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Abstract

Image captioning is a challenging problem owing to

the complexity in understanding the image content and di-

verse ways of describing it in natural language. Recent

advances in deep neural networks have substantially im-

proved the performance of this task. Most state-of-the-art

approaches follow an encoder-decoder framework, which

generates captions using a sequential recurrent predic-

tion model. However, in this paper, we introduce a novel

decision-making framework for image captioning. We uti-

lize a “policy network” and a “value network” to collab-

oratively generate captions. The policy network serves as

a local guidance by providing the confidence of predicting

the next word according to the current state. Additionally,

the value network serves as a global and lookahead guid-

ance by evaluating all possible extensions of the current

state. In essence, it adjusts the goal of predicting the cor-

rect words towards the goal of generating captions similar

to the ground truth captions. We train both networks using

an actor-critic reinforcement learning model, with a novel

reward defined by visual-semantic embedding. Extensive

experiments and analyses on the Microsoft COCO dataset

show that the proposed framework outperforms state-of-

the-art approaches across different evaluation metrics.

1. Introduction

Image captioning, the task of automatically describing

the content of an image with natural language, has attracted

increasingly interests in computer vision. It is interesting

because it aims at endowing machines with one of the core

human intelligence to understand the huge amount of visual

information and to express it in natural language.

Recent state-of-the-art approaches [3, 44, 30, 17, 7, 46,

15, 48, 43] follow an encoder-decoder framework to gen-

erate captions for the images. They generally employ con-

volutional neural networks to encode the visual information

and utilize recurrent neural networks to decode that infor-

∗This work was done when the author was at Snap Inc.

a baseball bat 

… 

Policy Network

Value Network

Next Action 

==	

eating lookahead

inference

Current State 

a cat is 

lying 

holding 

sitting 

pretty 

action prediction

reward prediction

Figure 1. Illustration of the proposed decision-making frame-

work. During our lookahead inference procedure, we utilize a

“policy network” and a “value network” to collaboratively pre-

dict the word for each time step. The policy network provides an

action prediction that locally predicts the next word according to

current state. The value network provides a reward prediction that

globally evaluates all possible extensions of the current state.

mation to coherent sentences. During training and infer-

ence, they try to maximize the probability of the next word

based on recurrent hidden state.

In this paper, we introduce a novel decision-making

framework for image captioning. Instead of learning a se-

quential recurrent model to greedily look for the next cor-

rect word, we utilize a “policy network” and a “value net-

work” to jointly determine the next best word at each time

step. The policy network, which provides the confidence of

predicting the next word according to current state, serves

as a local guidance. The value network, that evaluates the

reward value of all possible extensions of the current state,

serves as a global and lookahead guidance. Such value net-

work adjusts the goal of predicting the correct words to-

wards the goal of generating captions that are similar to

ground truth captions. Our framework is able to include

the good words that are with low probability to be drawn by

using the policy network alone. Figure 1 shows an example

to illustrate the proposed framework. The word holding is

not among the top choices of our policy network at current
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step. But our value network goes forward for one step to

the state supposing holding is generated and evaluates how

good such state is for the goal of generating a good caption

in the end. The two networks complement each other and

are able to choose the word holding.

To learn the policy and value networks, we use deep re-

inforcement learning with embedding reward. We begin

by pretraining a policy network using standard supervised

learning with cross entropy loss, and by pretraining a value

network with mean squared loss. Then, we improve the pol-

icy and value networks by deep reinforcement learning. Re-

inforcement learning has been widely used in gaming [38],

control theory [32], etc. The problems in control or gam-

ing have concrete targets to optimize by nature, whereas

defining an appropriate optimization goal is nontrivial for

image captioning. In this paper, we propose to train us-

ing an actor-critic model [21] with reward driven by visual-

semantic embedding [11, 19, 36, 37]. Visual-semantic em-

bedding, which provides a measure of similarity between

images and sentences, can measure the correctness of gen-

erated captions and serve as a reasonable global target to

optimize for image captioning in reinforcement learning.

We conduct detailed analyses on our framework to

understand its merits and properties. Extensive experi-

ments on the Microsoft COCO dataset [29] show that the

proposed method outperforms state-of-the-art approaches

consistently across different evaluation metrics, including

BLEU [34], Meteor [25], Rouge [28] and CIDEr [42]. The

contributions of this paper are summarized as follows:

• We present a novel decision-making framework for

image captioning utilizing a policy network and a

value network. Our method achieves state-of-the-art

performance on the MS COCO dataset. To our best

knowledge, this is the first work that applies decision-

making framework to image captioning.

