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Abstract

We introduce a new large-scale data set of video URLs

with densely-sampled object bounding box annotations

called YouTube-BoundingBoxes (YT-BB). The data set con-

sists of approximately 380,000 video segments about 19s

long, automatically selected to feature objects in natural

settings without editing or post-processing, with a record-

ing quality often akin to that of a hand-held cell phone

camera. The objects represent a subset of the COCO [32]

label set. All video segments were human-annotated with

high-precision classification labels and bounding boxes at

1 frame per second. The use of a cascade of increas-

ingly precise human annotations ensures a label accuracy

above 95% for every class and tight bounding boxes. Fi-

nally, we train and evaluate well-known deep network ar-

chitectures and report baseline figures for per-frame clas-

sification and localization to provide a point of compari-

son for future work. We also demonstrate how the tem-

poral contiguity of video can potentially be used to im-

prove such inferences. The data set can be found at

https://research.google.com/youtube-bb. We hope the avail-

ability of such large curated corpus will spur new advances

in video object detection and tracking.

1. Introduction

The exceptional pace of progress in recent years on the

tasks of object recognition and detection in still images was

enabled by the creation of large-scale, publicly available

data sets [9, 13, 14, 19, 32, 33, 34, 42, 52, 57]. These

data sets established challenging benchmarks to evaluate

new methods for visual object recognition that have sub-

stantially improved the state-of-the-art across a broad range

of computer vision tasks [20, 28, 46, 48, 49].

Open academic challenges paired with open-source

recipes have further accelerated the development of the field

[6, 43, 51]. Most notably, systems that perform well on im-

age recognition and object detection may be applied to other

computer vision problems in which minimal training data

is available [24]. Such systems have also become part of

larger machine learning pipelines that stretch beyond visual

recognition (e.g. multi-modal learning [36, 53]).

The increased speed and memory of modern computing

architectures places the research community in a position

to aim for comparable results in video, a natural goal for

machine perception. The quest for large video data sets,

however, has been more elusive. One challenge is that the

online corpus of videos is weakly labeled, i.e. the label in-

formation is very noisy [50]. Sifting through a large sample

may therefore require considerable human involvement.

Exacerbating this problem is the recognition that large

data sets are necessary to prevent over-fitting of cutting-

edge models (e.g. [35, 45]). Although the temporal dimen-

sion provides vastly more data, much of the information is

redundant due to correlations of pixels across frames. Thus,

increasing the data set size is not merely about gathering

more sequential frames from a small number of videos. In-

stead, we need a large, diverse sample of videos. Attain-

ing it requires paying special attention to how the videos

are mined. Some of the larger existing vision data sets

rely indirectly on aggregate measurements of human prefer-

ence [18]. Consequently, those data sets favor aesthetically

pleasing viewpoints of labeled objects. This leads to object

recognition systems that are precise but may lack variety

in terms of realistic lighting conditions, occlusions or the

non-canonical viewpoints often observed in real life. Video

may be less prone to some of these biases (especially the

viewpoint bias), but a random YouTube sample would still

suffer drastically from them. Mining videos with diversity

in mind, on the other hand, can address this problem explic-
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YT-BB (5.6 M)

COCO (2.53 M)

SUN2012 (2.2 M)

ImageNet (1.03 M)

Pedestrians (350 k)

MOT (61 k)

PASCAL VOC (27.4 k)

Berkeley (12 k)

Caltech-101 (9.3 k)

MIT-CSAIL (2.5 k)

YT-Objects (300)

Detection Counts
Across Data Sets

YT-BB Counts and Statistics

Class. Boxes Videos Motion

person 1.8 M 1.3 M 68 k 0.122

dog 560 k 240 k 10 k 0.165

train 340 k 240 k 8.9 k 0.072

...

