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Abstract

Recently it has been shown that policy-gradient methods

for reinforcement learning can be utilized to train deep end-

to-end systems directly on non-differentiable metrics for the

task at hand. In this paper we consider the problem of opti-

mizing image captioning systems using reinforcement learn-

ing, and show that by carefully optimizing our systems us-

ing the test metrics of the MSCOCO task, significant gains

in performance can be realized. Our systems are built using

a new optimization approach that we call self-critical se-

quence training (SCST). SCST is a form of the popular RE-

INFORCE algorithm that, rather than estimating a “base-

line” to normalize the rewards and reduce variance, utilizes

the output of its own test-time inference algorithm to nor-

malize the rewards it experiences. Using this approach, es-

timating the reward signal (as actor-critic methods must do)

and estimating normalization (as REINFORCE algorithms

typically do) is avoided, while at the same time harmonizing

the model with respect to its test-time inference procedure.

Empirically we find that directly optimizing the CIDEr met-

ric with SCST and greedy decoding at test-time is highly

effective. Our results on the MSCOCO evaluation sever es-

tablish a new state-of-the-art on the task, improving the best

result in terms of CIDEr from 104.9 to 114.7.

1. Introduction

Image captioning aims at generating a natural language

description of an image. Open domain captioning is a very

challenging task, as it requires a fine-grained understand-

ing of the global and the local entities in an image, as

well as their attributes and relationships. The recently re-

leased MSCOCO challenge [1] provides a new, larger scale

platform for evaluating image captioning systems, com-

plete with an evaluation server for benchmarking compet-

ing methods. Deep learning approaches to sequence model-

1Authors Etienne Marcheret and Vaibhava Goel were at IBM while

the work was being completed.

ing have yielded impressive results on the task, dominat-

ing the task leaderboard. Inspired by the recently intro-

duced encoder/decoder paradigm for machine translation

using recurrent neural networks (RNNs) [2], [3], and [4]

use a deep convolutional neural network (CNN) to encode

the input image, and a Long Short Term Memory (LSTM)

[5] RNN decoder to generate the output caption. These

systems are trained end-to-end using back-propagation, and

have achieved state-of-the-art results on MSCOCO. More

recently in [6], the use of spatial attention mechanisms on

CNN layers to incorporate visual context—which implicitly

conditions on the text generated so far—was incorporated

into the generation process. It has been shown and we have

qualitatively observed that captioning systems that utilize

attention mechanisms lead to better generalization, as these

models can compose novel text descriptions based on the

recognition of the global and local entities that comprise

images.

As discussed in [7], deep generative models for text are

typically trained to maximize the likelihood of the next

ground-truth word given the previous ground-truth word

using back-propagation. This approach has been called

“Teacher-Forcing” [8]. However, this approach creates a

mismatch between training and testing, since at test-time

the model uses the previously generated words from the

model distribution to predict the next word. This exposure

bias [7], results in error accumulation during generation at

test time, since the model has never been exposed to its own

predictions.

Several approaches to overcoming the exposure bias

problem described above have recently been proposed. In

[8] they show that feeding back the model’s own predictions

and slowly increasing the feedback probability p during

training leads to significantly better test-time performance.

Another line of work proposes “Professor-Forcing” [9], a

technique that uses adversarial training to encourage the dy-

namics of the recurrent network to be the same when train-

ing conditioned on ground truth previous words and when

sampling freely from the network.

While sequence models are usually trained using the

17008



cross entropy loss, they are typically evaluated at test time

using discrete and non-differentiable NLP metrics such as

BLEU [10], ROUGE [11], METEOR [12] or CIDEr [13].

Ideally sequence models for image captioning should be

trained to avoid exposure bias and directly optimize met-

rics for the task at hand.

Recently it has been shown that both the exposure bias

and non-differentiable task metric issues can be addressed

by incorporating techniques from Reinforcement Learn-

ing (RL) [14]. Specifically in [7], Ranzato et al. use

the REINFORCE algorithm [15] to directly optimize non-

differentiable, sequence-based test metrics, and overcome

both issues. REINFORCE as we will describe, allows one

to optimize the gradient of the expected reward by sampling

from the model during training, and treating those samples

as ground-truth labels (that are re-weighted by the reward

they deliver). The major limitation of the approach is that

the expected gradient computed using mini-batches under

REINFORCE typically exhibit high variance, and without

proper context-dependent normalization, is typically unsta-

ble. The recent discovery that REINFORCE with proper

bias correction using learned “baselines” is effective has

led to a flurry of work in applying REINFORCE to prob-

lems in RL, supervised learning, and variational inference

[16, 17, 18]. Actor-critic methods [14] , which instead train

a second “critic” network to provide an estimate of the value

of each generated word given the policy of an actor net-

work, have also been investigated for sequence problems

recently [19]. These techniques overcome the need to sam-

ple from the policy’s (actor’s) action space, which can be

enormous, at the expense of estimating future rewards, and

training multiple networks based on one another’s outputs,

which as [19] explore, can also be unstable.

In this paper we present a new approach to se-

quence training which we call self-critical sequence training

(SCST), and demonstrate that SCST can improve the per-

formance of image captioning systems dramatically. SCST

is a REINFORCE algorithm that, rather than estimating the

reward signal, or how the reward signal should be normal-

ized, utilizes the output of its own test-time inference algo-

rithm to normalize the rewards it experiences. As a result,

only samples from the model that outperform the current

test-time system are given positive weight, and inferior sam-

ples are suppressed. Using SCST, attempting to estimate

the reward signal, as actor-critic methods must do, and esti-

mating normalization, as REINFORCE algorithms must do,

is avoided, while at the same time harmonizing the model

with respect to its test-time inference procedure. Empiri-

cally we find that directly optimizing the CIDEr metric with

SCST and greedy decoding at test-time is highly effective.

