013. 7

[12] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional

gradient algorithms for norm-regularized smooth convex op-

timization. Mathematical Programming, pages 1–38, 2014.

5

[13] M. Hardt, B. Recht, and Y. Singer. Train faster, general-

ize better: Stability of stochastic gradient descent. arXiv

preprint arXiv:1509.01240, 2015. 5

[14] Y. S. Heo, K. M. Lee, and S. U. Lee. Illumination and camera

invariant stereo matching. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, pages

1–8. IEEE, 2008. 2

[15] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf.

Fast removal of non-uniform camera shake. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

463–470. IEEE, 2011. 2

[16] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient

filter flow for space-variant multiframe blind deconvolution.

2010. 2

[17] H. Hirschmüller and D. Scharstein. Evaluation of stereo

matching costs on images with radiometric differences. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions

on, 31(9):1582–1599, 2009. 2

[18] B. K. Horn and B. G. Schunck. Determining optical flow.

In 1981 Technical symposium east, pages 319–331. Interna-

tional Society for Optics and Photonics, 1981. 2

[19] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse con-

vex optimization. In Proceedings of the 30th International

Conference on Machine Learning (ICML-13), pages 427–

435, 2013. 5, 6

[20] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts

for object recognition. In British Machine Vision Confer-

ence (BMVC’04), pages 779–788. The British Machine Vi-

sion Association (BMVA), 2004. 2

[21] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Un-

derstanding and evaluating blind deconvolution algorithms.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 1964–1971. IEEE, 2009.

1

[22] C. Li, S. Su, Y. Matsushita, K. Zhou, and S. Lin. Bayesian

depth-from-defocus with shading constraints. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 217–224, 2013. 1

[23] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-

tree based cost aggregation for stereo matching. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 313–320, 2013. 1

[24] M. Menze, C. Heipke, and A. Geiger. Discrete optimization

for optical flow. In German Conference on Pattern Recogni-

tion, pages 16–28. Springer, 2015. 1

[25] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion:

Reconstruction and tracking of non-rigid scenes in real-time.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 343–352, 2015. 1

[26] J. Nocedal and S. J. Wright. Numerical Optimization.

Springer, New York, 2nd edition, 2006. 4

[27] D. Perrone and P. Favaro. A clearer picture of total variation

blind deconvolution. IEEE transactions on pattern analysis

and machine intelligence, 38(6):1041–1055, 2016. 1

[28] M. Pilanci, L. E. Ghaoui, and V. Chandrasekaran. Recovery

of sparse probability measures via convex programming. In

Advances in Neural Information Processing Systems, pages

2420–2428, 2012. 4

[29] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-

free approach to parallelizing stochastic gradient descent. In

Advances in Neural Information Processing Systems, pages

693–701, 2011. 5

[30] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Epicflow: Edge-preserving interpolation of correspondences

for optical flow. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1164–

1172, 2015. 1

[31] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

EpicFlow: Edge-Preserving Interpolation of Correspon-

dences for Optical Flow. In CVPR 2015 - IEEE Conference

on Computer Vision & Pattern Recognition, 2015. 7, 8

[32] C. Rhemann, C. Rother, P. Kohli, and M. Gelautz. A spa-

tially varying psf-based prior for alpha matting. In Computer

Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, pages 2149–2156. IEEE, 2010. 2

3557

[33] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,

N. Nešić, X. Wang, and P. Westling. High-resolution stereo

datasets with subpixel-accurate ground truth. In Pattern

Recognition, pages 31–42. Springer, 2014. 8

[34] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. In-

ternational journal of computer vision, 47(1-3):7–42, 2002.

1

[35] S. M. Seitz and S. Baker. Filter flow. In Computer Vision,

2009 IEEE 12th International Conference on, pages 143–

150. IEEE, 2009. 1, 2, 3, 4, 7, 8

[36] Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra,

and E. E. P. Xing. Parallel and distributed block-coordinate

frank-wolfe algorithms. 2016. 6

[37] H. Xue and D. Cai. Stereo matching by joint global and lo-

cal energy minimization. arXiv preprint arXiv:1601.03890,

2016. 1

[38] R. Yu, C. Russell, N. D. Campbell, and L. Agapito. Direct,

dense, and deformable: Template-based non-rigid 3d recon-

struction from rgb video. In 2015 IEEE International Con-

ference on Computer Vision (ICCV), pages 918–926. IEEE,

2015. 1

3558

