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Figure 1: Results of the proposed network. Reconstructed geometries are shown next to the corresponding input images.

Abstract

Reconstructing the detailed geometric structure of a face

from a given image is a key to many computer vision and

graphics applications, such as motion capture and reen-

actment. The reconstruction task is challenging as human

faces vary extensively when considering expressions, poses,

textures, and intrinsic geometries. While many approaches

tackle this complexity by using additional data to recon-

struct the face of a single subject, extracting facial surface

from a single image remains a difficult problem. As a re-

sult, single-image based methods can usually provide only

a rough estimate of the facial geometry. In contrast, we pro-

pose to leverage the power of convolutional neural networks

to produce a highly detailed face reconstruction from a sin-

gle image. For this purpose, we introduce an end-to-end

CNN framework which derives the shape in a coarse-to-fine

fashion. The proposed architecture is composed of two main

blocks, a network that recovers the coarse facial geometry

(CoarseNet), followed by a CNN that refines the facial fea-

tures of that geometry (FineNet). The proposed networks

are connected by a novel layer which renders a depth image

given a mesh in 3D. Unlike object recognition and detection

problems, there are no suitable datasets for training CNNs

to perform face geometry reconstruction. Therefore, our

training regime begins with a supervised phase, based on

synthetic images, followed by an unsupervised phase that

uses only unconstrained facial images. The accuracy and

robustness of the proposed model is demonstrated by both

qualitative and quantitative evaluation tests.

1. Introduction

Faces, with all their complexities and vast number of

degrees of freedom, allow us to communicate and express

ourselves through expressions, mimics, and gestures. Fa-

cial muscles enable us to express our emotions and feel-

ings, while facial geometric features determine one’s iden-

tity. However, the flexibility of these qualities makes the

recovery of facial geometry from a flat image a challenge.

Moreover, additional ambiguities arise as the projection of a

face onto an image depends also on its texture and material

properties, lighting conditions, and viewing direction.

Various methods mitigate this uncertainty by using addi-

tional data such as a large photo collection of the same sub-

ject [36, 35, 21, 28, 33], continuous video frames [44, 40,

5, 11] or a rough depth map [44, 18]. In many cases, how-

ever, we only have access to a single facial image. In this

setup, common schemes can be divided to 3D morphable

model (3DMM) techniques [3, 4], template-based methods

[20, 15] and data-driven approaches [26, 41, 34].

Here, we propose an end-to-end neural network for re-

constructing a detailed facial surface in 3D from a single

image. At the core of our method is the idea of breaking

the reconstruction problem into two phases, each solved by

a dedicated neural network architecture. First, we introduce

CoarseNet, a network for recovering the coarse facial ge-

ometry as well as the pose of the face directly from the im-

age. To train CoarseNet, a synthetic dataset of facial images

with their matching face geometry and pose is synthetically

generated. The rough facial geometries are modeled using

a 3DMM [3], which provides a compact representation that

can be recovered using the proposed network. However,
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this representation can only capture coarse geometry recon-

struction. Next, in order to capture fine details, we introduce

FineNet, a network that operates on depth maps and thus

is not constrained by the morphable model representation.

FineNet receives a coarse depth map, alongside the original

input images and applies a shape-from-shading like refine-

ment, capturing the fine facial details. To train FineNet, we

use an unlabeled set of facial images, where a dedicated loss

criterion is introduced, to allow unsupervised training. Fi-

nally, to connect between the CoarseNet 3DMM output and

the FineNet depth map input, we introduce a novel layer

which takes the 3DMM representation and pose parame-

ters from CoarseNet, and produces a depth map that can be

fed into FineNet. This layer supports back-propagation to

the 3DMM representation allowing joint training of the two

networks, possibly refining the weights of CoarseNet.

The usage of an end-to-end network here is exciting as

it connects the problem of face reconstruction to the rapidly

expanding applications solved by CNNs, potentially allow-

ing us to further improve our results following new ad-

vances in CNN architectures. Moreover, it allows fast re-

constructions without the need for external initialization or

post-processing algorithms. The potential of using a CNN

for reconstructing face geometries was recently demon-

strated in [34]. However, their network can only produce

the coarse geometry, and must be given an aligned template

model as initialization. These limitations force their solu-

tion to depend on external algorithms for pose alignment

and detail refinement.