Our results on the MSCOCO evaluation sever establish a

new state-of-the-art on the task, improving the best result in

terms of CIDEr from 104.9 to 114.7.

2. Captioning Models

In this section we describe the recurrent models that we

use for caption generation.

FC models. Similarly to [3, 4], we first encode the input

image F using a deep CNN, and then embed it through a

linear projection WI . Words are represented with one hot

vectors that are embedded with a linear embedding E that

has the same output dimension as WI . The beginning of

each sentence is marked with a special BOS token, and the

end with an EOS token. Under the model, words are gen-

erated and then fed back into the LSTM, with the image

treated as the first word WICNN(F ). The following up-

dates for the hidden units and cells of an LSTM define the

model [5]:

xt = E1wt−1
for t > 1, x1 = WICNN(F )

it = σ (Wixxt +Wihht−1 + bi) (Input Gate)

ft = σ (Wfxxt +Wfhht−1 + bf ) (Forget Gate)

ot = σ (Woxxt +Wohht−1 + bo) (Output Gate)

ct = it ⊙ φ(W⊗

zxxt +W⊗

zhht−1 + b⊗z ) + ft ⊙ ct−1

ht = ot ⊙ tanh(ct)

st = Wsht,

where φ is a maxout non-linearity with 2 units (⊗ denotes

the units) and σ is the sigmoid function. We initialize h0

and c0 to zero. The LSTM outputs a distribution over the

next word wt using the softmax function:

wt ∼ softmax (st) (1)

In our architecture, the hidden states and word and image

embeddings have dimension 512. Let θ denote the pa-

rameters of the model. Traditionally the parameters θ are

learned by maximizing the likelihood of the observed se-

quence. Specifically, given a target ground truth sequence

(w∗
1 , . . . , w

∗
T ), the objective is to minimize the cross en-

tropy loss (XE):

L(θ) = −

T∑

t=1

log(pθ(w
∗

t |w
∗

1 , . . . w
∗

t−1)), (2)

where pθ(wt|w1, . . . wt−1) is given by the parametric

model in Equation (1).

Attention Model (Att2in). Rather than utilizing a static,

spatially pooled representation of the image, attention mod-

els dynamically re-weight the input spatial (CNN) features

to focus on specific regions of the image at each time step.

In this paper we consider a modification of the architecture

of the attention model for captioning given in [6], and input

the attention-derived image feature only to the cell node of

the LSTM.
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xt = E1wt−1
for t ≥ 1 w0 = BOS

it = σ (Wixxt +Wihht−1 + bi) (Input Gate)

ft = σ (Wfxxt +Wfhht−1 + bf ) (Forget Gate)

ot = σ (Woxxt +Wohht−1 + bo) (Output Gate)

ct = it ⊙ φ(W⊗

zxxt +W⊗

zIIt +W⊗

zhht−1 + b⊗z ) + ft ⊙ ct−1

ht = ot ⊙ tanh(ct)

st = Wsht,

where It is the attention-derived image feature. This fea-

ture is derived as in [6] as follows: given CNN features at

N locations {I1, . . . IN}, It =
∑N

i=1 α
i
tIi, where αt =

softmax(at+ bα), and ait = W tanh(WaIIi+Wahht−1+
ba). In this work we set the dimension of W to 1×512, and

set c0 and h0 to zero. Let θ denote the parameters of the

model. Then pθ(wt|w1, . . . wt−1) is again defined by (1).

The parameters θ of attention models are also traditionally

learned by optimizing the XE loss (2).

Attention Model (Att2all). The standard attention model

presented in [6] also feeds then attention signal It as an in-

put into all gates of the LSTM, and the output posterior.

In our experiments feeding It to all gates in addition to

the input did not boost performance, but feeding It to both

the gates and the outputs resulted in significant gains when

ADAM [20] was used.

3. Reinforcement Learning

Sequence Generation as an RL problem. As described

in the previous section, captioning systems are traditionally

trained using the cross entropy loss. To directly optimize

NLP metrics and address the exposure bias issue, we can

cast our generative models in the Reinforcement Learning

terminology as in [7]. Our recurrent models (LSTMs) intro-

duced above can be viewed as an “agent” that interacts with

an external “environment” (words and image features). The

parameters of the network, θ, define a policy pθ, that re-

sults in an “action” that is the prediction of the next word.

After each action, the agent (the LSTM) updates its inter-

nal “state” (cells and hidden states of the LSTM, attention

weights etc). Upon generating the end-of-sequence (EOS)

token, the agent observes a “reward” that is, for instance,

the CIDEr score of the generated sentence—we denote this

reward by r. The reward is computed by an evaluation met-

ric by comparing the generated sequence to corresponding

ground-truth sequences. The goal of training is to minimize

the negative expected reward:

L(θ) = −Ews∼pθ
[r(ws)] , (3)

where ws = (ws
1, . . . w

s
T ) and ws

t is the word sampled from

the model at the time step t. In practice L(θ) is typically

estimated with a single sample from pθ:

L(θ) ≈ −r(ws), ws ∼ pθ.

Policy Gradient with REINFORCE. In order to compute

the gradient ∇θL(θ), we use the REINFORCE algorithm

[15](See also Chapter 13 in [14]). REINFORCE is based

on the observation that the expected gradient of a non-

differentiable reward function can be computed as follows:

∇θL(θ) = −Ews∼pθ
[r(ws)∇θ log pθ(w

s)] . (4)

In practice the expected gradient can be approximated using

a single Monte-Carlo sample ws = (ws
1 . . . w

s
T ) from pθ,

for each training example in the minibatch:

∇θL(θ) ≈ −r(ws)∇θ log pθ(w
s).

