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Abstract

This paper addresses the problem of weakly supervised

semantic image segmentation. Our goal is to label every

pixel in a new image, given only image-level object labels

associated with training images. Our problem statement

differs from common semantic segmentation, where pixel-

wise annotations are typically assumed available in training.

We specify a novel deep architecture which fuses three dis-

tinct computation processes toward semantic segmentation –

namely, (i) the bottom-up computation of neural activations

in a CNN for the image-level prediction of object classes;

(ii) the top-down estimation of conditional likelihoods of

the CNN’s activations given the predicted objects, result-

ing in probabilistic attention maps per object class; and

(iii) the lateral attention-message passing from neighboring

neurons at the same CNN layer. The fusion of (i)-(iii) is

realized via a conditional random field as recurrent network

aimed at generating a smooth and boundary-preserving seg-

mentation. Unlike existing work, we formulate a unified

end-to-end learning of all components of our deep archi-

tecture. Evaluation on the benchmark PASCAL VOC 2012

dataset demonstrates that we outperform reasonable weakly

supervised baselines and state-of-the-art approaches.

1. Introduction

This paper addresses the problem of semantic image seg-

mentation under weak supervision. Given an image, our goal

is to assign an object class label to every pixel. Knowledge

about the objects is learned from training images with only

image-level class labels, i.e., image tags. Our problem dif-

fers from fully supervised semantic segmentation, commonly

addressed in previous work, where pixel-wise ground-truth

annotations of object classes are available in training.

Semantic image segmentation is challenging as objects

in the image may appear in various poses, under partial

occlusion, and against cluttered background. This is a long-

standing problem, addressed by a large number of successful

approaches under the assumption of having access to ground-

truth pixel labels in training [22, 14, 27, 11, 3, 7, 12]. Due

to this assumption, it is difficult to extend previous work

to a wide range of other domains that do not provide pixel-

wise annotations, or provide an insufficient amount of such

supervision for robust learning.

Toward relaxing the level of supervision required in train-

ing, recently, weakly supervised convolutional neural net-

works (CNNs) have been proposed for semantic image seg-

mentation [24, 25, 28, 26, 45, 29, 18, 41, 4, 30, 36]. These

approaches use only image tags in training. Most of them

perform segmentation within the multi-instance learning

(MIL) framework, which ensures that pixel labeling is con-

sistent with predicting image tags, since the latter prediction

can be readily used for specifying loss against the available

image-level ground truth, and in this way train the CNN.

Inspired by the success of these approaches, we also start

off with a CNN aimed at two tasks: pixel labeling and pre-

dicting image classes – where image classification results on

training data are used for an end-to-end MIL-based learning.

Specifically, we use the DeepLab net [7] for pixel label-

ing, and another fully-connected layer for predicting image

classes. We then extend this framework so as to fuse top-

down, bottom-up, and smoothness visual cues toward more

accurate semantic segmentation, as illustrated in Fig. 1. Our

extensions are aimed at addressing the following two issues

that we have observed in segmentation results of related

work [24, 25, 28, 26, 45, 29, 18]: (1) Poor localization of

objects; and (2) Limited preservation of object boundaries

and smoothness over the true spatial extents of objects.

To generate boundary preserving segmentation, we pass

the pixel labels predicted by our CNN, along with raw pixels

of the image, to a fully-connected conditional random field

(CRF). Specifically, following [46], we implement the CRF

as a recurrent neural network (RNN), and call this network

CRF-RNN. Our CRF-RNN refines the initial CNN’s predic-

tion such that the pixel labels better fit image edges present

in input image. Importantly, our CRF-based refinement of
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Figure 1: Overview: Given an image, we use a CNN to compute bottom-up segmentation maps for every object class (blue links for bottom-up computation).