• To learn our policy and value networks, we introduce

an actor-critic reinforcement learning algorithm driven

by visual-semantic embedding. Our experiments sug-

gest that the supervision from embedding generalizes

well across different evaluation metrics.

2. Related Work

2.1. Image captioning

Many image captioning approaches have been proposed

in the literature. Early approaches tackled this problem

using bottom-up paradigm [10, 23, 27, 47, 24, 8, 26, 9],

which first generated descriptive words of an image by ob-

ject recognition and attribute prediction, and then combined

them by language models. Recently, inspired by the suc-

cessful use of neural networks in machine translation [4],

the encoder-decoder framework [3, 44, 30, 17, 7, 46, 15,

48, 43] has been brought to image captioning. Researchers

adopted such framework because “translating” an image to

a sentence was analogous to the task in machine transla-

tion. Approaches following this framework generally en-

coded an image as a single feature vector by convolutional

neural networks [22, 6, 39, 41], and then fed such vector

into recurrent neural networks [14, 5] to generate captions.

On top of it, various modeling strategies have been devel-

oped. Karpathy and Fei-Fei [17], Fang et al. [9] presented

methods to enhance their models by detecting objects in im-

ages. To mimic the visual system of humans [20], spatial

attention [46] and semantic attention [48] were proposed

to direct the model to attend to the meaningful fine de-

tails. Dense captioning [16] was proposed to handle the lo-

calization and captioning tasks simultaneously. Ranzato et

al. [35] proposed a sequence-level training algorithm.

During inference, most state-of-the-art methods employ

a common decoder mechanism using greedy search or beam

search. Words are sequentially drawn according to local

confidence. Since they always predict the words with top

local confidence, such mechanism can miss good words at

early steps which may lead to bad captions. In contrast, in

addition to the local guidance, our method also utilizes a

global and lookahead guidance to compensate such errors.

2.2. Decision­making

Decision-making is the core problem in computer gam-

ing [38], control theory [32], navigation and path plan-

ning [49], etc. In those problems, there exist agents that

interact with the environment, execute a series of actions,

and aim to fulfill some pre-defined goals. Reinforcement

learning [45, 21, 40, 31], known as “a machine learning

technique concerning how software agent ought to take ac-

tions in an environment so as to maximize some notion of

cumulative reward”, is well suited for the task of decision-

making. Recently, professional-level computer Go program

was designed by Silver et al. [38] using deep neural net-

works and Monte Carlo Tree Search. Human-level gaming

control [32] was achieved through deep Q-learning. A vi-

sual navigation system [49] was proposed recently based on

actor-critic reinforcement learning model.

Decision-making framework has not been applied to im-

age captioning. One previous work in text generation [35]

has used REINFORCE [45] to train its model by directly

optimizing a user-specified evaluation metric. Such metric-

driven approach [35] is hard to generalize to other met-

rics. To perform well across different metrics, it needs

to be re-trained for each one in isolation. In this pa-

per, we propose a training method using actor-critic rein-

forcement learning [21] driven by visual-semantic embed-

ding [11, 19], which performs well across different evalua-

tion metrics without re-training. Our approach shows sig-

nificant performance improvement over [35]. Moreover,

we use a decision-making framework to generate captions,

while [35] follows the existing encoder-decoder framework.
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Figure 2. An illustration of our policy network pπ that is com-

prised of a CNN and a RNN. The CNNp output is fed as the initial

input of RNNp. The policy network computes the probability of

executing an action at at a certain state st, by pπ(at|st).

3. Deep Reinforcement Learning-based Image

Captioning

In this section, we first define our formulation for deep

reinforcement learning-based image captioning and pro-

pose a novel reward function defined by visual-semantic

embedding. Then we introduce our training procedure as

well as our inference mechanism.

3.1. Problem formulation

We formulate image captioning as a decision-making

process. In decision-making, there is an agent that interacts

with the environment, and executes a series of actions, so as

to optimize a goal. In image captioning, the goal is, given

an image I, to generate a sentence S = {w1, w2, ..., wT }
which correctly describes the image content, where wi is

a word in sentence S and T is the length. Our model, in-

cluding the policy network pπ and value network vθ, can be

viewed as the agent; the environment is the given image I

and the words predicted so far {w1, ..., wt}; and an action

is to predict the next word wt+1.