NONE 26 k – – –

TOTAL 9.5 M 5.6 M 240 k –

Figure 1. IMAGES: Detection examples. Each row shows frames from one video segment. A frame containing an object whose identity

can be deduced from other frames is boxed too, as in the last frame of the train example (blue arrow). Note how only visible parts are

included in the box: the orange arrow in the bear example points to the hidden head. The dog example illustrates tight bounding boxes

tracking the tail (orange arrows) and foot (blue arrows). The airplane example shows how partial objects are annotated (first frame) and

how objects are tracked across changes in perspective, occlusions and camera cuts. Note in the zebra example how the same object is

tracked across multiple frames and other objects of the same class are ignored. BAR CHART: Number of detections/segmentations in

various image (red; dots) and video (blue; lines) data sets. The present data set, YT-BB, is at the bottom. TABLE: Human annotation

statistics for some classes in YT-BB. The first three columns are counts for: classification annotations, bounding boxes, and unique videos

with bounding boxes. Negative classifications are not counted here. The “Motion” column shows the RMS of the distance the box travels

from one frame to the next, in frame-relative coordinates, to show that the objects exhibit significant motion (see Section 4.2 for details

and Supplementary Table 3 for other measures of movement). The “NONE” tag annotates frames that did not have any of the 23 classes.
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itly.

The persistence and temporal consistency of objects

present in natural video scenes call for a different kind of la-

beling, whereby objects of interest are tracked across frames

and precisely localized. To this day, there is no human-

curated large-scale data set that provides classification and

detection annotations for objects of several classes in a wide

variety of videos.

This work attempts to address this issue by providing

a large body of video annotations with manually curated

bounding boxes of objects tracked for relatively long du-

rations on the order of 100 frames. The size of the data

set makes it suitable for training large deep neural networks

and explore visio-temporal modeling approaches in a real-

istic setting.

2. Related work

Several video data sets are already available to the com-

munity. Below are some of the most relevant, highlighting

how they differ from YouTube-BoundingBoxes:

• Many data sets such as the HMDB-51 data set [29] and

the UCF-101 data set [47] provide segment-level annota-

tions for a variety of human action categories; richer an-

notations including fine-grained temporal and localization

information were provided as part of the THUMOS [17]

challenge.

• TRECVID [3] is a yearly set of competitions centered on

video retrieval and indexing, hosting a variety of video data

sets. For 2016, they provide a localization test set with 1000

videos annotated with bounding boxes for 10 classes; each

video may or may not contain a box.

• VOT [27] and MOT [30] are yearly visual object tracking

challenges with associated data sets. These are small and

extensively curated in order to provide controlled frequen-

cies of various common difficulties for object tracking (such

as a occlusions, illumination changes or size changes).

• The Sports-1M data set [25, 26] consists of segment-level

annotations for a variety of sports, with temporal localiza-

tion.

• The YouTube-Objects data set [38, 39] consists of a num-

ber of frames queried from YouTube with a few hundred

curated bounding box annotations.

• The Caltech Pedestrian Detection data set [10] consists

of 350,000 bounding boxes of pedestrians annotated from a

vehicle driving through an urban environment.

• The YouTube-8M data set [2] consists of a very large

set of frame-level, automatically generated annotations of

YouTube videos. The labels were generated using state-

of-the-art deep networks to classify thousands of possible

entities.

• ImageNet 2015 [43] has a video object detection data set

with 5,400 videos.

Still-image detection data sets are larger and more abun-

dant. They vary in detail from bounding boxes (Caltech-101

[14], MIT-CSAIL [52], ImageNet [9, 42], PASCAL VOC

[12, 13], SUN2012 [56, 57]) to pixel-level segmentations

(Berkeley Segmentation Data Set [33], Caltech-101 [14],

PASCAL VOC [12, 13], Microsoft COCO [32]).

The bar chart in Figure 1 puts our data set in context: YT-

BB is the largest human-annotated detection data set in ex-

istence so far. Specifically for the case of video, it exceeds

other data sets in size by more than an order of magnitude.