These pixel-wise predictions are aggregated with a fully-connected layer (FCL) for object recognition. The same CNN is used for top-down estimation

of the attention maps for every recognized object class (red links for top-down computation). Finally, the bottom-up and top-down cues are fused and

iteratively refined in the CRF-RNN for improving localization of object boundaries and spatial smoothness of the final segmentation (black links for fusion

and refinement computation). In learning, we backpropagate the image classification loss, estimated from the FCL’s outputs on on training images. This

learning is regularized by the weakly supervised segmentation “loss”, which estimates a distance between two probability distributions of pixel labels in the

attention map and bottom-up segmentation (gray links for end-to-end training of all components).

segmentation is not an independent post-processing step, as

in related work [24, 25, 29, 18], but an integral component of

our deep architecture trained end-to-end. As the CRF-RNN

tries to respect image edges, its output, however, may be

prone to oversegmentation.

To avoid oversegmentation, and thus improve the smooth-

ness over spatial extents of objects, we use our CNN for yet

another, third task, that of predicting top-down visual atten-

tion maps of the recognized image classes. We specify the

visual attention map of an object class as a spatial rectified

Gaussian distribution [34, 16] of neural activations in the

CNN for that class. This extends the recent approach [44]

that uses a Markov chain to model parent-child dependencies

of neural activations for estimating the attention map, since

we estimate the rectified Gaussian distribution by accounting

for three types of neural dependences in the CNN: (i) parent-

to-child; (ii) child-to-parent; and (iii) between activations of

neighboring neurons at the same CNN layer. Importantly,

we compute the attention map using the same CNN aimed

at semantic segmentation, unlike related work that uses an

external network for estimating object seeds [18].

As shown in Fig. 1, our approach iteratively: (i) Fuses the

oversegmentation maps produced bottom-up by the CNN

and CRF-RNN, and the attention maps estimated top-down

by the CNN, and then (ii) Refines the fused pixel-label pre-

dictions with the CRF-RNN to generate the final segmen-

tation maps. The attention map represents discriminative

object parts critical for classification, whereas the segmen-

tation map captures the object’s spatial extent. We adopt

the same definition of top-down and bottom-up processing

used in the related literature [5, 20, 16] where the bottom-up

process predicts object classes from pixels, and the top-down

process predicts the attention map in the image conditioned

on the object class predicted by the bottom-up process. All

components of our deep architecture are trained end-to-end

by estimating the image classification loss and segmenta-

tion “loss”. Image classes are predicted in training using a

fully-connected layer (FCL) from the pixel label predictions.

This, in turn, generates the image classification loss that is

backpropagated through the FCL, CRF-RNN, and CNN for

learning all network parameters. Regrading segmentation

“loss”, we here slightly abuse the common definition of loss,

since we are not given ground-truth segmentation. We es-

timate segmentation “loss” as a distance between the two

probability distributions of pixel labels in the attention map

and bottom-up segmentation. The segmentation “loss” is

backpropagated through the CRF-RNN and CNN and serves

to regularize the image classification loss.

Evaluation on the benchmark PASCAL VOC 2012 dataset

demonstrates that we outperform reasonable weakly super-

vised baselines and state-of-the-art approaches.

Our contributions include:

• New deep architecture that fuses top-down attention and

bottom-up segmentation, and refines segmentation for

preserving boundaries. The architecture is unified, and

does not use external networks, nor post-processing.

• New modeling of the visual attention map using the

rectified Gaussian distribution which accounts for sta-

tistical dependencies between activations of parents,

children, and neighboring neurons in the CNN.
In the following, Sec. 2 reviews related work, Sec. 3 spec-

ifies our bottom-up pixel labeling and aggregation for object
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recognition, Sec. 4 formulates our top-down attention esti-

mation, Sec. 5 describes our boundary-preserving refinement

of segmentation, Sec. 6 explains the two loss functions and

our learning, and Sec. 7 presents our results.