REINFORCE with a Baseline. The policy gradient given

by REINFORCE can be generalized to compute the reward

associated with an action value relative to a reference re-

ward or baseline b:

∇θL(θ) = −Ews∼pθ
[(r(ws)− b)∇θ log pθ(w

s)] . (5)

The baseline can be an arbitrary function, as long as it does

not depend on the “action” ws [14], since in this case:

Ews∼pθ
[b∇θ log pθ(w

s)] = b
∑

ws

∇θpθ(w
s)

= b∇θ

∑

ws

pθ(w
s)

= b∇θ1 = 0. (6)

This shows that the baseline does not change the expected

gradient, but importantly, it can reduce the variance of the

gradient estimate. For each training case, we again approx-

imate the expected gradient with a single sample ws ∼ pθ:

∇θL(θ) ≈ −(r(ws)− b)∇θ log pθ(w
s). (7)

Note that if b is function of θ or t as in [7], equation (6) still

holds and b(θ) is a valid baseline.

Final Gradient Expression. Using the chain rule, and the

parametric model of pθ given in Section 2 we have:

∇θL(θ) =

T∑

t=1

∂L(θ)

∂st

∂st

∂θ
,

where st is the input to the softmax function. Using RE-

INFORCE with a baseline b the estimate of the gradient of
∂L(θ)
∂st

is given by [17]:

∂L(θ)

∂st
≈ (r(ws)− b)(pθ(wt|ht)− 1ws

t
). (8)
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4. Self-critical sequence training (SCST)

The central idea of the self-critical sequence training

(SCST) approach is to baseline the REINFORCE algorithm

with the reward obtained by the current model under the

inference algorithm used at test time. The gradient of the

negative reward of a sample ws from the model w.r.t. to the

softmax activations at time-step t then becomes:

∂L(θ)

∂st
= (r(ws)− r(ŵ))(pθ(wt|ht)− 1ws

t
). (9)

where r(ŵ) again is the reward obtained by the current

model under the inference algorithm used at test time. Ac-

cordingly, samples from the model that return higher reward

than ŵ will be “pushed up”, or increased in probability,

while samples which result in lower reward will be sup-

pressed. Like MIXER [7], SCST has all the advantages of

REINFORCE algorithms, as it directly optimizes the true,

sequence-level, evaluation metric, but avoids the usual sce-

nario of having to learn a (context-dependent) estimate of

expected future rewards as a baseline. In practice we have

found that SCST has much lower variance, and can be more

effectively trained on mini-batches of samples using SGD.

Since the SCST baseline is based on the test-time estimate

under the current model, SCST is forced to improve the per-

formance of the model under the inference algorithm used

at test time. This encourages training/test time consistency

like the maximum likelihood-based approaches “Data as

Demonstrator” [8], “Professor Forcing” [9], and E2E [7],

but importantly, it can directly optimize sequence metrics.

Finally, SCST is self-critical, and so avoids all the inher-

ent training difficulties associated with actor-critic methods,

where a second “critic” network must be trained to estimate

value functions, and the actor must be trained on estimated

value functions rather than actual rewards.

In this paper we focus on scenario of greedy decoding,

where:

ŵt = argmax
wt

p(wt |ht) (10)

This choice, depicted in Figure 1, minimizes the impact of

baselining with the test-time inference algorithm on training

time, since it requires only one additional forward pass, and

trains the system to be optimized for fast, greedy decoding

at test-time.

Generalizations. The basic SCST approach described

above can be generalized in several ways.

One generalization is to condition the baseline on what

has been generated (i.e. sampled) so far, which makes the

baseline word-dependent, and further reduces the variance

of the reward signal by making it dependent only on fu-

ture rewards. This is achieved by baselining the reward for

word ws
t at timestep t with the reward obtained by the word

sequence w̄ = {ws
1:t−1, ŵt:T }, which is generated by sam-

pling tokens for timesteps 1 : t − 1, and then executing

the inference algorithm to complete the sequence. The re-

sulting reward signal, r(ws) − r(w̄), is a baselined future

reward (advantage) signal that conditions on both the input

image and the sequence ws
1:t−1, and remains unbiased. We

call this variant time-dependent SCST (TD-SCST).

Another important generalization is to utilize the infer-

ence algorithm as a critic to replace the learned critic of tra-

ditional actor-critic approaches. Like for traditional actor-

critic methods, this biases the learning procedure, but can be

used to trade off variance for bias. Specifically, the primary

reward signal at time t can be based on a sequence that sam-

ples only n future tokens, and then executes the inference

algorithm to complete the sequence. The primary reward is

then based on w̃ = {ws
1:t+n, ŵt+n+1:T }, and can further be

baselined in a time-dependent manner using TD-SCST. The

resulting reward signal in this case is r(w̃)− r(w̄). We call

this variant True SCST.

We have experimented with both TD-SCST and “True”

SCST as described above on the MSCOCO task, but found

that they did not lead to significant additional gain. We have

also experimented with learning a control-variate for the

SCST baseline on MSCOCO to no avail. Nevertheless, we

anticipate that these generalizations will be important for

other sequence modeling tasks, and policy-gradient-based

RL more generally.