3. Methods

3.1. Data mining

In order to provide a low entry-bar to video for re-

searchers that have models pre-trained on static images, we

chose as our labels 23 classes that form a subset of the de-

tection classes in the COCO data set [32]. Due to its partic-

ular importance, we included the “person” class and gave it

preferential treatment in terms of total volume and in terms

of how the videos were mined (details below). The other

classes are all common objects or animals (first column in

Supplementary Table 1).

Many academic data sets are made artificially easy com-

pared to real-world problem settings because they have a

closed set of labels to chose from, whereas most data col-

lected “in the wild” can’t be expected to correspond to a

well-defined category. This is particularly important for de-

tection and localization tasks. To directly address this prob-

lem, we added a “NONE” class that marks frames that do

not have any of the 23 object classes.

We sampled public YouTube videos and used object-

agnostic signals to reduce the set obtained to a size suitable

for human annotation. We calculated an estimate of the en-

tropy across frames and removed those below a particular

threshold, reducing the frequency of slide shows and other

videos with minimal motion. Requiring that videos have

fewer than 100 views notably reduced the number of pro-

fessionally edited clips. More generally, this limit on the

view count helps protect against the bias of a plain inter-

net search result, which would yield preferentially videos

that are likable (good lighting, centered characters, stable

cameras, etc.) Finally, a camera-cut detector helped remove

videos that had unusually short scenes, which are indica-

tive of a high degree of post-processing. We then split the

remaining videos into short non-overlapping clips (mean

length = 18.7s, sd = 1.00s). All these restrictions together

resulted in a collection of video segments typical of what a

hand-held camera would record in a natural setting.

This data mining procedure proved satisfactory for the

“person” class, but was too inefficient for classes that occur

infrequently in the YouTube corpus. To compensate, we

ran image classifiers at 1 frame per second across our video

sample. We retained the top 1 million videos, discarding
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those deemed by the classifiers as too unlikely to contain

any of our 23 classes1. When possible, we exploited the

WordNet hierarchy [15] to associate multiple fine-grain im-

age labels with a given class label in YT-BB.

The “person” class is especially important. In particular,

the research community has a vested interest in detecting

people in videos. While our initial approach of sampling

random YouTube videos for this class may provide a fairly

unbiased data set, it may also produce one that is too ho-

mogeneous. The most popular videos (like a recent music

album) are not a problem because they were removed by

the initial object-agnostic filters. However, there is still a

class of videos that may be filmed very frequently even if

they are not viewed many times by other users. This would

include the sort of things most of us care about, like birth-

day parties, graduation ceremonies, and the like. As an at-

tempt to compensate for that, we enriched our random sam-

ple of “person” videos with a comparable yet smaller num-

ber of videos mined from entities that correlated with “per-

son” well (“person”, “bicycle”, “crowd” and–surprisingly–

“elephant” are examples). Finally, we intentionally mined

a disproportionately large number of videos for this class

with the goal that the “person” subset of our data set may

stand on its own.

Balancing the time spent on human annotation and the

yield required focusing on segments that usually contain

only one class. We felt this was preferable to the huge sac-

rifice in volume that would have been necessary to label

segments containing multiple classes. Namely, mining for

videos with several classes results in a much lower yield and

the alternative of mining them with higher recall produces

too many false negatives which in turn increases the human

annotation time too much.

3.2. Human annotations

Like other large data sets before us [9, 32], we used hu-

man annotation pipelines to label our data. As in [32], we

set up a cascade of stages that successively refine the qual-

ity of the results. This strategy is standard [7] and has been

found to improve results [4]. We used four stages:

1. Five frames from each (∼ 19 s) video segment, evenly

sampled in time, were simultaneously presented to one hu-

man rater (i.e. annotator), who had to determine whether

a specific class was present in any of them. Negative seg-

ments were discarded.

2. Each full segment was presented to three different anno-

tators as a “movie-roll”, sampled at 1 frame per second. The

1We intentionally ran the image classifiers at low thresholds for each

class in order to avoid the pitfall of selecting easy-to-classify examples.