The main contributions of the proposed method include:

• An end-to-end network-based solution for facial sur-

face reconstruction from a single image, capable of

producing detailed geometric structures.

• A novel rendering layer, allowing back-propagation

from a rendered depth map to the 3DMM model.

• A network for data refinement, using a dedicated loss

criterion, motivated by axiomatic shape-from-shading

objectives.

• A training scheme that bypasses the need for manually

labeled data by utilizing only synthetic data and unla-

beled facial images.

2. Related Work

Automatic face reconstruction attracts a lot of atten-

tion in the computer vision and computer graphics research

communities. The available solutions differ in their as-

sumptions about the input data, the priors and the tech-

niques they use. When dealing with geometry reconstruc-

tion from a single image, the problem is ill-posed. Still,

there are ways for handling the intrinsic ambiguities in ge-

ometry reconstruction from one image. These solutions can

be roughly divided into the following categories:

3DMM Methods. In [3], Vetter and Blantz introduced

the 3D Morphable Model (3DMM), a principal components

analysis (PCA) basis for representing faces. One of the ad-

vantages of using the 3DMM is that the solution space is

constrained to represent only likely solutions, thereby sim-

plifying the problem. While the original paper assumes

manual initialization, more recent efforts propose an auto-

matic reconstruction process [4, 48]. Still, the automated

initialization pipelines usually do not produce the same

quality of reconstructions when only one image is used, as

noted in [33]. In addition, the 3DMM solutions cannot ex-

tract fine details since they are not spanned by the principal

components.

Template-Based Methods. An alternative approach is

to solve the problem by deforming a template to match the

input image. One notable paper is that of Kemelmacher-

Shlizerman and Basri [20]. There, a reference model is

aligned with the face image and a shape-from-shading (SfS)

process is applied to mold the reference model to bet-

ter match the image. Similarly, Hassner [15] proposed to

jointly maximize the appearance and depth similarities be-

tween the input image and a template face using SIFT-

flow [24]. While these methods do a better job in recovering

the fine facial features, their capability to capture the global

face structure is limited by the provided template initializa-

tion.

Data-Driven Methods. A different approach to the

problem uses some form of regression to connect be-

tween the input image and the reconstruction representa-

tion. Some methods apply a regression model from a set

of sparse landmarks [1, 10, 25], while others apply a re-

gression on features derived from the image [22, 7]. [26]

applies a joint optimization process that ties the sparse land-

marks with the face geometry, recovering both. Recently, a

network was proposed to directly reconstruct the geometry

from the image [34], without using sparse information or

explicit features. That paper demonstrated the potential of

using a network for face reconstruction. Still, it required ex-

ternal procedures for fine details extraction as well as initial

guess of the face location, size, and pose.

In a sense, the proposed solution combines all of these

different procedures. Specifically, a 3DMM is used to de-

fine the input for a Template-Based refinement step, where

both parts are learned using a Data-Driven model.

3. Coarse Geometry Reconstruction

The first step in our framework is to extract the coarse fa-

cial geometry and pose from the given image. Our solution

is motivated by two recent efforts, [34] which proposed to

train a network for face reconstruction using synthetic data,
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and [47] which solved the face alignment problem using a

network. Although the methods focus on different prob-

lems, they both use an iterative framework which utilizes a

3D morphable model. The proposed method integrates both

concepts into a holistic alignment and geometry reconstruc-

tion solution.

3.1. Modeling The Solution Space

In order to solve the reconstruction problem using a

CNN, a representation of the solution space is required. To

model the facial geometries we use a 3D morphable model

[3], where an additional blendshape basis is used to model

expressions, as suggested in [8]. This results in the follow-

ing linear representation

S = µS +Aidαid +Aexpαexp. (1)

Where µS is the average 3D face, Aid is the principal com-

ponent basis, Aexp is the blendshape basis, and αid and

αexp are the corresponding coefficient vectors. Aid and

Aexp are collected from the Bosphorus dataset [37] as in

[34], where the identity is modeled using 200 coefficients,

and the expression using 84.

For projecting the 3D model to the image plane, we as-

sume a parallel weak perspective projection.