3.1.1 State and action space

A decision-making process consists of a series of actions.

After each action a, a state s is observed. In our problem,

state st at time step t consists of the image I and the words

predicted until t, {w1, ..., wt}. The action space is the dic-

tionary Y that the words are drawn from, i.e., at ⊂ Y .

3.1.2 Policy network

The policy network pπ provides the probability for the agent

to take actions at each state, pπ(at|st), where the current

state st = {I, w1, ..., wt} and action at = wt+1. In this

paper, we use a Convolutional Neural Network (CNN) and

a Recurrent Neural Network (RNN) to construct our pol-

icy network, denoted as CNNp and RNNp. It is similar to

the basic image captioning model [44] used in the encoder-

decoder framework. As shown in Figure 2, firstly we use

CNNp to encode the visual information of image I. The

visual information is then fed into the initial input node

x0 ∈ R
n of RNNp. As the hidden state ht ∈ R

m of RNNp

evolves over time t, the policy at each time step to take an

CNN
v
  

“A dog sits on a” 

RNN
v
  

concatenation layer 

st

MLP
v 

vθ(st)
Figure 3. An illustration of our value network vθ that is comprised

of a CNN, a RNN and a MLP. Given a state st which contains raw

image input I and a partially generated raw sentence until t, the

value network vθ(st) evaluates its value.

action at is provided. The generated word wt at t will be

fed back into RNNp in the next time step as the network in-

put xt+1, which drives the RNNp state transition from ht to

ht+1. Specifically, the main working flow of pπ is governed

by the following equations:

x0 = W
x,vCNNp(I) (1)

ht = RNNp(ht−1,xt) (2)

xt = φ(wt−1), t > 0 (3)

pπ(at|st) = ϕ(ht) (4)

where W
x,v is the weight of the linear embedding model

of visual information, φ and ϕ denote the input and output

models of RNNp.

3.1.3 Value network

Before we introduce our value network vθ, we first define

the value function vp of a policy p. vp is defined as the

prediction of the total reward r (will be defined later in Sec-

tion 3.2) from the observed state st, assuming the decision-

making process is following a policy p, i.e.,

vp(s) = E[r|st = s, at...T ∼ p] (5)

We approximate the value function using a value net-

work, vθ(s) ≈ vp(s). It serves as an evaluation of state

st = {I, w1, ..., wt}. As shown in Figure 3, our value net-

work is comprised of a CNN, a RNN, and a Multilayer

Perceptron (MLP), denoted as CNNv , RNNv and MLPv .

Our value network takes the raw image and sentence in-

puts. CNNv is utilized to encode the visual information of

I, RNNv is designed to encode the semantic information of

a partially generated sentence {w1, ..., wt}. All the compo-

nents are trained simultaneously to regress the scalar reward

from st. We investigate our value network architecture in

Section 4.4.
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3.2. Reward defined by visual­semantic embedding

In our decision-making framework, it is important to de-

fine a concrete and reasonable optimization goal, i.e., the

reward for reinforcement learning. We propose to utilize

visual-semantic embedding similarities as the reward.

Visual-semantic embedding has been successfully ap-

plied to image classification [11, 37], retrieval [19, 36, 33],

etc. Our embedding model is comprised of a CNN, a RNN

and a linear mapping layer, denoted as CNNe, RNNe and

fe. By learning the mapping of images and sentences into

one semantic embedding space, it provides a measure of

similarity between images and sentences. Given a sentence

S, its embedding feature is represented using the last hidden

state of RNNe, i.e., h′
T (S). Let v denote the feature vec-

tor of image I extracted by CNNe, and fe(·) is the mapping

function from image features to the embedding space. We

train the embedding model using the same image-sentence

pairs as in image captioning. We fix the CNNe weight,

and learn the RNNe weights as well as fe(·) using a bi-

directional ranking loss defined as follows:

Le=
∑

v

∑

S−

max(0, β−fe(v) · h
′

T (S)+fe(v) · h
′

T (S
−))

+
∑

S

∑

v
−

max(0, β−h
′

T (S) · fe(v)+h
′

T (S) · fe(v
−)) (6)

where β is the margin cross-validated, every (v, S) are a

ground truth image-sentence pair, S− denotes a negative

description for the image corresponding to v, and vice-versa

with v
−.