Specifically, we ranked candidate segments according to the confidence of

the classifiers and set the threshold for a given image classifier to operate

at low rates of precision, as judged by one-off experiments. Our selection

of threshold had the goal of leaving plenty of work for human annotators

to do as far as discriminating the presence or absence of each class.

annotators had to indicate whether the class was present in

each frame. The majority vote produced our (intermediate)

classification data set. To find frames for the “NONE” class,

we asked the raters explicitly about each of the 23 classes to

ensure they were absent. Such annotations are precise but

very time-consuming, and so the frequency of the “NONE”

class is limited (see table in Figure 1 or Supplementary Ta-

ble 1). Segments with at least one positive frame for a given

class were used in stages 3 and 4.

3. For each segment, a single human annotator overlaid a

bounding box tightly around an object of the given class in

each of the frames in the segment, at 1 frame per second.

Every appearance of a single object was annotated through-

out the segment. (Other objects of the same class were to

be ignored). The annotator also had the option of assign-

ing an absent tag to a frame if the object could not be seen

there. To resolve corner cases, they followed the guidelines

in Supplementary Section 3, which address issues of box

tightness, partial objects, occlusion, etc. Incidentally, these

rules may help readers clarify peculiarities of our data set.

4. Each annotation from stage 3 was verified by one (train-

ing and validation data sets) or three (testing data set) differ-

ent human annotators. Boxes or absent-tags with negative

majority votes were discarded.

We employed Amazon Mechanical Turk for the first two

stages of human annotation as in [9, 32]. This allowed

for quick progress [5], yet suffered from the widely known

drawbacks of crowd-sourcing, including difficulty motivat-

ing raters and poor quality of individual annotations [23].

This can be partly curbed through replication [37, 44], as we

did in stage 2. While there exist more sophisticated methods

for analyzing replicated labels [37, 44, 55], we opted for the

majority vote because it was simple, we only had 3 labels

per example, and the data was going to be further refined

by stages 3 and 4 anyway. In order to harness the benefits

of annotator training [11], for stages 3 and 4 we switched

to our internal human annotation system. We employed hu-

man raters that read a written manual describing the task in

detail and went over it during class sessions. During the an-

notation process, they were also able to escalate questions

when they felt unsure about corner cases.

Another important aspect of human computation is the

annotator’s interaction with the data. We designed user

interfaces (Supplementary Section 1) in keeping with the

principle that “the simpler, the better” [16]. Especially for

Mechanical Turk tasks, it was important to phrase the ques-

tions well, striking a balance between reducing ambiguity

and keeping the operator’s attention (details in Supplemen-

tary Section 2).

To fine tune the pipeline, we frequently inspected the

data by eye. Stages 1 and 2 were finalized only after the

resulting classification accuracy was estimated to be above

0.95 for each class. Stages 3 and 4 were optimized by giving
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Figure 2. Unanimous fraction per class. The fraction of an-

swers for which the operators voted unanimously, for classification

(empty red circles) and detection (filled blue circles). The axes

distinguish positives from negatives. For the classifications, this

is based on the frame-level annotations, which were done by three

human annotators. For the detections, the bounding box draw-

ing stage was done by only one annotator, so this is based on the

verification stage of the testing data set, which was done by three

annotators too.

feedback to annotators based on (i) examples where stage

4 showed the most disagreement and (ii) randomly sam-

pled examples. As we increased the size of the annotation

batches, rarer examples of type (i) appeared. The quality

seemed to improve with annotator experience too, so the

validation and testing subsets were done last. The resulting

quality after stage 4 is discussed below.

4. Results

4.1. Data set size

This process yielded a data set of 5.6 million frames an-

notated with bounding boxes from 240,000 unique YouTube

videos. We also provide additional absent detection tags in

1 million frames from 55,000 unique videos. A superset

of those videos contain classification annotations too: 9.6

million positives and 1 million negatives, with a similar dis-

tribution over unique videos. This is presented in detail in

Supplementary Tables 1 and 2 and succinctly in the table in

Figure 1, together with some examples.