[

px
py

]

=

[

f 0 0
0 f 0

]

[R|t]









Px

Py

Pz

1









, (2)

where p, P are the pixel location in the image plane and

in the world coordinate system, respectively, f is the fo-

cal length, and [R|t] is the extrinsic matrix of the camera.

Hence, the face alignment is modeled using only 6 parame-

ters: 3 Euler angles, a 2D translation vector and a scale. The

pose parameters are normalized so that a zero vector would

correspond to a centralized front facing face. Overall, we

have a representation of 290 parameters for both geometry

and pose. We will denote this representation as r.

3.2. The CoarseNet Training Framework

The realization that the power of single-pass systems is

limited, has made the application of iterative networks pop-

ular. While some methods [39, 23] use a cascade of net-

works to refine their results, it has been shown that a single

network can also be trained to iteratively correct its predic-

tion. This is done by adding feedback channels to the net-

work that represent the previous output of the network as a

set of feature maps. The network is then trained to refine

its prediction based on both the original input and the feed-

back channels. This idea was first proposed by Carreira et

al. in [6].

(a) (b) (c) (d) (e) (f)

Figure 2: Feedback representation. (a,d) are masked input

images, (b,e) are the corresponding PNCCs of the network’s

output and (c,f) are the resulting normal maps.

3.2.1 Feedback Representation

Defining the feedback channels of the previous output of

the network is crucial, as it would affect the overall per-

formance of our iterative framework. Roughly speaking,

we would like the feedback channels to properly represent

the current state of the coarse facial geometry. In practice,

different types of feedback channels would emphasize dif-

ferent features of the current state. For instance, in [47]

the Projected Normalized Coordinate Code (PNCC) was in-

troduced. This feature map is computed by first normal-

izing the average face and painting the RGB channels of

the current vertices with the x, y and z coordinates of the

corresponding vertex on the average model, see Figures 2b

and 2e.

Next, we propose to use the normal map as an additional

channel, where each vertex is associated with its normal co-

ordinates. These normal values are then rendered as RGB

values. The purpose of the normal map is to represent more

local features of the coarse geometry, which are not empha-

sized by the PNCC. The proposed solution uses both feed-

backs, creating a richer representation of the shape. Exam-

ples of these representations are shown in Figure 2.

3.2.2 Acquiring The Data

In order to train the proposed framework, a large dataset

of 3D faces is required. However, due to the complexity

in acquiring accurate 3D scans for a large group of people,

no such dataset is currently available. Note that unlike dif-

ferent annotations, such as landmark positions, which can

be manually collected for an existing set of unlabeled im-

ages, the 3D geometry has to be captured jointly with the

photometric data. A possible solution would be to apply

existing reconstruction methods to 2D images and use these

reconstructions as labels. However, such an approach would

limit the reconstruction quality to that of the reconstruction

method we use.

Here, we choose to follow the line of thought proposed

in [34] and create a synthetic dataset by drawing random

representations of geometry and pose, rgt, which are then

rendered using random texture, lighting, and reflectance.

This process provides a dataset of 2D images, for which the

pose and corresponding geometry are known by construc-
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(a) CoarseNet (b) FineNet

2x2 Max Pooling2x2 Upconvolution

Figure 3: The End-to-End network, composed of CoarseNet, FineNet and the rendering layer.

tion. The iterative refinement process is then simulated by

drawing another set of parameters, rt, which is sampled be-

tween rgt and a random set of parameters, rrnd.

rt = β · rgt + (1− β) · rrnd, 0 ≤ β ≤ 1, (3)

rt represents the current estimation of the solution, and is

used to generate the PNCC and normal map. The network

is then trained to predict the ground-truth, rgt, representa-

tion from the current one, rt. Note, that unlike [34] our

representation r captures not only the geometry, but also

the pose. Hence rgt and rrnd can vary also in their position

and orientation.

3.3. The CoarseNet Architecture and Criterion

CoarseNet is based on the ResNet architecture [17], and

is detailed in Figure 3. Note that the input layer includes the

feedback channel and that a grayscale image is used. The

last element in the proposed architecture is the training cri-

terion. As our representation is composed of both geometry

and pose parameters, we choose to apply a different training

criterion for each part of the representation. For the geom-

etry we apply the Geometry Mean Square Error (GMSE)

suggested in [34],

L (α̂, α) =
∥

∥

[

Aid|Aexp
]

α̂−
[

Aid|Aexp
]

α
∥

∥

2

2
, (4)

where α̂ is the geometry received from the network, and

α is the known geometry. The idea behind GMSE is to

take into account how the different coefficients affect the

resulting geometry. For the pose parameters we found that

a simple MSE loss over the 6 parameters is sufficient. We

weigh the two loss criteria so that we get approximately the

same initial error for both.