2. Prior Work

Weakly supervised semantic image segmentation has

been addressed using graphical models, and parametric

structured prediction models [39, 40, 9, 45, 21]. These ap-

proaches typically exploit heuristics about spatial smooth-

ness (e.g., based on similarity between neighboring pixels

[39]), require pre-processing for extracting superpixels [40],

or use weak segmentation priors [9]. Recently, CNN-based

methods [28, 25, 24, 4, 41] are shown to achieve better per-

formance by typically considering multiple-instance learning

(MIL) for iteratively reinforcing that their output segmenta-

tions are consistent with ground-truth image tags. The MIL

framework can be extended with generalized expectation or

posterior regularization for maximizing the expectation of

model parameters under domain constraints [25].

Toward improving performance, some recent approaches

[28, 24, 4, 41] seek to initialize object localization by run-

ning detectors of object proposals [1, 10]. However, this

increases the level of supervision, since object-proposal de-

tectors require bounding-box annotations or object boundary

annotation for training. Also, using attention-based object

localization has been shown to improve weakly supervised

segmentation [29, 18, 15, 30]. However, these approaches

typically resort to external networks for computing attention

cues [18], or estimate foreground masks (class non-specific)

from neural activations bottom-up [29]. Recent work [44]

computes attention maps by estimating a top-down Markov

chain, but this work does not consider weakly supervised

segmentation. We extend the Markov chain formulation of

[44] by using the rectified Gaussian distribution for mod-

eling of the visual attention map, resulting in an improved

spatial smoothness of our attention maps per object class.

Combining top-down and bottom-up cues for image seg-

mentation and other vision problems is a recurring research

topic; however, the two cues are often computed in sepa-

rate stages [5, 6, 20, 42]. Recent approach [16] combines

the two computation processes in a single CNN for human

pose estimation using the rectified Gaussian distribution.

But their CNN is trained under full supervision. While we

address a different vision problem, the key differences are

that our covariance matrix of the rectified Gaussian is not

binary at theirs but estimated based on visual appearance,

and our top-down attention cues are semantically meaningful

conditioned on the predicted object classes.

3. Bottom-Up Computation Process

Pixel labeling. Given an image, x, we use the DeepLab

net with large field of view [7] to generate pixel labels y =
{yi}, where yi ∈ Y is the object class label of ith pixel

from the set of object classes Y . Specifically, we generate

K = |Y| segmentation maps, by computing output score

fi(y) at every pixel i for every object class y ∈ Y . The pixel-

wise scores are normalized to estimate the corresponding

posteriors using the standard soft-max operation as

pSi (y|x) =
efi(y)∑

y∈Y e
fi(y)

, (1)

Henceforth, we will use the shorthand notation pSi (y) to

denote pSi (y|x) as the bottom-up segmentation prediction.

Aggregation. The above pixel-wise object prediction

scores are then aggregated for object recognition, i.e., pre-

dicting the set of object classes, Yx, that are present in image

x. The literature presents a host of heuristic methods for

such aggregation, including global max pooling (GMP) [23],

global average pooling (GAP) [47], log-sum-exponential

(LSE) measure for a smooth combination of GMP and GAP

[28], and global weighted rank pooling (GWRP) to favor

high scores for ground-truth objects and suppressing others

in the aggregation [18]. Instead of using these heuristic meth-

ods, we employ a fully connected layer (FCL) to estimate the

image-level scores from the pixel-wise scores, and then train

the FLC together with other components of our approach.

Given K maps of pixel-wise scores {fi(y) : i, y ∈ Y}, the

FLC outputs K normalized object scores, {p(y|x) : y ∈ Y}.

For this, each segmentation heatmap {fi(y) : i} is fully

connected to the corresponding output unit representing the

object class y.

4. Top-Down Computation Process

This section explains how to estimate top-down visual

attention maps for every object class, which are then used as

contextual cues for improving object localization and reduc-

ing oversegmentation in the bottom-up pixel labeling. Fol-

lowing a long line of work on estimating probabilistic visual

attention maps [38, 17, 35], as well as recent approaches

to visualizing neural activations [43, 32, 2, 44], we use a

top-down computation process for estimating probabilistic

visual attention maps of neural activations at each layer of

our CNN. Our top-down estimation is performed one layer

at a time, starting from the FCL’s output layer for object

recognition, described in Sec. 3. For efficiency, as in [44],

we stop our top-down computation at the pool-4 layer,

and then upscale this result to the image size for obtaining

the K probabilistic visual attention maps, over all pixels,

corresponding to K object classes.