Given an image with feature v
∗, we define the reward

of a generated sentence Ŝ to be the embedding similarity

between Ŝ and v
∗:

r =
fe(v

∗) · h′
T (Ŝ)

‖fe(v∗)‖‖h′
T (Ŝ)‖

(7)

3.3. Training using deep reinforcement learning

Following [38], we learn pπ and vθ in two steps. In the

first step, we train the policy network pπ using standard su-

pervised learning with cross entropy loss, where the loss

function is defined as Lp′ = −log p(w1, ..., wT |I;π) =

−
∑T

t=1
log pπ(at|st). And we train the value network by

minimizing the mean squared loss, ||vθ(si) − r||2 where r

is the final reward of the generated sentence and si denotes

a randomly selected state in the generating process. For

one generated sentence, successive states are strongly cor-

related, differing by just one word, but the regression target

is shared for each entire captioning process. Thus, we ran-

domly sample one single state from each distinct sentence,

to prevent overfitting.

In the second step, we train pπ and vθ jointly using deep

reinforcement learning (RL). The parameters of our agent

are represented by Θ = {π, θ}, and we learn Θ by maximiz-

ing the total reward the agent can expect when interacting

with the environment: J(Θ) = Es1...T∼pπ
(
∑T

t=1
rt). As

rt = 0 ∀ 0 < t < T and rT = r, J(Θ) = Es1...T∼pπ
(r).

Maximizing J exactly is non-trivial since it involves

an expectation over the high-dimensional interaction se-

quences which may involve unknown environment dy-

namics in turn. Viewing the problem as a partially ob-

servable Markov decision process, however, allows us to

bring techniques from the RL literature to bear: As shown

in [45, 40, 31], a sample approximation to the gradient is:

∇πJ ≈
T∑

t=1

∇πlog pπ(at|st) (r − vθ(st)) (8)

∇θJ = ∇θvθ(st) (r − vθ(st)) (9)

Here the value network vθ serves as a moving baseline.

The subtraction with the evaluation of value network leads

to a much lower variance estimate of the policy gradient.

The quantity r − vθ(st) used to scale the gradient can be

seen as an estimate of the advantage of action at in state st.

This approach can be viewed as an actor-critic architecture

where the policy pπ is the actor and vθ is the critic.

However, reinforcement learning in image captioning is

hard to train, because of the large action space comparing

to other decision-making problems. The action space of

image captioning is in the order of 103 which equals the

vocabulary size, while that of visual navigation in [49] is

only 4, which indicates four directions to go. To handle this

problem, we follow [35] to apply curriculum learning [1]

to train our actor-critic model. In order to gradually teach

the model to produce stable sentences, we provide training

samples with gradually more difficulty: iteratively we fix

the first (T − i ×∆) words with cross entropy loss and let

the actor-critic model train with the remaining i×∆ words,

for i = 1, 2, ..., until reinforcement learning is used to train

the whole sentence.

3.4. Lookahead inference with policy network and
value network

One of the key contributions of the proposed decision-

making framework over existing framework lies in the in-

ference mechanism. For decision-making problems, the in-

ference is guided by a local guidance and a global guidance,

e.g., AlphaGo [38] utilized MCTS to combine both guid-

ances. For image captioning, we propose a novel lookahead

inference mechanism that combines the local guidance of

policy network and the global guidance of value network.

The learned value network provides a lookahead evaluation

for each decision, which can complement the policy net-

work and collaboratively generate captions.

Beam Search (BS) is the most prevalent method for

decoding in existing image captioning approaches, which
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stores the top-B highly scoring candidates at each time

step. Here B is the beam width. Let us denote the

set of B sequences held by BS at time t as W⌈t⌉ =
{w1,⌈t⌉, ...,wB,⌈t⌉}, where each sequence are the gener-

ated words until then, wb,⌈t⌉ = {wb,1, ..., wb,t}. At each

time step t, BS considers all possible single word exten-

sions of these beams, given by the set Wt+1 = W⌈t⌉ × Y ,

and selects the top-B most scoring extensions as the new

beam sequences W⌈t+1⌉:

W⌈t+1⌉= argtopB
wb,⌈t+1⌉∈Wt+1

S(wb,⌈t+1⌉), s.t. wi,⌈t+1⌉ 6=wj,⌈t+1⌉

where operator argtopB denotes the obtaining top-B oper-

ation that is implemented by sorting the B × |Y| members

of Wt+1, and S(·) denotes the scoring function of a gen-

erated sequence. In existing BS of image captioning, S(·)
is the log-probability of the generated sequence. However,

such scoring function may miss good captions because it

assumes that the log-probability of every word in a good

caption must be among top choices. This is not necessar-

ily true. Analogously, in AlphaGo not every move is with

top probability. It is beneficial to sometimes allow some ac-

tions with low probability to be selected as long as the final

reward is optimized.