3.4. Using CoarseNet

We feed CoarseNet with a 200 × 200 image of a face.

Such an image can be automatically acquired using a stan-

dard face detector, such as the Viola-Jones detector [42].

The initial parameters vector, r0, is set to zeros, correspond-

ing to a centered mean face µS . In addition, the input image

is always masked in accordance with the visible vertices in

the feedback channel. The masking is applied in order to

improve our generalization capability from synthetic data

to real-world images, as our synthetic data is more accurate

for the head region. Although the mask is inaccurate in the

first iteration, it is gradually refined. The network is then ap-

plied iteratively, producing the updated geometry rt, which

is used to create the new feedback input. This process is

repeated until convergence, as shown in Figure 4.

4. The Coarse to Fine Approach

For many tasks, such as face frontalization [48, 16], re-

constructing the coarse geometry is sufficient. However,

reconstructing fine geometric structures such as wrinkles

could be useful for other applications , see [5, 38]. It is

clear that while working in the morphable model domain,

we cannot capture such details. To solve that, we transfer

the problem to the unconstrained image plane, represent-

ing the geometry as a depth map. The role of the proposed

FineNet would then be to modify the given coarse depth

map, based on the original image, for capturing the fine de-

tails.

4.1. The Rendering Layer

To connect CoarseNet with FineNet we propose a novel

rendering layer. The layer receives the geometry and pose

Figure 4: Progress through iterations. For each iteration the

following are shown from top to bottom: The cropped input

image, the PNCC and the normal map.
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3DMM Representation Triangular Mesh Depth Map

Figure 5: Gradient flow. Gradients from FineNet are first

propagated to the depth map, and then propagated from

each pixel to the matching vertices. The gradients on the

triangular mesh are then propagated back to the morphable

model representation.

representation vector as the input and outputs a 200 × 200
depth map of the geometry in the corresponding pose. This

is done in two steps, first the 3D mesh is calculated from the

geometry parameters and positioned above the image plane,





px
py
pz



 =





f 0 0
0 f 0
0 0 1



R
[

Aid|Aexp
]

α̂+





tx
ty
0



 .

(5)

The 3D mesh is then rendered using a z-buffer renderer,

where each pixel is associated with a single triangular face

from the mesh. In order to handle potential occlusions,

when a single pixel resides in more than one triangle, the

one that is closest to the image plane is chosen. The value

of each pixel is determined by interpolating the z-values of

the mesh face using barycentric coordinates

z̃ = λ0z0 + λ1z1 + λ2z2, (6)

where zi is the z-value of the ith vertex in the respective tri-

angle and λi is the corresponding coordinate. During back-

propagation the gradients are passed from each pixel to the

matching vertex, weighted by the corresponding coordinate,

dE

dzi
=

dE

dz̃

dz̃

dzi
=

dE

dz̃
λi, (7)

where E is the loss criterion. Note that we assume that the

barycentric coordinates are fixed. Alternatively, one could

derive the coordinates with respect to xi and yi. Note that

no gradients are propagated to hidden vertices since they

do not appear in the output depth map. A similar approach

was applied for example in [49]. Finally, the gradients are

propagated from each vertex back to the geometry basis, by

taking the derivative of Equation 5 with respect to α̂. The

gradients transfer is visualized in Figure 5.

4.2. FineNet Framework

Delicate facial features such as wrinkles and dimples are

difficult to represent by a 3DMM low dimensional space,

mainly due to their high diversity. Hence, in contrast to

CoarseNet, we need to use a pixel-based framework to

recover the fine details. Recently, several notable pixel-

based CNN architectures [12, 27, 14] were used for vari-

ous fine grained tasks like semantic and instance segmen-

tation [27, 14], optical flow [9], and human pose estima-

tion [43]. First successful attempts to reconstruct surface

normals using these architectures [2, 45] have motivated our

FineNet architecture. The proposed framework differs from

both these networks in its output (depth map vs. normal

map) and training regime (unsupervised vs. supervised).