We define a visual attention of ith neuron at layer l, for

object class y, as a relevance of the neuron’s activation, ali,

3531



for predicting y in the image – denoted as p(ali|y) ≥ 0. The

visual attention map of all neurons at layer l is defined as

a vector of random variables: pl(y) = [. . . p(ali|y) . . . ]
⊤,

governed by the rectified Gaussian distribution [34, 16]:

P (p) ∝ exp(
1

2
p⊤Dp+ b⊤p), p � 0 (2)

where we use the shorthand notation p = pl(y), matrix

D = Dl = [δlii′ ] captures the strength of dependencies

between neighboring neural activations at the same layer l,

and b = bl(y) represents parent-child dependences of neural

activations at layer l and next layer l − 1. By design, we

guarantee δlii′ < 0, and thus the negative −D is a copositive

matrix in (2), i.e., −p⊤Dp ≥ 0, for p � 0. Computation of

δlii′ is explained below.

From (2), it follows that computation of pl(y) amounts

to the MAP estimation of the rectified Gaussian, which in

turn can be formulated as the quadratic program with non-

negativity constraints:

max
p�0

1

2
pTDp+ b⊤p. (3)

The copositive property the negative matrix −D guarantees

convergence of the quadratic optimization in (3) [16, 34].

Given our CNN, we sequentially compute the quadratic

program in (3) top-down, one layer at a time, until the

pool-4 layer. The results from previous layer l−1 are used

to define the parameters bl(y) as they capture parent-child

dependences of neural activations. Finally, the estimated

pl(y) for the pool-4 layer is upscaled to the image size,

and then normalized over the object classes in order to make

a proper probability distribution at every pixel:

pAi (y) =
p(ali|y)∑

y∈Y p(a
l
i|y)

. (4)

In comparison with the recent work [44], which accounts

only for parent-child dependences of neural activations as

p(ali|y) =
∑

j p(a
l
i|a

l−1
j )p(al−1

j |y), we increase computa-

tion time by a small margin, but considerably improve the

attention maps such that they cover well the true spatial

extents of objects.

In the rest of this section, we define the parameters bl(y)
andD of the rectified Gaussian. As illustrated in Fig. 2, each

p(ali|y) is made dependent on the neural activations of:

1. parents: γli(y);

2. feed-forward neural processing: αl
i;

3. neighboring neurons at the same layer l, Dl = [δlii′ ].

where we compute bl(y) = γli(y) + αl
i.

First, following [44], we define dependence of p(ali|y) on

the activations of parent neurons Pi in the CNN as

γli(y) =
∑

j∈Pi

p(ali|a
l−1
j )p(alj |y), (5)

Figure 2: (Left) Previous work [44] computes a top-down Markov chain

for estimating the attention map. (Right) We additionally consider neigh-

boring neural activations at the same layer for improving estimation of the

attention map based on smoothness of objects.

where p(ali|a
l−1
j ) is the transition probability defined as

p(ali|a
l−1
j ) =

w+
ij · a

l
i∑

i′∈Cj

w+
i′j · a

l
i′

, (6)

where w+
ij = max{0, wij} accounts only for positive

weights between neurons i and their parents j in the CNN,

and Cj denotes the set of children of j.

Second, we normalize the feed-forward neural processing

in the CNN at neuron i across all neurons at the same layer

l, resulting in

αl
i =

ali∑
i′ a

l
i′

(7)

Finally, third, we use the standard bi-lateral filtering of

pixels in the image to define the strength Dl = [δlii′ ] of

dependencies between neighboring neurons at the same layer.