5. Experiments

Dataset. We evaluate our proposed method on the

MSCOCO dataset [1]. For offline evaluation purposes we

used the data splits from [21]. The training set contains

113, 287 images, along with 5 captions each. We use a set

of 5K image for validation and report results on a test set of

5K images as well, as given in [21]. We report four widely

used automatic evaluation metrics, BLEU-4, ROUGEL,

METEOR, and CIDEr. We prune the vocabulary and drop

any word that has count less then five, we end up with a

vocabulary of size 10096 words.

Image Features 1) FC Models. We use two type of

Features: a) (FC-2k) features, where we encode each image

with Resnet-101 (101 layers) [22]. Note that we do not

rescale or crop each image. Instead we encode the full

image with the final convolutional layer of resnet, and apply

average pooling, which results in a vector of dimension

2048. b) (FC-15K) features where we stack average pooled

13 layers of Resnet-101 (11 × 1024 and 2 × 2048). These

13 layers are the odd layers of conv4 and conv5, with the

exception of the 23rd layer of conv4, which was omitted.

This results in a feature vector of dimension 15360.

2) Spatial CNN features for Attention models: (Att2in)

We encode each image using the residual convolutional

neural network Resnet-101 [22]. Note that we do not

rescale or crop the image. Instead we encode the full
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(r(ws
1, . . . , w

s
T )− r(ŵ1, . . . , ŵT ))rθ log pθ(w

s
1, . . . , w

s
T )

BOS

pθ(w|h1) pθ(w|h2)

CIDER

(ws
1, . . . , w

s
T )

r(ws
1, . . . , w

s
T )

ws
1 ws

2

h0, c0

h1, c1 = LSTM(BOS, h0, c0) h2, c2 = LSTM(ws
1, h1, c1)

{(w∗
1 , . . . , w

∗
T )}

sample sample

BOS
CIDER

argmaxargmax

pθ(w|h
0

1) pθ(w|h
0

2)

(ŵ1, . . . , ŵT )

r(ŵ1, . . . , ŵT )

ŵ1 ŵ2

h0

0, c
0

0

h0

1, c
0

1 = LSTM(BOS, h0

0, c
0

0) h0

2, c
0

2 = LSTM(ŵ1, h
0

1, c
0

1)

{(w∗
1 , . . . , w

∗
T )}

argmax argmax

Figure 1: Self-critical sequence training (SCST). The weight put on words of a sampled sentence from the model is deter-

mined by the difference between the reward for the sampled sentence and the reward obtained by the estimated sentence

under the test-time inference procedure (greedy inference depicted). This harmonizes learning with the inference procedure,

and lowers the variance of the gradients, improving the training procedure.

image with the final convolutional layer of Resnet-101,

and apply spatially adaptive max-pooling so that the output

has a fixed size of 14 × 14 × 2048. At each time step

the attention model produces an attention mask over the

196 spatial locations. This mask is applied and then the

result is spatially averaged to produce a 2048 dimension

representation of the attended portion of the image.

Implementation Details. The LSTM hidden, image, word

and attention embeddings dimension are fixed to 512 for

all of the models discussed herein. All of our models are

trained according to the following recipe, except where oth-

erwise noted. We initialize all models by training the model

under the XE objective using ADAM [20] optimizer with an

initial learning rate of 5×10−4. We anneal the learning rate

by a factor of 0.8 every three epochs, and increase the prob-

ability of feeding back a sample of the word posterior by

0.05 every 5 epochs until we reach a feedback probability

0.25 [8]. We evaluate at each epoch the model on the devel-

opment set and select the model with best CIDEr score as an

initialization for SCST training. We then run SCST training

initialized with the XE model to optimize the CIDEr met-

ric (specifically, the CIDEr-D metric) using ADAM with a

learning rate 5× 10−5 1. Initially when experimenting with

FC-2k and FC-15k models we utilized curriculum learning

(CL) during training, as proposed in [7], by increasing the

number of words that are sampled and trained under CIDEr

by one each epoch (the prefix of the sentence remains under

1In the case of the Att2all models, the XE model was trained for only

20 epochs, and the learning rate was also annealed during RL training.

the XE criterion until eventually being subsumed). We have

since realized that for the MSCOCO task CL is not required,

and provides little to no boost in performance. The results

reported here for the FC-2K and FC-15K models are trained

with CL, while the attention models were trained directly on

the entire sentence for all epochs after being initialized by

the XE seed models.

Training Evaluation Metric

Metric CIDEr BLEU4 ROUGEL METEOR

XE 90.9 28.6 52.3 24.1

XE (beam) 94.0 29.6 52.6 25.2

MIXER 101.9 30.9 53.8 24.9

SCST 106.3 31.9 54.3 25.5

Table 1: Performance of self-critical sequence training

(SCST) versus MIXER [7] on the test portion of the Karpa-

thy splits when trained to optimize the CIDEr metric (FC-

2K models). Both improve the seed cross-entropy trained

model, but SCST significantly outperforms MIXER.

5.1. Offline Evaluation

Evaluating different RL training strategies.

Table 1 compares the performance of SCST to MIXER

[7] (test set, Karpathy splits). In this experiment, we utilize

“curriculum learning” (CL) by optimizing the expected

reward of the metric on the last n words of each training

sentence, optimizing XE on the remaining sentence pre-

fix, and slowly increasing n. The results reported were

generated with the optimized CL schedule reported in [7].
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Metric MIXER less CL SCST

CIDEr 110.4 ± 0.5 113.8 ± 0.3

BLEU4 32.8 ± 0.1 34.1 ± 0.1

ROUGE 55.2 ± 0.1 55.7 ± 0.1

METEOR 26.0 ± 0.04 26.6 ± 0.04

Table 2: mean/std. performance of SCST versus REIN-

FORCE with learned baseline (MIXER less CL; Att2all

models, 4 seeds; Karpathy test set; CIDEr optimized).