The FineNet is based on the hypercolumn architecture

suggested in [14]. The main idea behind this architecture is

to generate a per-pixel feature map which incorporates both

structural and semantic data. This is achieved by concate-

nating the output responses from several convolution layers

along the path of the network. Due to pooling layers, the

output maps size of inner layers does not match the size of

the input image, therefore, they are interpolated back to the

original size, to create a dense per-pixel volume of features.

This volume is then processed by several 1× 1 convolution

layers to create the final prediction.

We choose the VGG-Face [31] as a base for our hy-

percolumn network since it was fine tuned on a domain

of faces. For interpolating, we apply a slightly different

scheme than that of [14]. Instead of directly upsampling

each feature map to the original size using bilinear interpo-

lation, we use cascaded 2-strided 2×2 upconvolution layers

to upsample the feature maps. This is done in order to im-

prove the quality of the features, as the interpolation is now

also part of the learning process. In contrast to recogni-

tion problems, refining the facial features is a relatively lo-

cal problem. Therefore, we truncate the VGG-Face network

before the third pooling layer and form a 200×200×450 hy-

percolumn feature volume. This volume is then processed

by a set of 1×1 convolutional layers used as a linear regres-

sor. Note, that this fully convolutional framework allows

us to use any size of input images. Figure 3 describes the

FineNet architecture.

4.3. FineNet Unsupervised Criterion

To train FineNet some form of loss function is required.

One possible solution would be to simply use an MSE crite-

rion between the network output and a high-quality ground-

truth depth map. This would allow the network to implicitly

learn how to reconstruct detailed faces from a single image.

Unfortunately, as mentioned in Section 3.2.2, a large dataset

of detailed facial geometries with their corresponding 2D

images is currently unavailable. Furthermore, a synthetic

dataset for this task cannot be generated using morphable

models as there is no known model that captures the diver-

sity of fine facial details. Instead, we propose an unsuper-

vised learning process where the loss criterion is determined

by an axiomatic model. To achieve that, we need to find a
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measure that relates the output depth map to the 2D image.

To that end, we resort to Shape from Shading (SfS).

Recent results in SfS [20, 46, 13, 30, 29] have shown that

when given an initial rough surface, subtle geometry details

can be accurately recovered under various lighting condi-

tions and multiple surface albedos. This is achieved by op-

timizing some objective function which ties the geometry to

the input image. In our case, an initial surface is produced

by CoarseNet and its depth map representation is fed into

FineNet along with the input image. We then formulate an

unsupervised loss criterion based on the SfS objective func-

tion, transforming the problem from an online optimization

problem to a regression one.

4.3.1 From SfS Objective to Unsupervised Loss

Our unsupervised loss criterion was formulated in the spirit

of [30, 29]. The core of our loss function is an image for-

mation term, which describes the connection between the

network’s output depth map and its input image. This term

drives the network to learn fine detail recovery and is de-

fined as

Esh =
∥

∥

∥
ρ
〈

~l, ~Y (ẑ)
〉

− I
∥

∥

∥

2

2

. (8)

Here, ẑ is the reconstructed depth map, I is the input in-

tensity image, ρ is the albedo image, and ~l are the first-

order spherical harmonics coefficients. Y (ẑ) represents the

matching spherical harmonics basis,

Y (ẑ) = (1, nx(ẑ), ny(ẑ), nz(ẑ)) , (9)

where (nx(ẑ), ny(ẑ), nz(ẑ)) is the normal expressed as a

function of the depth. Notice that while I is an input to

FineNet, the scene lighting ~l and albedo map ρ are un-

knowns. Generally, the need to recover both lighting and

albedo is part of the ambiguity in SfS problems. However,

here we can utilize the fact we do not solve a general SfS

problem, but one constrained to human faces. This is done

by limiting the space of possible albedos to a low dimen-

sional 3DMM texture subspace.

ρ ≈ T = µT +ATαT . (10)

where µT is the average face texture, AT is a principal com-

ponent basis and αT is the corresponding coefficients vec-

tor. In our implementation, 10 coefficients were used.