For every neuron pair (i, i′) at layer l, we determine their

corresponding centers of the pixel areas in the image that

the neurons have access to, and compute their bi-lateral

similarity [37] as

wl
ii′ = exp(−

‖ zi − zi′ ‖
2

σ2
z

) exp(−
‖ ri − ri′ ‖

2

σ2
r

), (8)

where zi = (xi,yi) is the pixel location, and ri is the

HSV color histogram, and σz = 10 and σr = 30 control

sensitivity. Then, we normalize the bi-lateral similarity, and

define

δlii′ =
wii′∑
i′ wii′′

− 1, (9)

Note that δlii′ depends only on the image, and not the object

class prediction, and hence can be pre-computed for effi-

ciency. Note that in (8), wii = 1 and wii′ > 0 : i 6= i′ which

implies δii′ < 0 in (9). Thus, the matrix −D is copositive

which guarantees the convergence of the quadratic optimiza-

tion in (3). Recall that the attention maps are used to compute

the segmentation loss which is backpropagated through the

network during learning (Fig. 1).
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Figure 3: A single step of the CRF mean-field inference implemented as

a stack of convolution layers. The mean-field iterations represent a recurrent

neural network.

5. Refinement Computation Process

Due to the successive pooling in the CNN, the initial

pixel labeling pSi (y|x), given by (1), is likely to produce

a coarse segmentation map, with poor detections of object

boundaries. To address this issue, we pass the initial coarse

segmentation, together with the estimated visual attention

maps and the input image, to the CRF-RNN [19, 46], for

refining the segmentation. We consider a fully connected

CRF, whose energy of pixel-wise class assignment y = {yi}
is defined as

E(y) =
∑

i

φ(yi) +
∑

(i,i′)

ψ(yi, yi′), (10)

where φ(yi) and ψ(yi, yi′) denote the unary and pairwise

potentials, specified below.

Unary Potential. To initialize our segmentation refine-

ment, at every pixel i, we combine the top-down visual

attention pAi (yi), given by (4), and the bottom-up segmenta-

tion pSi (y|x), given by (1), for computing the corresponding

unary potential φ(yi) as

φ(yi) = − log(pSi (yi)p
A
i (yi)). (11)

In (11), we use the visual attention pAi (yi) as a pixel-level

prior (PLP) for segmentation. Our motivation comes from

existing work on weakly supervised segmentation that has

considered image level priors (ILP), such as, e.g., image-

level object prediction score, for refining their segmentation

[28, 31, 39]. ILPs have been shown to improve weakly super-

vised segmentation by reducing false positives. Our formula-

tion in (11), extends this work, because our attention driven

prior at every pixel seems more suitable for segmentation

than the image-level prior. Unlike ILP, our PLP incorporates

cues about object’s location.

Pairwise Potential. We define the pairwise potential in

terms of the bi-lateral weightswii′ , given by (8), for ensuring

that our segmentation refinement respects object boundaries:

ψ(yi, yi′) = µ(yi, yi′)wii′ , (12)

where µ(yi, yi′) is the label compatibility aimed at estimat-

ing the likelihood of co-occurrence of classes yi and yi′ at

pixels i and i′. Note that µ(yi, yi′) varies over different pixel

locations. It is implemented as a convolutional layer, and

learned from the segmentation “loss” specified in Sec. 6.

CRF Inference. Following [19, 46], we conduct CRF

inference as a series of mean-field iterations. As shown in

Fig. 3, each mean-field estimation corresponds to the feed-

forward neural processing along a stack of convolutional

layers, the result of which is fed back for another iteration.

Hence, the mean-field iterations represent a recurrent neural

network. Note that, our CRF inference takes pS and pA as

inputs to compute φ(yi), as in (11), for every pixel i, and all

K object classes. In the first iteration, soft-max scores over

the unary potentials are considered as marginal probabilities

to initialize the solution. In the following iterations, the

marginal probabilities are estimated as soft-max scores of the

CRF-RNN output. Bi-lateral filter responses are computed

from the input image given the output of previous layer.

Unlike [46], we consider fixed bi-lateral kernels as they

cannot be reliably learned without pixel-wise supervision.