We found that CL was not necessary to train both SCST

and REINFORCE with a learned baseline on MSCOCO—

turning off CL sped up training and yielded equal or better

results. The gain of SCST over learned baselines was con-

sistently > 3 CIDEr points, regardless of the CL schedule

and the initial seed (c.f. table 2 and graph in supp. material).

Training Evaluation Metric

Metric CIDEr BLEU4 ROUGEL METEOR

XE 90.9 28.6 52.3 24.1

XE (beam) 94.0 29.6 52.6 25.2

CIDEr 106.3 31.9 54.3 25.5

BLEU 94.4 33.2 53.9 24.6

ROUGEL 97.7 31.6 55.4 24.5

METEOR 80.5 25.3 51.3 25.9

Table 3: Performance on the test portion of the Karpathy

splits [21] as a function of training metric ( FC-2K models).

Optimizing the CIDEr metric increases the overall perfor-

mance under the evaluation metrics the most significantly.

The performance of the seed cross-entropy (XE) model is

also depicted. All models were decoded greedily, with the

exception of the XE beam search result, which was opti-

mized to beam 3 on the validation set.

Training on different metrics.

We experimented with training directly on the evaluation

metrics of the MSCOCO challenge. Results for FC-2K

models are depicted in table 3. In general we can see

that optimizing for a given metric during training leads

to the best performance on that same metric at test time,

an expected result. We experimented with training on

multiple test metrics, and found that we were unable to

outperform the overall performance of the model trained

only on the CIDEr metric, which lifts the performance of

all other metrics considerably. For this reason most of our

experimentation has since focused on optimizing CIDEr.

Single FC-Models Versus Attention Models. We trained

FC models (2K and 15 K), as well as attention models

Single Best Models (XE)

Model Search Evaluation Metric

Type Method CIDEr BLEU4 ROUGEL METEOR

FC-2K
greedy 90.9 28.6 52.3 24.1

beam 94.0 29.6 52.6 25.2

FC-15K
greedy 94.1 29.5 52.9 24.4

beam 96.1 30.0 52.9 25.2

Att2in
greedy 99.0 30.6 53.8 25.2

beam 101.3 31.3 54.3 26.0

Att2all greedy 97.9 29.3 53.4 25.4

(RL seed) beam 99.4 30.0 53.4 25.9

Single Best Models (SCST unless noted o.w.)

Model Search Evaluation Metric

Type Method CIDEr BLEU4 ROUGEL METEOR

FC-2K
greedy 106.3 31.9 54.3 25.5

beam 106.3 31.9 54.3 25.5

FC-15K
greedy 106.4 32.2 54.6 25.5

beam 106.6 32.4 54.7 25.6

Att2in
greedy 111.3 33.3 55.2 26.3

beam 111.4 33.3 55.3 26.3

Att2all
greedy 113.7 34.1 55.6 26.6

beam 114.0 34.2 55.7 26.7

4 Att2all greedy 110.2 32.7 55.1 26.0

(MIXER-) beam 110.5 32.8 55.2 26.1

Table 4: Performance of the best XE and corr. SCST-trained

single models on the Karpathy test split (best of 4 random

seeds). The results obtained via the greedy decoding and

optimized beam search are depicted. Models learned using

SCST were trained to directly optimize the CIDEr metric.

MIXER less CL results (MIXER-) are also included.

(Att2in and Att2all) using SCST with the CIDEr metric. We

trained 4 different models for each FC and attention type,

starting the optimization from four different random seeds
2. We report in Table 4, the system with best performance

for each family of models on the test portion of Karpathy

splits [21]. We see that the FC-15K models outperform the

FC-2K models. Both FC models are outperformed by the

attention models, which establish a new state of the art for

a single model performance on Karpathy splits. Note that

this quantitative evaluation favors attention models is inline

with our observation that attention models tend to general-

ize better and compose outside of the context of the training

of MSCOCO, as we will see in Section 6.

Model Ensembling. In this section we investigate the per-

formance of ensembling over 4 random seeds of the XE

and SCST-trained FC models and attention models. We see

in Table 5 that ensembling improves performance and con-

firms the supremacy of attention modeling, and establishes

2please consult the supplementary material for additional details re-

garding how the models were trained.
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Ensembled Models (XE)

Model Search Evaluation Metric

Type Method CIDEr BLEU4 ROUGEL METEOR

4 FC-2K
greedy 96.3 30.1 53.5 24.8

beam 99.2 31.2 53.9 25.8

4 FC-15K
greedy 97.7 30.7 53.8 25.0

beam 100.7 31.7 54.2 26.0

4 Att2in
greedy 102.8 32.0 54.7 25.7

beam 106.5 32.8 55.1 26.7

Att2all greedy 102.0 31.2 54.4 26.0

(RL seeds) beam 104.7 32.2 54.8 26.7

Ensembled Models (SCST unless o.w. noted)

Model Search Evaluation Metric

Type Method CIDEr BLEU4 ROUGEL METEOR

4 FC-2K
greedy 108.9 33.1 54.9 25.7

beam 108.9 33.2 54.9 25.7

4 FC-15K
greedy 110.4 33.4 55.4 26.1

beam 110.4 33.4 55.4 26.2

4 Att2in
greedy 114.7 34.6 56.2 26.8

beam 115.2 34.8 56.3 26.9

4 Att2all
greedy 116.8 35.2 56.5 27.0

beam 117.5 35.4 56.6 27.1

4 Att2all greedy 113.8 34.2 56.0 26.5

(MIXER-) beam 113.6 33.9 55.9 26.5

Table 5: Performance of Ensembled XE and SCST-trained

models on the Karpathy test split (ensembled over 4 random

seeds). The models learned using self-critical sequence

training (SCST) were trained to optimize the CIDEr met-

ric. MIXER less CL results (MIXER-) are also included.

yet another state of the art result on Karpathy splits [21].