4.2. Quality assessment

In order to assess the quality of the classifications, we

measured the fraction of answers that were unanimous.

Stage 1 strongly biases our sample toward positives (Sec-

tion 3.2), which results in a higher fraction of false negative

classifications. The use of untrained, unvetted raters also

seriously reduces the accuracy of the answers (Figure 2).

While this could be improved, our main goal of classifying

the videos is to filter them in order to draw the bounding

boxes, and so we did not optimize stages 1 and 2 further.

Nevertheless, we make them available in our data set.

For the detections, we asked raters to verify the bound-

ing boxes (or the absent tag). The frequency of correct ver-

ifications is an indication of the quality of the boxes. By

this measure, each class had at least 98% correct bounding

boxes and at least 98% correct absent-tags. In the case of

the testing data set (for which we employed three raters),

we can consider the harsher criterion of requiring a unani-

mously correct verification vote (instead of just a majority-

correct verification vote): this gave that both, boxes and

absent-tags, are still at least 98% correct for most classes

and all classes are above 95% correct (Figure 2).

Annotation quality aside, a concern is that the objects in

the videos exhibit movement. Otherwise, the data set would

be equivalent to static images. We measured the RMS of the

distance the center of the bounding boxes travels from one

frame to the next and found that there is indeed significant

motion. A few values are quoted in the table in Figure 1.

Results for all classes can be found in Supplementary Table

3. Other statistics are also listed there, such as the fractional

size change of the box per second (min: 7.2% for train, max:

19% for skateboard), how often it enters and exists the field

of view, how much area it covers and how frequently it is

present.

4.3. Data set splits

The final annotations were split into training, validation,

and testing subsets, as is standard for machine learning ap-

plications. The validation and testing subsets comprise 10%

of the total, and this fraction is constant across classes. The

splits were done such that no YouTube video can straddle

two subsets. Part of the testing subset will be withheld in

order to provide a quality measure for future public chal-

lenges based on YT-BB.

5. Baseline models

We measured the performance on YT-BB of image clas-

sification and object detection models trained on the COCO

data set and vice-versa. This is possible because YT-BB’s

labels are a subset of COCO’s, and both data sets classify

and localize objects. The goal of this analysis two-fold: (1)

to establish the relative difficulty of either task on the two

datasets and (2) to provide a point of comparison for future

network architectures.

5.1. Image classification

We started by comparing the relative difficulty of two in-

stances of the same image classification model, one trained

on YT-BB (“the YT-BB model”) and one trained on COCO

(“the COCO model”). Our data set has explicit classifica-

tion annotations. For COCO, we treated the presence or

absence of any object localization of a class as either a pos-

itive or negative label, respectively. Both models employed
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Figure 3. Baseline comparison on image classification. Mean

precision-recall curve across 23 classes trained on the YT-BB (left)

and the COCO [32] data sets (right). The dark line is the test set for

the same data set; the light line is the test set for the opposite data

set. The red dashed line is the evaluation where the classification

scores are averaged across a video segment.

Train. data Eval. data smooth? mAP AUC

COCO COCO - 0.83 0.84

COCO YT-BB no 0.77 0.78

COCO YT-BB yes 0.77 0.78

YT-BB YT-BB no 0.93 0.94

YT-BB YT-BB yes 0.95 0.96

YT-BB COCO - 0.66 0.67

Table 1. Summary of image classification baselines. mAP and

AUC are calculated across the 23 object classes (excluding

“NONE”). The “smooth?” column indicates whether the predic-

tions of YT-BB were averaged in time.

an Inception-v32 architecture [49] with logistic regression,

implemented in TensorFlow[1]. The choice of logistic re-

gression reflects the fact that multiple labels may be associ-

ated with a single image. Both models were initialized with

the weights of an Inception-v3 image classification system

pre-trained on the ImageNet 2012 Challenge data set [9] and

subsequently fine-tuned on YT-BB/COCO individually.