The label compatibility µ(yi, yi′) is estimated by applying

1×1 convolution filters withK input andK output channels

for K object classes, given the bi-lateral responses. Finally,

given the estimated φ(yi) and ψ(yi, yi′), the combined CRF

potentials are passed through the soft-max operation for

generating the normalized segmentation scores for the next

CRF-RNN iteration.

6. End-to-End Learning and Loss Functions

All components of our approach are learned in an end-to-

end manner, using only ground-truth image tags. In order to

use this image-level supervision in learning, our approach

aggregates the predicted pixel labels on training images into

object recognition, which in turn can be used to estimate the

classification loss ∆C . For training the CRF-RNN and our

initial segmenter DeepLab network [7], we additionally use

an object segmentation “loss”, ∆S , defined relative to the

visual attention map estimated on training images, since we

do not have access to pixel-wise annotations. Thus, in our

learning, we backpropagate the following loss:

∆ = ∆C + λ∆S , (13)

where λ = 1.5 is set by cross validation.

Classification Loss is defined in terms of the FCL’s out-

put aggregation function for the image-level object recogni-

tion, p(y|x), specified in Sec. 3 as

∆C = −
1

|Yx|

∑

y∈Yx

log p(y|x)−
1

|Ȳx|

∑

y∈Ȳx

log (1−p(y|x))

(14)

where Yx denotes a set of ground-truth object classes present

in training image x, and Ȳx = Y \ Yx is a set of classes

that are known to be absent. ∆C penalizes low prediction

scores from the FCL for the objects annotated as present in

the training image, and high scores for the other objects.

Object Segmentation Loss is defined to penalize any

discrepancies between the estimated segmentation and visual
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attention maps. ∆S is defined as a distance between the two

predicted distributions pS and pA for the objects y ∈ Yx

annotated as present in the training image:

∆S = −
1

N · |Yx|

N∑

i=1

∑

y∈Yx

[pAi (y) log pSi (y) + (1− pAi (y)) log(1− pSi (y))],
(15)

where N denotes the number of pixels.

It is worth noting that the visual attention is used in two

different ways in our approach – namely, for computing

the unary potentials of the CRF-RNN inference on a single

image, and for estimating ∆S in learning on a mini-batch of

training images. Hence, these two uses of the visual attention

in our approach are not redundant, as also demonstrated in

our experiments.

7. Experiments

In this section, we first describe our experimental setup

and then present the results.

Dataset. We evaluate our approach on the PASCAL VOC

2012 dataset [13] which is commonly considered as the

weakly supervised segmentation benchmark [25, 28, 29, 18].

This dataset consists of 21 object classes including the back-

ground. We follow the standard experimental setup where

the images are split into three sets: 1464 training images,

1456 test images, and 1449 validation images. Following

common practice, we consider additional trainaug set in

training [18, 36] and evaluate our approach on images in

validation and test sets. We consider the standard PASCAL

VOC segmentation metric which is defined as mean intersec-

tion over union (mIoU) ratio, also known as Jaccard index.

Implementation details. We consider the DeepLab net-

work with large field of view [7] for image segmentation.

DeepLab adopts the VGG-16 net [33] for segmentation by

replacing fully connected layers with convolutional layers.

Given an input image, DeepLab produces coarse heatmaps

corresponding to each object class. The network is trained

using sub gradient descent with momentum. We consider

a batch size of 20 images and the momentum is set to 0.9.

The learning rate is initially set to 0.001 and decreased by a

factor of 10 in every 2000 iterations. We train the network

for 10000 iterations. Overall training takes ≈ 10 hours on

an Nvidia Tesla k80 GPU, which is comparable to [25, 24].

During inference, we first compute object-specific attention

maps which are then considered as the attention based PLP.

The attention based PLP serves as the unary potentials in

the CRF-RNN layer. Though image-level tags are not avail-

able during inference, attention maps can be estimated from

reliable object predictions based on fully supervised image

classification. For both learning and inference, we apply

CRF-RNN for three iterations as additional iterations do not

have a significant effect on the final performance.