Note that in our case we ensemble only 4 models and we

don’t do any fine-tuning of the Resnet. NIC [23], in con-

trast, used an ensemble of 15 models with fine-tuned CNNs.

5.2. Online Evaluation on MS­COCO Server

Table 6 reports the performance of two variants of 4 en-

sembled attention models trained with self-critical sequence

training (SCST) on the official MSCOCO evaluation server.

The previous best result on the leaderboard (as of April 10,

2017) is also depicted. We outperform the previous best

system on all evaluation metrics.

6. Example of Generated Captions

Here we provide a qualitative example of the captions

generated by our systems for the image in figure 2. This

picture is taken from the objects out-of-context (OOOC)

dataset of images [24]. It depicts a boat situated in an un-

usual context, and tests the ability of our models to compose

descriptions of images that differ from those seen during

Ensemble Evaluation Metric

SCST models CIDEr BLEU4 ROUGEL METEOR

Ens. 4 (Att2all) 114.7 35.2 56.3 27.0

Ens. 4 (Att2in) 112.3 34.4 55.9 26.8

Previous best 104.9 34.3 55.2 26.6

Table 6: Performance of 4 ensembled attention mod-

els trained with self-critical sequence training (SCST)

on the official MSCOCO evaluation server (5 refer-

ence captions). The previous best result on the

leaderboard (as of 04/10/2017) is also depicted (

http://mscoco.org/dataset/#captions-leaderboard, Table C5,

Watson Multimodal).

training. The top 5 captions returned by the XE and SCST-

trained FC-2K, FC-15K, and attention model ensembles

when deployed with a decoding “beam” of 5 are depicted in

figure 3 3. On this image the FC models fail completely, and

the SCST-trained ensemble of attention models is the only

system that is able to correctly describe the image. In gen-

eral we found that the performance of all captioning systems

on MSCOCO data is qualitatively similar, while on images

containing objects situated in an uncommon context [24]

(i.e. unlike the MSCOCO training set) our attention mod-

els perform much better, and SCST-trained attention mod-

els output yet more accurate and descriptive captions. In

general we qualitatively found that SCST-trained attention

models describe images more accurately, and with higher

confidence, as reflected in Figure 3, where the average of

the log-likelihoods of the words in each generated caption

are also depicted. Additional examples, including an exam-

ple with the corresponding heat-maps for the SCST-trained

Att2in ensemble can be found in the supplementary material

(figure 8 of section D). We found that Att2in attention mod-

els performed better than our Att2all models when applied

to images “from the wild”, so here we focus on demonstrat-

ing the performance of our Att2in systems.

7. Discussion and Future Work

In this paper we have presented a simple and efficient

approach to more effectively baselining the REINFORCE

algorithm for policy-gradient based RL, which allows us

to more effectively train on non-differentiable metrics, and

leads to significant improvements in captioning perfor-

mance on MSCOCO—our results on the MSCOCO eval-

uation sever establish a new state-of-the-art on the task.

The self-critical approach, which normalizes the reward ob-

tained by sampled sentences with the reward obtained by

the model under the test-time inference algorithm is intu-

itive, and avoids having to estimate both action-dependent

and action-independent reward functions.

3pls. consult the the supp. material for further details on beam search.
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Figure 2: An image from the objects out-of-context (OOOC) dataset of images from [24].

(a) Ensemble of 4 Attention models
(Att2in) trained with XE.

(c) Ensemble of 4 FC-2K
models trained with XE.

(d) Ensemble of 4 FC-2K
models trained with SCST.

(b) Ensemble of 4 Attention models
(Att2in) trained with SCST.

(f) Ensemble of 4 FC-15K
models trained with SCST.

(e) Ensemble of 4 FC-15K
models trained with XE.

11/21/2016 Image Caption Generation Demo With Visual Attention

http://dccxc026.pok.ibm.com:60000/upload 1/2

IBM Watson

Image Caption Generation Demo With Visual
Attention

Image:     #captions: 

1. a blue of a building with a blue umbrella on it ­1.234499
2. a blue of a building with a blue and blue umbrella ­1.253700
3. a blue of a building with a blue umbrella ­1.261105
4. a blue of a building with a blue and a blue umbrella on top of it ­1.277339
5. a blue of a building with a blue and a blue umbrella ­1.280045

11/21/2016 Image Caption Generation Demo With Visual Attention

http://dccxc039.pok.ibm.com:60000/upload 1/2

IBM Watson

Image Caption Generation Demo With Visual
Attention

Image:     #captions: 

1. a blue boat is sitting on the side of a building ­0.194627
2. a blue street sign on the side of a building ­0.224760
3. a blue umbrella sitting on top of a building ­0.243250
4. a blue boat sitting on the side of a building ­0.248849
5. a blue boat is sitting on the side of a city street ­0.265613

11/21/2016 Image Caption Generation Demo

http://dccxc069.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a couple of bikes parked next to each other ­1.005856
2. a couple of bikes parked next to each other on a of a building ­1.039497
3. a couple of bikes parked next to each other on a building ­1.050528
4. a couple of bikes parked next to each other on a street ­1.055674
5. a couple of bikes parked next to a building ­1.070224

11/21/2016 Image Caption Generation Demo

http://dccxc032.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a statue of a man on a bike with a building ­0.376297
2. a statue of a building with a bicycle on a street ­0.414397
3. a statue of a bicycle on a building with a surfboard ­0.423379
4. a statue of a bicycle on a building with a umbrella ­0.430222
5. a statue of a building with a umbrella ­0.435535