We measured the mean precision-recall curve across all

23 classes (excluding the “NONE” class since it is not avail-

able in COCO). These results are shown in the dark curves

in Figure 3. We find that training on YT-BB (mAP = 0.93) is

easier than on COCO (mAP = 0.83), which could reflect the

larger amount of training data per-class available in YT-BB.

One open question is the difficulty of domain transfer–

i.e. training on one data set and evaluating on the other. We

assessed this by measuring the mean precision-recall curve

across 23 classes for the COCO model on YT-BB data (Fig-

ure 3, right panel, light curve) and vice-versa (Figure 3, left

panel, light curve). We find that a COCO model evaluated

on YT-BB (mAP = 0.77) was worse than one evaluated on

COCO data (mAP = 0.83). The analogous claim is true for

a model trained on YT-BB (Table 1). These results indicate

that images in YT-BB are diverse and not just a subset of

those in COCO.

2 See Supplementary Section ?? for GitHub locations.
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Figure 4. Baseline comparison of the COCO detection model.

Precision-recall curve when evaluated on COCO [32] (dark line)

and on YT-BB (light line). Left: Mean across the 23 classes. Cen-

ter: Delineated by the bounding box size into large (green; top 2

curves), medium (red; middle 2 curves) and small (blue; bottom 2

curves). Right: Detection of the person class on COCO (dark top

line), on YT-BB (light bottom line), and on person-specific subset

of YT-BB (dashed middle line)

person

recall

bus

recall

p
re
c
is
io
n

mean knife

p
re
c
is
io
n

Figure 5. Effect of simple temporal smoothing on localization

baselines. The dark curve shows precision-recall curve for single-

frame object localization (mAP = 0.37, 0.18, 0.66, 0.33) and

the light curve shows precision-recall employing simple tempo-

ral smoothing (mAP = 0.36, 0.19, 0.69, 0.28, respectively). See

text for details.

5.2. Object detection

We then compared the relative difficulty of YT-BB and

COCO for object detection. We used two instances of a

Faster-RCNN2 detection proposal architecture [22] paired

with an Inception-ResNet-v22 feature network [41, 48]. In-

creasing the number of detection proposal results in im-

proved object localizations at the expense of more computa-

tionally expensive inference and training. We selected a set

of hyperparameters that resulted in 1400b FLOPs per frame

for inference. Both instances were partially initialized with

the weights of an Inception-ResNet-v2 image classification

system trained on the ImageNet 2012 Challenge data set [9].

One instance was subsequently trained further on YT-BB

(“the YT-BB model”) and another on COCO (“the COCO
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Training data Evaluation data mAP mAP @50% mAP @75% mAP small mAP medium mAP large

COCO* COCO* 0.33 0.54 0.34 0.06 0.29 0.49

COCO COCO 0.43 0.67 0.47 0.08 0.35 0.58

COCO YT-BB 0.37 0.56 0.41 0.05 0.18 0.41

YT-BB YT-BB 0.59 0.81 0.66 0.07 0.31 0.63

YT-BB COCO 0.31 0.47 0.34 0.01 0.16 0.46

Table 2. Summary of image detection baselines between COCO and YT-BB across the 23 label classes. mAP is the mean average precision,

averaged over multiple categories, multiple scales and multiple IOU fractions ranging between 0.5 and 0.95. mAP is the COCO competition

metric. mAP @50 is the same but restricted to IOU ≥ 50%. mAP @75 is the same but restricted to IOU ≥ 75%. mAP (size) is the same

but restricted to small, medium and large objects. For reference, the top row (COCO*) highlights a single-crop, no-ensemble version of

the winning entry to the COCO competition as measured across all 80 COCO classes.

model”).