To this end, we propose a lookahead inference that com-

bines the policy network and value network to consider all

options in Wt+1. It executes each action by taking both

the current policy and the lookahead reward evaluation into

consideration, i.e.,

S(wb,⌈t+1⌉) = S({wb,⌈t⌉, wb,t+1}) (10)

= S(wb,⌈t⌉) + λ log pπ(at|st) + (1− λ) vθ({st, wb,t+1})

where S(wb,⌈t+1⌉) is the score of extending the current se-

quence wb,⌈t⌉ with a word wb,t+1, log pπ(at|st) denotes the

confidence of policy network to predict wb,t+1 as extension,

and vθ({st, wb,t+1}) denotes the evaluation of value net-

work for the state supposing wb,t+1 is generated. 0 ≤ λ ≤ 1
is a hyperparameter combining policy and value network

that we will analyze experimentally in Section 4.5.

4. Experiments

In this section, we perform extensive experiments to

evaluate the proposed framework. All the reported results

are computed using Microsoft COCO caption evaluation

tool [2], including the metrics BLEU, Meteor, Rouge-L and

CIDEr, which are commonly used together for fair and thor-

ough performance measure. Firstly, we discuss the dataset

and implementation details. Then we compare the proposed

method with state-of-the-art approaches on image caption-

ing. Finally, we conduct detailed analyses on our method.

4.1. Dataset and implementation details

Dataset We evaluate our method on the widely used MS

COCO dataset [29] for the image captioning task. For fair

comparison, we adopt the commonly used splits proposed

in [17], which use 82,783 images for training, 5,000 images

for validation, and 5,000 images for testing. Each image is

given at least five captions by different AMT workers. We

follow [17] to preprocess the captions (i.e. building dictio-

naries, tokenizing the captions).

Network architecture As shown in Figure 2 and 3, our

policy network, value network both contain a CNN and a

RNN. We adopt the same CNN and RNN architectures for

them, but train them independently. We use VGG-16 [39] as

our CNN architecture and LSTM [14] as our RNN architec-

ture. The input node dimension and the hidden state dimen-

sion of LSTM are both set to be 512, i.e., m = n = 512.

There are many CNN, RNN architectures in the literature,

e.g., ResNet [12], GRU [5], etc. Some of them have re-

ported better performance than the ones we use. We do not

use the latest architecture for fair comparison with existing

methods. In our value network, we use a three-layer MLP

that regresses to a scalar reward value, with a 1024-dim and

a 512-dim hidden layers in between. In Figure 3, a state

st is represented by concatenating the visual and semantic

features. The visual feature is a 512-dim embedded feature,

mapped from the 4096-dim CNNv output. The semantic

feature is the 512-dim hidden state of RNNv at the last time

step. Thus, the dimension of st is 1024.

Visual-semantic embedding Visual-semantic embed-

ding can measure the similarity between images and sen-

tences by mapping them to the same space. We followed

[19] to use VGG-16 [39] as CNNe and GRU [5] as RNNe.

The image feature v in Equation 6 is extracted from the last

4096-dim layer of VGG-16. The input node dimension and

the hidden state dimension of GRU are set as 300 and 1024.

fe(·) is a 4096×1024 linear mapping layer. The margin β

in Equation 6 is set as 0.2.

Training details In training, we use Adam [18] algo-

rithm to do model updating. It is worth noting that, other

than using the pretrained VGG-16 model, we only use the

images and captions provided in the dataset to train our net-

works and embedding, without any external data. We set ∆
in curriculum learning as 2. In testing, a caption is formed

by drawing words sequentially until a special end token is

reached, using the proposed lookahead inference mecha-

nism. We do not use ensemble of models.