Now, as shown in [20], the global lighting can be cor-

rectly recovered by assuming the average facial albedo,

ρ̂ = µT , using the coarse depth map, z0, as follows

~l∗ = argmin
~l

∥

∥

∥
ρ̂
〈

~l, ~Y (z0)
〉

− I
∥

∥

∥

2

2

. (11)

Note that this is an overdetermined linear problem that can

be easily solved using least squares. Given the lighting co-

Figure 6: Light and albedo recovery. Images are presented

next to the recovered albedo, rendered with the recovered

lighting.

efficients, the albedo can also be easily recovered as

α∗

T = argmin
αT

∥

∥

∥
(µT +ATαT )

〈

~l∗, ~Y (z0)
〉

− I
∥

∥

∥

2

2

. (12)

As in Equation 11, this is an overdetermined linear problem

that can be solved directly. Based on the resulting albedo

and lighting coefficients we can calculate Esh and its gradi-

ent with respect to ẑ. A few recovery samples are presented

in Figure 6. To regularize the solution, fidelity and smooth-

ness terms are added to the criterion of FineNet.

Ef = ‖ẑ − z0‖
2

2
,

Esm = ‖∆ẑ‖1, (13)

where ∆ is the discrete Laplacian operator. These terms

guarantee that the solution would be smooth and would not

stray from the prediction of CoarseNet. The final per-pixel

loss function is then defined as

L(ẑ, z0, I) = λshEsh(ẑ, I) + λfEf (ẑ, z0) + λsmEsm(ẑ).
(14)

Where the λs determine the balance between the terms and

were set as λsh = 1, λf = 5e−3, λsm = 1. The gradi-

ent of L with respect to ẑ is then calculated and used for

backpropagation.

4.3.2 Unsupervised Loss - a Discussion

The usage of unsupervised criterion has some desired traits.

First, it eliminates the need for an annotated dataset. Sec-

ond, it ensures that the network is not limited by the perfor-

mance of any algorithm or the quality of the dataset. This

results from the fact that the loss function is entirely de-

pendent on the input, in contrast to supervised learning SfS

schemes such as [45] and [2], where the data is generated

by either photometric stereo or raw Kinect scans, respec-

tively. In addition, unlike traditional SfS algorithms, the

fact that the albedo and lighting coefficients are calculated

only as part of the loss function means that at test time the

network can produce accurate results directly from the in-

tensity and depth inputs, without explicitly calculating the

albedo and lighting information. Although the CoarseNet

can be trained to generate the lighting and albedo parame-

ters, we chose not to include them in the pipeline for two

reasons. First, the lighting and albedo are only needed for
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Figure 7: Criterion flow. Gradients from both loss criteria

are propagated back to CoarseNet.

the training stage and have no use during testing. Second,

both (11) and (12) are over-determined systems which can

be solved efficiently with least squares, thus, using a CNN

for this task would be redundant.

4.4. End­to­End Network Training

Finally, in order to train FineNet, we connect it to

CoarseNet using the proposed rendering layer which is

added between the two networks. Thus, a single end-to-end

network is created. We then use images from the VGG face

dataset [31], and propagate them through the framework.

The forward pass can be divided into three main steps.

First, each such image is propagated through CoarseNet for

four iterations, creating the coarse geometry representation.

Then, the rendering layer transforms the 3DMM represen-

tation to a depth map. Finally, the depth map, alongside the

original input image, is propagated through FineNet result-

ing in the dense updated depth map. The criterion presented

in 4.3 is then used to calculate the loss gradient. The gra-

dient is backpropagated through the network allowing us to

train FineNet and fine-tune CoarseNet.

Note that the fact that CoarseNet was already trained is

crucial for a successful training. This stems from the fact

that the unsupervised loss function depends on the coarse

initialization, which cannot be achieved without the syn-

thetic data. In order to prevent CoarseNet from deviating

too much from the original coarse solution, a fidelity cri-

terion is added to CoarseNet’s output. This criterion is

the MSE between the current CoarseNet solution and the

original one. Gradients from both FineNet and the fidelity

loss are then weighted and passed through CoarseNet, fine-

tuning it, as presented in Figure 7.