Baselines. To justify the importance of various compo-

nents of our approach, we define the following baselines.

Comparisons with the baselines are shown in Tab. 1.

B1: Without top-down attention (w/o att). In this base-

line, we ignore the top-down attention cues in our approach.

As the segmentation loss cannot be computed without at-

tention cues, only the classification loss is used to learn the

segmentation network. Note that without attention cues, lo-

calizing objects in the image is difficult. Results in Tab. 1

show that ignoring top-down attention cues has a significant

effect on the performance which justifies the importance of

attention cues in weakly supervised segmentation.

B2: Without segmentation-loss (w/o seg loss). In this

baseline, we ignore the segmentation loss which is computed

based on the attention maps. Without segmentation loss, at-

tention cues are considered only in unary potentials in the

CRF-RNN layer as defined in (11). As shown in Tab. 1 that

the segmentation loss is important for weakly supervised seg-

mentation as it is required in the learning the segmentation

net and CRF-RNN.

B3: Without attention based unary potential (w/o att

unary). In this baseline, we do not consider attention cues in

unary potentials in the CRF-RNN layer. Thus, the attention

cues are incorporated in the segmentation framework only

through the loss function (15). The results in Tab. 1 show that

considering attention cues in CRF unary potentials improves

overall performance.

B4: Without considering neighboring dependences in

attention (w/o neighbor). In this baseline, we ignore the

dependences of neighboring neurons (i.e., δlii′ in (9)) while

computing the attention maps. Thus, we only consider

parent-child dependences to compute attention maps as in

[44]. As shown in Tab. 1, performance is inferior without

considering the neighboring dependences in the attention

estimation as these dependences provides the cues about

object’s smoothness and boundary.

B5: Without CRF-RNN layer (w/o CRF-RNN). In this

baseline, instead of applying the CRF-RNN layer to refine

the segmentation maps, a dense CRF based post-processing

is performed [7]. Without the CRF-RNN layer, the la-

bel compatibility or the co-occurrence between the object

classes (i.e., µ(yi, yi′) in (12)) cannot be learned. We see

in Tab. 1 that considering CRF-RNN layer achieves better

performance than CRF based post-processing.

B6: Without attention cues in inference (w/o att in-

ference). In this baseline, we ignore the attention cues to

compute CRF unary potentials during inference. Recall that,

attention cues can be considered as the pixel-level priors

which are important to localize objects in the image. Thus,

ignoring attention in inference results in worse overall per-

formance (Tab. 1).

Comparisons with the state-of-the-art with image-
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MIL+ILP [28] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

EM [24] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 38.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8

CCNN [25] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.4 22.2 38.8 36.9 35.6

DSCM [30] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1

F-B [29] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

SEC [18] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.2 62.6 32.1 45.4 45.3 50.7

Our approach 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8

Table 2: Comparison with the state-of-the-art approaches on PASCAL 2012 validation set in terms of mIOU measure (%).

PASCAL validation PASCAL test

w/o att 30.5 31.6

w/o seg loss 47.5 49.1

w/o att unary 50.1 51.4

w/o neighbor 51.3 52.1

w/o CRF-RNN 49.4 51.3

w/o att inference 50.4 51.8

Full approach 52.8 53.7

Table 1: Comparisons with the baseline approaches on PASCAL 2012

validation and test datasets in terms of mIoU measure (%).

level annotation. Comparisons with the state-of-the-art ap-

proaches are performed on PASCAL 2012 validation and test

images. Our approach is learned with only image-level tags.

Thus, for fair comparison, we compare with the approaches

which consider only image level annotations as weak super-

vision. Due to the attention based localization cues, we do

not need to rely on additional supervisions such as object

proposals [28], image crops [24] or size of the objects [25].

The results on PASCAL validation set and test set are shown

in Tab. 2 and Tab. 3, respectively, where we outperform the

state-of-the-art approaches in terms of mIoU metric.

Comparisons with the state-of-the-art with additional

annotation. Some approaches consider additional low-cost

supervision to facilitate weakly supervised segmentation.