We evaluated the performance of each model by mea-

suring the mean precision-recall curve across all 23 classes.

These results are summarized across several standard cal-

culations of mAP for object detection in Table 2 and delin-

eated by class in Supplementary Table 4. We find that train-

ing on YT-BB (mAP = 0.59) is easier than on COCO (mAP

= 0.43). This result is consistent when measured across a

range of detection box sizes.

In parallel with the image classification baseline, we also

measured the relative difficulty of the two data sets by con-

sidering the problem of domain transfer. Again, we as-

sessed this by examining the mean precision-recall curve

across the 23 classes for the COCO model evaluated on

YT-BB data. The degree to which the COCO model per-

formance on YT-BB was worse then COCO reflects the rel-

ative difficulty and domain shift of the YT-BB data set. We

found that a COCO model evaluated on YT-BB (mAP =

0.37) was indeed worse than when evaluated on COCO data

(mAP = 0.43). This result was consistent across bounding

box sizes and ranges of overlap assessment (Table 2, Figure

4). Notably, the COCO model was particularly poor at lo-

calizing medium and large YT-BB objects (Figure 4, middle

panel). The analogous claim is true for a model trained on

YT-BB (Table 2).

We next focused on the “person” class. The COCO

model performed significantly worse in this case (mAP =

0.41 vs mAP = 0.12). At the lowest possible threshold,

the COCO model fails to identify more than ∼ 62% of

the “person” detections in YT-BB frames (Figure 4, right

panel, light curve). At high thresholds, the COCO model

exhibits low precision for “person”. This may be due to

the fact that YT-BB is not exhaustively labeled. Unlabeled

people may appear in videos which have been annotated for

other classes. This may result in high false-positive scores

and systematically lower precision. To mitigate this arti-

fact we restrict the evaluation of the COCO model to a sub-

set of YT-BB frames that have been labeled with a bound-

ing box for “person” (Figure 4, right panel, dashed curve).

The precision-recall curve was lifted as a result of the re-

moval of many unlabeled people, but remained below the

precision-recall curve evaluated on COCO data. This anal-

ysis is however imperfect since images annotated with a

“person” localization might contain additional people. Fu-

ture work will be needed to determine how much of the ad-

ditional difficulty ascribed to the YT-BB “person” label is

due to the diversity of the “person” poses available in the

YT-BB data set.

5.3. Exploiting temporal information in videos

All our baselines up to this point treated the frames as

individual images. A salient aspect of the YT-BB data set

is, however, that these frames exist within contiguous seg-

ments of video. Such video sequence can help regularize

and improve video frame predictions. Devising better learn-

ing architectures for this purpose is an area of intense re-

search interest [35, 40, 45]. As a demonstration of this data

set’s potential, we performed several simple manipulations

that indicate that temporal information exists and may be

used by a learning system.

For the image classification task, we replaced the predic-

tion for each label with the mean prediction for each label

across each YT-BB video segment. The result of this tem-

poral smoothing is shown in the dashed red line in Figure 3

and summarized in Table 1. Although the mAP and AUC

do not change significantly (Table 1), the precision-recall

curves do highlight that the temporally-averaged prediction

systematically surpasses the single-frame prediction in the

high recall regime (e.g. recall >∼ 0.7). In principle, one

could therefore build an improved system which achieves

the envelope of the single-frame and temporally-averaged

prediction scores.

For the object detection task, we down-weighted spuri-

ous weak object detections that appeared in single video

frames but not in neighboring frames. Specifically, we

artificially multiplied by 1

100
the confidence scores of de-

tected objects that did not overlap significantly with pre-

vious and subsequent frame detections (IOU < 0.1; con-

fidence < 0.5). Figure 5 shows the effects of this ma-

nipulation on the precision-recall curves. When aggregat-
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ing across all classes, temporal smoothing slightly reduces

model performance (mAP = 0.36 vs mAP = 0.37). We broke

down this result to expose the diversity of behavior across

labels. This revealed elevated precision-recall curves for

some classes (e.g. “knife”, “bus”) but lowered curves for

other classes (e.g. “person”). In principle, a unified model

could at least learn which classes benefit and apply the cor-

rection only to those. Despite the mixed results, this analy-

sis suggests that taking into account the temporal structure

of the video could result in better detection models.