11/21/2016 Image Caption Generation Demo

http://dccxc034.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a couple of bikes that are next to a building ­0.898723
2. a couple of bikes parked next to a building ­0.932335
3. a row of bikes parked next to a building ­0.950412
4. a row of bicycles parked next to a building ­0.971651
5. a couple of bikes parked next to each other ­0.985120

11/21/2016 Image Caption Generation Demo

http://dccxc055.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a scooter parked in front of a building ­0.326988
2. a group of a motorcycle parked in front of a building ­0.366700
3. a group of surfboards in front of a building ­0.386932
4. a scooter parked in front of a building with a clock ­0.429441
5. a scooter parked in front of a building with a building ­0.433893

Figure 3: Captions generated for the image depicted in Figure 2 by the various models discussed in the paper. Beside each

caption we report the average log probability of the words in the caption. On this image, which presents an object situated in

an atypical context [24], the FC models fail to give an accurate description, while the attention models handle the previously

unseen image composition well. The models trained with SCST return a more accurate and more detailed summary of the

image.
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Self-critical Sequence Training for Image Captioning:

Supplementary Material

A. Beam search

Throughout the paper and in this supplementary material we often refer to caption results and evaluation metric results

obtained using “beam search”. This section briefly summarizes our beam search procedure. While decoding the image to

generate captions that describe it, rather than greedily selecting the most probable word (N = 1), we can maintain a list of

the N most probable sub-sequences generated so far, generate posterior probabilities for the next word of each of these sub-

sequences, and then again prune down to the N -best sub-sequences. This approach is widely referred to as a beam search,

where N is the width of the decoding “beam”. In our experiments we additionally prune away hypotheses within the N -best

list that have a log probability that is below that of the maximally probable partial sentence by more than ∆log = 5. For all

reported results, the value of N is tuned on a per-model basis on the validation set (of the Karpathy splits). On MSCOCO

data, N = 2 is typically optimal for cross-entropy (XE) trained models and SCST-trained models, but in the latter case beam

search provides only a very small boost in performance. For our captioning demonstrations we set N = 5 for all models

for illustrative purposes, and because we have qualitatively observed that for test images that are substantially different from

those encountered during training, beam search is important.

B. Performance of XE versus SCST trained models

In tables 4 and 5 of the main text we compared the performance of models trained to optimize the CIDEr metric with

self-critical sequence training (SCST) with that of their corresponding bootstrap models, which were trained under the cross-

entropy (XE) criterion using scheduled sampling [8]. We provide some additional details about these experiments here. For

all XE models, the probability pf of feeding forward the maximally probable word rather than the ground-truth word was

increased by 0.05 every 5 epochs until reaching a maximum value of 0.25. The XE model with the best performance on the

validation set of the Karpathy splits was then selected as the bootstrap model for SCST (with the exception of the Att2all

attention models, where CE training was intentionally terminated prematurely to encourage more exploration during early

epochs of RL training).

For all models, the performance of greedily decoding each word at test time is reported, as is the performance of beam

search as described in the previous section. As reported in [7], we found that beam search using RL-trained models resulted

in very little performance gain. Figure 5 depicts the performance of our best Att2in model, which is trained to directly

optimize the CIDEr metric, as a function of training epoch and evaluation metric, on the validation portion of the Karpathy

splits. Optimizing CIDEr clearly improves all of the MSCOCO evaluation metrics substantially.

C. Performance of MIXER versus SCST trained models

SCST consistently outperforms MIXER by more than four CIDER points (c.f. figure 4 and table 1).

D. Examples of Generated Captions

Figures 6-14 depict demonstrations of the captioning performance of all systems. In general we found that the perfor-

mance of all captioning systems on MSCOCO data is qualitatively similar, while on images containing objects situated in an

uncommon context [24] (i.e. unlike the MSCOCO training set) our attention models perform much better, and SCST-trained

attention models output yet more accurate and descriptive captions. Attention heat-maps for the image and corresponding

captions depicted in figure 6 and 7 are given in figure 8. The heatmaps of the attention weights are reasonably inline with the

predicted words in both cases, and the SCST attention weights are spatially sharper here, and in general.

E. Further details and analysis of SCST training

One detail that was crucial to optimizing CIDEr to produce better models was to include the EOS tag as a word. When the

EOS word was omitted, trivial sentence fragments such as “with a” and “and a” were dominating the metric gains, despite

the “gaming” counter-measures (sentence length and precision clipping) that are included in CIDEr-D [13], which is what

we optimized. Including the EOS tag substantially lowers the reward allocated to incomplete sentences, and completely

resolved this issue. Another more obvious detail that is important is to associate the reward for the sentence with the first

7017



EOS encountered. Omitting the reward from the first EOS fails to reward sentence completion which leads to run-on, and

rewarding any words that follow the first EOS token is inconsistent with the decoding procedure.

This work has focused on optimizing the CIDEr metric, since, as discussed in the paper, optimizing CIDER substantially

improves all MSCOCO evaluation metrics, as was shown in tables 4 and 5 and is depicted in figure 5. Nevertheless, directly

optimizing another metric does lead to higher evaluation scores on that same metric as shown, and so we have started to

experiment with including models trained on Bleu, Rouge-L, and METEOR in our Att2in ensemble to attempt to improve it

further. So far we have not been able to substantially improve performance w.r.t. the other metrics without more substantially

degrading CIDEr.
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Figure 4: SCST vs. MIXER (FC models) over multiple random seeds.
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Figure 5: Performance of our best Att2in model, which is trained to directly optimize the CIDEr metric, as a function of

training epoch on the validation portion of the Karpathy splits, for the CIDEr, BLEU-4, ROUGE-L, and METEOR MSCOCO

evaluation metrics. Optimizing CIDEr improves all of these evaluation metrics substantially.
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Figure 6: Picture of a common object in MSCOCO (a giraffe) situated in an uncommon context (out of COCO domain) [24].