For example, MIL+ILP+SP-bb [28], MIL+ILP+SP-seg [28],

SN-B [41] use object localization cues in terms on MCG

object proposals [1] or BING bounding boxes [10]. Variant

of EM-Adapt [24] and CCCN [25] consider multiple image

crops to increase the amount of supervision. Additional

‘click per object’ annotations are used in [4] and CCCN+size

[25] consider additional 1-bit supervision in terms of size

(big or small) of an object. It is unfair to directly compare

with these approach, but we summarize the results of the

above-mentioned approaches in Tab. 4 for completeness.

Evaluation of the aggregation methods. Recall that we

consider a fully connected layer (FCL) which is learned to

aggregate pixel-wise predictions into a image-level object

prediction score. We compare FCL with other aggregation

methods such as GMP [23], GAP [47], and LSE [28] which

is a smooth combination of GMP and GAP. Though consid-

val. test Additional supervision

MIL+ILP+SP-bb [28] 37.8 37.0 BING bounding box

MIL+ILP+SP-seg [28] 42.0 40.6 MCG object proposals

SN-B [41] 41.9 43.2 MCG object proposals

EM-Adapt+crop [24] 38.2 39.6 Multiple image crops

CCCN+crop[25] 36.4 47.2 Multiple image crops

CCCN+size [25] 42.4 - Object size (big or small)

Point click [4] 43.4 - 1 click per object instance

Check mask [29] 51.5 52.9 User selected fore-ground mask

Table 4: Comparisons among the approaches that use addition supervision

on PASCAL 2012 validation and test sets in terms of mIoU measure (%).

PASCAL validation PASCAL test

GMP 48.3 49.6

GAP 47.4 48.3

LSE 50.8 51.3

Our FCL 52.8 53.7

Table 5: Comparisons of FCL with other aggregation methods in terms

of mean IoU measure (%) on PASCAL 2012 validation and test datasets.

ering the FCL layer increases the number of parameters in

learning, as shown in Tab. 5, our proposed FCL significantly

outperforms other heuristic based aggregation methods.

Qualitative results. In Fig. 4, we present the qualitative

results on the PASCAL 2012 validation set. Our approach,

by most part, can correctly localize objects in images and

respects the object boundaries. A pair of failure cases are

shown in Fig. 5, where our approach fails to detect the ‘aero-

plane’ in an image due to its uncommon appearance with

respect to other ‘aeroplane’ instances in training data. In

the second case, our approach fails to detect a few ‘person’

instances and ‘bottles’ in the image. We believe this is due to

missing attention cues for the small objects (e.g., bottle) in

the image. Note that segmenting small objects is challenging

even with full supervision [8].

8. Conclusion

We have specified a new deep architecture for weakly su-

pervised image segmentation. Our key idea is to estimate and

fuse bottom-up, top-down, and smoothness cues using the
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MIL [26] - - - - - - - - - - - - - - - - - - - - - 25.66

MIL+ILP [28] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

CCNN [25] - 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

DSCM [30] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1

F-B [29] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0

SEC [18] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

Our approach 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

Table 3: Comparison with the state-of-the-art approaches on PASCAL 2012 test set in terms of mIOU measure (%).

Figure 4: Qualitative results on PASCAL 2012 validation set.

Figure 5: Failure cases on PASCAL 2012 validation set.

same network toward better fitting to object boundaries and

covering spatial extents of objects. Our unified framework

consists of a CNN, CRF-RNN, and a fully connected layer,

which can be trained end-to-end using only ground-truth

image tags. In our evaluation on the benchmark PASCAL

VOC 2012 dataset, we have observed that our approach can

localize objects without having to rely on additional supervi-

sion such as object proposals and image crops. Estimating

appearance based neighboring dependencies for visual atten-

tion enabled us to better localize the full extent of objects

rather than just parts. A comparison of our approach with the

baselines has justified the importance of attention cues, CRF-

RNN smoothing, and FCL layer as an aggregation method

in weakly supervised segmentation.
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