4.2. Comparing with state­of­the­art methods

In Table 1, we provide a summary of the results of

our method and existing methods. We obtain state-of-the-

art performance on MS COCO in most evaluation metrics.

Note that Semantic ATT [48] utilized rich extra data from

social media to train their visual attribute predictor, and
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Methods Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr

Google NIC [44] 0.666 0.461 0.329 0.246 − − −
m-RNN [30] 0.67 0.49 0.35 0.25 − − −
BRNN [17] 0.642 0.451 0.304 0.203 − − −
LRCN [7] 0.628 0.442 0.304 0.21 − − −
MSR/CMU [3] − − − 0.19 0.204 − −
Spatial ATT [46] 0.718 0.504 0.357 0.25 0.23 − −
gLSTM [15] 0.67 0.491 0.358 0.264 0.227 − 0.813

MIXER [35] − − − 0.29 − − −

Semantic ATT [48] ∗ 0.709 0.537 0.402 0.304 0.243 − −
DCC [13] ∗ 0.644 − − − 0.21 − −

Ours 0.713 0.539 0.403 0.304 0.251 0.525 0.937

Table 1. Performance of our method on MS COCO dataset, comparing with state-of-the-art methods. Our beam size is set to 10. For those

competing methods, we show the results from their latest version of paper. The numbers in bold face are the best known results and (−)

indicates unknown scores. (∗) indicates that external data was used for training in these methods.

Methods Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr

SL 0.692 0.519 0.384 0.289 0.237 0.512 0.872

SL-Embed 0.7 0.523 0.383 0.280 0.241 0.514 0.888

SL-RawVN 0.706 0.533 0.395 0.298 0.243 0.52 0.916

hid-VN 0.603 0.429 0.292 0.197 0.2 0.467 0.69

hid-Im-VN 0.611 0.435 0.297 0.201 0.202 0.468 0.701

Full-model 0.713 0.539 0.403 0.304 0.251 0.525 0.937

Table 2. Performance of the variants of our method on MS COCO dataset, with beam size = 10. SL: supervised learning baseline. SL-

Embed: SL with embedding. SL-RawVN: SL plus pretrained raw value network. hid-VN: value network directly utilizes policy hidden

state. hid-Im-VN: value network utilizes policy hidden state and policy image feature. Full-model: our full model.

DCC [13] utilized external data to prove its unique trans-

fer capacity. It makes their results incomparable to other

methods that do not use extra training data. Surprisingly,

even without external training data, our method outperforms

[48, 13]. Comparing to methods other than [48, 13], our ap-

proach shows significant improvements in all the metrics

except Bleu-1 in which our method ranks the second. Bleu-

1 is related to single word accuracy, the performance gap

of Bleu-1 between our method and [46] may be due to dif-

ferent preprocessing for word vocabularies. MIXER [35]

is a metric-driven trained method. A model trained with

Bleu-4 using [35] is hard to generalize to other metrics.

Our embedding-driven decision-making approach performs

well in all metrics. Especially, considering our policy net-

work shown in Figure 2 is based on a mechanism similar

to the very basic image captioning model similar to Google

NIC [44], such significant improvement over [44] validates

the effectiveness of the proposed decision-making frame-

work that utilizes both policy and value networks. More-

over, the proposed framework is modular w.r.t. the network

design. Other powerful mechanisms such as spatial atten-

tion, semantic attention can be directly integrated into our

policy network and further improve our performance.

Since the proposed embedding-driven decision-making

framework is very different from existing methods, we want

to perform insightful analyses and answer the following

questions: 1) How powerful is embedding? Is the perfor-

mance gain more because of the framework or embedding

alone? 2) How important is lookahead inference? 3) How

important is reinforcement learning in the framework? 4)

Why the value network is designed as in Figure 3? 5) How

sensitive is the method to hyperparameter λ and beam size?

To answer those questions, we conduct detailed analyses in

the following three sections.

4.3. How much each component contributes?

In this section, we answer questions 1) 2) 3) above. As

discussed in Section 3.3, we train our policy and value

networks in two steps: pretraining and then reinforcement

learning. We name the initial policy network pretrained

with supervised learning as (SL). We name the initial value

network pretrained with mean squared loss as (RawVN).