5. Experiments

In order to evaluate the proposed framework we per-

formed several experiments to test its accuracy on both 3D

facial datasets and in the wild inputs. Both qualitative and

quantitative evaluations are used to demonstrate the strength

of the proposed solution. Our method is compared to the

template based method of [20], to the 3DMM based method

introduced as part of [48] and to the data driven method

of [34]. Note that unlike our method, all of the above re-

quire alignment information. We use the state-of-the-art

alignment method of [19] to provide input for these algo-

rithms.

For a qualitative analysis we show our results on 400 ×
400 in-the-wild images of faces. As can be seen in Fig-

ure 10, our method exposes the fine facial details as opposed

to [48, 34] and is more robust to expressions and different

poses than [20]. In addition, we compare our reconstruc-

tions with a state of the art method for reconstruction from

multiple images [36]. The results are shown in Figure 8,

one can see that our method is able to produce a compara-

ble high quality geometry from only a single image. Finally,

Figure 9 shows our method robustness to different poses,

while Figure 1 shows some more reconstruction results.

For a quantitative analysis of our results we used the

Face Recognition Grand Challenge dataset V2 [32]. This

dataset consists of roughly two thousand color facial images

aligned with ground truth depth of each pixel. Each method

provided an estimated depth image and a binary mask rep-

resenting the valid pixels. For the purpose of fair judgment,

we evaluated the accuracy of each method on pixels which

were denoted as valid by all the methods. As shown in Ta-

ble 1, our method produce the lowest depth error among the

tested methods.

Finally, as noted in Section 4.2 the fully convolutional

FineNet can receive inputs with varying sizes. This size in-

variance is a vital property for our detail extraction network,

as it allows the network to extract more details when a high

quality input image is available. Figure 11 shows that al-

though our network was trained only on 200 × 200 images

it gracefully scales up for 400× 400 inputs.

6. Discussion

The proposed framework separated the training process

into two phases, starting with the training of CoarseNet us-

ing synthetic data. While using artificial data allows us

to gather the large amounts of data required for training,

it does present some limitations in terms of generaliza-

(a) (b) (c) (d) (e)

Figure 8: (a) and (c) are two input images, (b) and (d) are

their 3D reconstruction via the proposed method. (e) is a

reconstruction of the same subject, based on 100 different

images recovered with the method proposed in [36].

Figure 9: Method robustness. Our method shows some ro-

bustness to extreme orientations, even in nearly 90◦ angles.
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Input Ours [20] [34] [48] Ours [20] [34] [48]

Figure 10: Qualitative results. Input images are presented alongside the reconstruction results of different methods from two

different viewpoints. Note that unlike the other methods, the proposed approach is robust to pose and expression variations,

while still capturing subtle facial details.

(a) (b) (c) (d)

Figure 11: Input scaling. (a) is the input image and (b) is

the coarse depth map from CoarseNet. In (c) the output of

FineNet for a 200 × 200 input is presented, while in (d) a

400× 400 input is used.

tion. For example, we found that our network might fail

when tested upon unique facial features that were not part

of the training data, such as beards, makeup, and glasses,

as can be seen in the supplementary material. The second

phase of the training is the unsupervised end-to-end training

scheme. While we found that this step successfully trains

FineNet, it only slightly tunes CoarseNet. We believe that

is because the loss function of FineNet is more sensitive to

high frequencies, while the 3DMM model captures mainly

coarse facial geometries. Still, it would be interesting to see

whether one can push the idea of end-to-end training fur-

ther, to significantly affect CoarseNet and possibly even to

remove its dependency on synthetic data.

Method Ave. Depth Err. [mm] 90% Depth Err. [mm]

Ours 3.22 6.69

[20] 3.33 7.02

[34] 4.11 8.70

[48] 3.46 7.36

Table 1: Quantitative comparison. Depth estimation errors

of the different methods are presented.

7. Conclusion

We proposed an end-to-end approach for detailed face

reconstruction from a single image. The method is com-

prised of two main blocks, a network for recovering a rough

estimation of the face geometry followed by a fine details

reconstruction network. While the former is trained with

synthetic images, the latter is trained with real facial images

in an end-to-end unsupervised training scheme. To connect

the two networks a differentiable rendering layer is intro-

duced. As demonstrated by our comparisons, the proposed

framework outperforms recent state-of-the-art approaches.
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