11/15/2016 Image Caption Generation Demo With Visual Attention

http://dccxc027.pok.ibm.com:60000/upload 1/2

IBM Watson

Image Caption Generation Demo With Visual
Attention

Image:     #captions: 

1. a person holding a giraffe in a field ­0.210482
2. a person holding a giraffe in a hand ­0.292092
3. a person holding a banana in a hand ­0.297332
4. a person holding a banana in their hand ­0.304586
5. a person holding a giraffe in their hand ­0.318557

11/15/2016 Image Caption Generation Demo

http://dccxc031.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a small child is holding a carrot to a giraffe ­1.129857
2. a young boy is holding a small bird ­1.192267
3. a small child is holding a small bird ­1.192312
4. a small child is holding a carrot and a giraffe ­1.263775
5. a small child is holding a small toy ­1.303991

(a) Ensemble of 4 Attention models
(Att2in) trained with XE.

11/15/2016 Image Caption Generation Demo

http://dccxc230.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a young boy sitting on a table with a bird ­0.414382
2. a person holding a bird in a hand ­0.443672
3. a young boy sitting on a table with a giraffe ­0.489850
4. a person holding a bird on a giraffe ­0.517687
5. a young boy holding a bird on a hand ­0.525539

(c) Ensemble of 4 FC-2K
models trained with XE.

(d) Ensemble of 4 FC-2K
models trained with SCST.

(b) Ensemble of 4 Attention models
(Att2in) trained with SCST.

11/15/2016 Image Caption Generation Demo With Visual Attention

http://dccxc026.pok.ibm.com:60000/upload 1/2

IBM Watson

Image Caption Generation Demo With Visual
Attention

Image:     #captions: 

1. a person is holding a small animal in their hand ­1.000011
2. a person is holding a baby giraffe ­1.029134
3. a person is holding a small giraffe in their hand ­1.031801
4. a person is holding a small animal in their hands ­1.053029
5. a person is holding a small giraffe ­1.056967

(f) Ensemble of 4 FC-15K
models trained with SCST.

(e) Ensemble of 4 FC-15K
models trained with XE.

11/15/2016 Image Caption Generation Demo

http://dccxc041.pok.ibm.com:60000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a person is holding a cat in a hand ­0.301403
2. a person is holding a bird in a hand ­0.302861
3. a person is holding a carrot in a hand ­0.350183
4. a woman is holding a bird in a hand ­0.354565
5. a person is holding a carrot in a cat ­0.390414

11/15/2016 Image Caption Generation Demo

http://dccxc027.pok.ibm.com:50000/upload 1/1

IBM Watson

Image Caption Generation Demo
Image:     #captions: 

1. a close up of a person holding a small bird ­0.806333
2. a close up of a person holding a baby ­0.854018
3. a close up of a person holding a small toy ­0.871933
4. a close up of a person holding a remote ­0.875986
5. a close up of a person holding a hand holding a carrot ­0.932223

Figure 7: Captions generated by various models discussed in the paper to describe the image depicted in figure 6. Beside

each caption we report the average of the log probabilities of each word, normalized by the sentence length. Notice that

the attention models trained with SCST give an accurate description of this image with high confidence. Attention models

trained with XE are less confident about the correct description. FC models trained with CE or SCST fail at giving an accurate

description.
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11/15/2016 Image Caption Generation Demo With Visual Attention

http://dccxc026.pok.ibm.com:60000/upload 2/2

11/15/2016 Image Caption Generation Demo With Visual Attention

http://dccxc026.pok.ibm.com:60000/upload 2/2
(a) Attention heat-maps for the best model in the XE-trained ensemble of attention models, for the image depicted in figure

6. 11/15/2016 Image Caption Generation Demo With Visual Attention

http://dccxc027.pok.ibm.com:60000/upload 2/2

(b) Attention heat-maps for the best model in the SCST-trained ensemble of attention models, for the image

depicted in figure 6.

.

Figure 8: Attention heat-maps.
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Figure 9: An image from the MSCOCO test set (Karpathy splits).

Figure 10: Captions generated for the image depicted in Figure 9 by various models discussed in the paper. Beside each

caption we report the average log probability of the words in the caption. All models perform well on this test image from the

MSCOCO distribution. More generally we have observed that qualitatively, all models perform comparably on the MSCOCO

test images.
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Figure 11: An image from the objects out-of-context (OOOC) dataset of images from [24].

Figure 12: Captions generated for the image depicted in Figure 11 by the various models discussed in the paper. Beside each

caption we report the average log probability of the words in the caption. On this image, which presents an object situated in

an atypical context [24], the FC models fail to give an accurate description, while the attention models handle the previously

unseen image composition well. The models trained with SCST return a more accurate and more detailed summary of the

image.
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Figure 13: An image from the objects out-of-context (OOOC) dataset of images from [24].

Figure 14: Captions generated for the image depicted in Figure 13 by the various models discussed in the paper. Beside each

caption we report the average log probability of the words in the caption. On this image, which presents an object situated in

an atypical context [24], the FC models fail to give an accurate description, while the attention models handle the previously

unseen image composition well. The models trained with SCST return a more accurate and more detailed summary of the

image.
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