The SL model can be served as our baseline, which does

not use value network or lookahead inference. To evaluate

the impact of embedding, we incorporate SL with embed-

ding as follows: in the last step of beam search of SL, when

a beam of candidate captions are generated, we rank those

candidates according to their embedding similarities with

the test image other than their log-probabilities, and finally

output the one with highest embedding score. This base-

line is named as (SL-Embed). To validate the contribution

of lookahead inference and reinforcement learning, we con-

struct a baseline that use SL and RawVN with the proposed

lookahead inference, which is named as (SL-RawVN). Fi-

nally our full model is named as (Full-model).

According to the results of those variants of our method
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GT:     a painting of fruit and a 

            candle with a vase

Ours:   a painting of a vase sitting on

            a table

SL:      a table with a vase and flowers

            on it

GT:     the plane is parked at the gate 

            at the airport terminal

Ours:   a white airplane parked at an 

            airport terminal

SL:      a passenger train that is pulling 

            into a station

GT:     a small dog eating a plate of    

            broccoli

Ours:   a dog that is eating some food  

            on a table

SL:      a dog that is sitting on a table

GT:     people are standing outside in a    

            busy city street

Ours:   a group of people that are standing 

            in the street

SL:      a group of young people playing a  

            game of basketball

GT:     a couple of kids walking with           

            umbrellas in their hands

Ours:   a couple of people walking down a       

            street holding umbrellas

SL:       a couple of people that are walking 

            in the snow

GT:     a man on a bicycle riding 

            next to a train

Ours:   a train on a track near a

            building

GT:     the man are driving side by 

            side on their motorcycles

Ours:   a man riding on the back of 

            a motorcycle

GT:      a man holding a snowboard next 

            to a man in scary costume

Ours:   a woman sitting on a ledge holding    

            a snowboard

SL:      a woman standing in a living room   

            holding a wii controller

Figure 4. Qualitative results of our method and the supervised learning (SL) baseline. In the first three columns, our method generates

better captions than SL. We show two failure cases in the last column. GT stands for ground truth caption.

shown in Table 2, we can answer the questions 1)-3) above:

1. Using embedding alone, SL-Embed performs slightly

better than the SL baseline. However, the gap between

SL-Embed and Full-model is very big. Therefore,

we conclude that using embedding alone is not power-

ful. The proposed embedding-driven decision-making

framework is the merit of our method.

2. By using lookahead inference, SL-RawVN is much

better than the SL baseline. This validates the impor-

tance of the proposed lookahead inference that utilizes

both local and global guidance.

3. After reinforcement learning, our Full-model per-

forms better than the SL-RawVN. This validates

the importance of using embedding-driven actor-critic

learning for model training.

We show some qualitative captioning results of our

method and the SL baseline in Figure 4. GT stands for

ground truth caption. In the first three columns, we com-

pare our method and SL baseline. As we see, our method

is better at recognizing key objects that are easily missed

by SL, e.g., the snowboard and umbrellas in the first col-

umn images. Besides, our method can reduce the chance

of generating incorrect word and accumulating errors, e.g.,

we generate the word eating other than sitting for the im-

age in the lower second column. Moreover, thanks to the

global guidance, our method is better at generating correct

captions at global level, e.g., we can recognize the airplane

and painting for the images in the third column. Finally,

we show two failure cases of our method in the last col-

umn, in which cases we fail to understand some important

visual contents that only take small portions of the images.

This may be due to our policy network architecture. Adding

more detailed visual modeling techniques such as detection

and attention can alleviate such problem in the future.

4.4. Value network architecture analysis

In this paper we propose a novel framework that involves

value network, whose architecture is worth looking into. As

in Figure 3, we use CNNv and RNNv to extract visual and

semantic information from the raw image and sentence in-

puts. Since the hidden state in policy network at each time

step is a representation of each state as well, a natural ques-

tion is “can we directly utilize the policy hidden state?”. To

answer this question, we construct two variants of our value

network: the first one, named as (hid-VN), is comprised of

a MLPv on top of the policy hidden state of RNNp; the sec-

ond variant, (hid-Im-VN), is comprised of a MLPv on top

of the concatenation of the policy hidden state of RNNp and

the visual input x0 of policy RNNp. The results are shown

in Table 2. As we see, both variants that utilize policy hid-

den state do not work well, comparing to our Full-model.