6. Discussion

In this paper, we introduced YT-BB, a new data set with

380,000 video segments, annotated with 5.6 million human-

drawn bounding boxes tracking everyday objects in 23 cat-

egories. This represents an unprecedentedly large video de-

tection data set (Section 2). First, we described the data

mining process that led to minimally-edited videos and the

human annotation stages that produced tight and precise

bounding boxes, as well as precise tags indicating object

absence (Sections 3.1 and 3.2). Then we presented relevant

statistics and measures of annotation quality for each class.

In particular, basic metrics of bounding box motion indicate

that the objects or the camera exhibit significant changes

throughout the segment (Section 4). Finally, we showed

baselines for classification and detection trained and eval-

uated both on this data set and on COCO. These baselines

demonstrate the potential for information in the video se-

quence to improve upon the basic inferences that can be

done from single frames alone (Section 5).

Future work could refine YT-BB in various ways, most

notably by adding more classes. With only 23 classes, we

were able to pay special attention to each (Supplementary

Section 2). Scaling up, classes would have to be treated

more generically, as was done in [9]. This would magnify

the challenges of crowd-sourcing schemes (“paradigm A”),

in which low annotator accountability produces initial an-

swers that often have poor quality [23], requiring signifi-

cant additional effort to get to the final labels [37, 44, 55].

In this work, we observed such challenges in stages 1 and 2

(Section 3.2 and Supplementary Section 2). Alternatively,

one could use a group of dedicated annotators who are com-

mitted to the project (“paradigm B”), as we did in stages 3

and 4 (Section 3.2). While we never carried out a proper

A/B test, anecdotally we found paradigm B much more sat-

isfying for a large-scale project. This can be traced back to

the ability to train the annotators [11] and to provide them

with feedback over time, resolving each problem encoun-

tered “once-and-for-all”.

Another direction for improvement could be to gather

more bounding boxes. Increasing the sheer number does

not seem critical as our baselines show no signs of over-

fitting. On the other hand, exhaustively labeling the exist-

ing videos may prove helpful, especially within the testing

subset. While this would render the annotation task more

complex, simplicity could be regained by introducing addi-

tional stages. Cascading stages have been found useful be-

fore [32]. In our case, it allowed the tuning of the annotation

tool’s user interface to each task (Supplementary Section 1),

rendering the first stage as much as 50 times faster than the

last one. This, in turn, allowed for more negative exam-

ples to be present at the input since they could be easily

discarded, and therefore the initial data mining stage could

be more permissive. User interface optimization sometimes

yielded unexpected results. For example, it turned out that

providing default guesses for the bounding box locations

was often not faster. Moreover, the annotators may find it

easier to leave the default unchanged, which could bias the

results toward such automatically generated defaults. Re-

moving these defaults also made the tool simpler, which is

generally known to be advantageous [16].

The baseline results suggest that there exists headroom

for improving the quality of models on this data set. In

particular, the data affords two distinct research directions.

One is that the human annotation results identified individ-

ual video frames that are hard negatives, i.e. individual

frames in the video that did not contain the object of interest

even though surrounding frames did. These hard negatives

might provide useful training and evaluation examples for

future visual models.

The second research direction is to build models that har-

ness the information in the temporal sequence of frames in

a computationally efficient manner. Our baseline results in-

dicate that even performing naive manipulations that incor-

porate such temporal aspects may contribute to better ob-

ject classification and detection in video. The ability to

build tractable, scalable models that exploit sequential in-

formation by keeping an internal memory state (e.g. [8, 21])

would likely lead toward better object detection and track-

ing (e.g. [31, 54]).3
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