The problem of the policy hidden state is that it compresses

and also loses lots of information. Thus, it is reasonable and

better to train independent CNN, RNN for value network it-
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λ Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr

0 0.638 0.471 0.34 0.247 0.233 0.501 0.8

0.1 0.683 0.51 0.373 0.274 0.248 0.516 0.894

0.2 0.701 0.527 0.389 0.288 0.248 0.521 0.922

0.3 0.71 0.535 0.398 0.298 0.251 0.524 0.934

0.4 0.713 0.539 0.403 0.304 0.247 0.525 0.937

0.5 0.71 0.538 0.402 0.304 0.246 0.524 0.934

0.6 0.708 0.535 0.399 0.301 0.245 0.522 0.923

0.7 0.704 0.531 0.395 0.297 0.243 0.52 0.912

0.8 0.7 0.526 0.392 0.295 0.241 0.518 0.903

0.9 0.698 0.524 0.389 0.293 0.24 0.516 0.895

1 0.694 0.52 0.385 0.289 0.238 0.513 0.879

Table 3. Evaluation of hyperparameter λ’s impact on our method.

Method Beam size Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr

SL

5 0.696 0.522 0.388 0.29 0.238 0.513 0.876

10 0.692 0.519 0.384 0.289 0.237 0.512 0.872

25 0.683 0.508 0.374 0.281 0.234 0.505 0.853

50 0.680 0.505 0.372 0.279 0.233 0.503 0.850

100 0.679 0.504 0.372 0.279 0.233 0.503 0.849

Ours

5 0.711 0.538 0.403 0.302 0.251 0.524 0.934

10 0.713 0.539 0.403 0.304 0.251 0.525 0.937

25 0.709 0.534 0.398 0.299 0.248 0.522 0.928

50 0.708 0.533 0.397 0.298 0.247 0.52 0.924

100 0.707 0.531 0.395 0.297 0.244 0.52 0.92

Table 4. Evaluation of different beam sizes’ impact on SL baseline and our method.

self with raw image and sentence inputs, as in Figure 3.

4.5. Parameter sensitivity analysis

There are two major hyperparameters in our method, λ in

Equation 10 and the beam size. In this section, we analyze

their sensitivity to answer question 5) above.

In Table 3, we show the evaluation of λ’s impact on our

method. As in Equation 10, λ is a hyperparameter com-

bining policy and value networks in lookahead inference,

0 ≤ λ ≤ 1. λ = 0 means we only use value network to

guide our lookahead inference; while λ = 1 means we only

use policy network, which is identical to beam search. As

shown in Table 3, the best performance is when λ = 0.4. As

λ goes down from 0.4 to 0 or goes up from 0.4 to 1, over-

all the performance drops monotonically. This validates the

importance of both networks; we should not emphasize too

much on either network in lookahead inference. Besides,

λ = 0 performs much worse than λ = 1. This is because

policy network provides local guidance, which is very im-

portant in sequential prediction. Thus, in lookahead infer-

ence, it is too weak if we only use global guidance, i.e. value

network in our approach.

In Table 4, we provide the evaluation of different beam

sizes’ impact on SL baseline and our full model. As discov-

ered in previous work such as [17], the image captioning

performance becomes worse as the beam size gets larger.

We validate such discovery for existing encoder-decoder

framework. As shown in the upper half of Table 4, we test

our SL baseline with 5 different beam sizes from 5 to 100.

Note that SL is based on beam search, which follows the

encoder-decoder framework as most existing approaches.

As we see, the impact of beam size on SL is relatively big.

It’s mainly because that as we increase the beam size, bad

word candidates are more likely to be drawn into the beam,

since the confidence provided by the sequential word gen-

erator is only consider local information.

On the other hand, as shown in the lower part of Table 4,

our method is less sensitive to beam sizes. The performance

variations between different beam sizes are fairly small. We

argue that this is because of the proposed lookahead infer-

ence that considers both policy and value networks. With

local and global guidances, our framework is more robust

and stable to policy mistakes.

5. Conclusion

In this work, we present a novel decision-making frame-

work for image captioning, which achieves state-of-the-art

performance on standard benchmark. Different from pre-

vious encoder-decoder framework, our method utilizes a

policy network and a value network to generate captions.

The policy network serves as a local guidance and the value

network serves as a global and lookahead guidance. To

learn both networks, we use an actor-critic reinforcement

learning approach with novel visual-semantic embedding

rewards. We conduct detailed analyses on our framework to

understand its merits and properties. Our future works in-

clude improving network architectures and investigating the

reward design by considering other embedding measures.
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