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Figure 1. A user can sketch and scribble colors to control deep image synthesis. On the left is an image generated from a hand drawn

sketch. On the right several objects have been deleted from the sketch, a vase has been added, and the color of various scene elements has

been constrained by sparse color strokes. For best resolution and additional results, see scribbler.eye.gatech.edu

Abstract

Several recent works have used deep convolutional net-

works to generate realistic imagery. These methods sidestep

the traditional computer graphics rendering pipeline and

instead generate imagery at the pixel level by learning from

large collections of photos (e.g. faces or bedrooms). How-

ever, these methods are of limited utility because it is dif-

ficult for a user to control what the network produces. In

this paper, we propose a deep adversarial image synthesis

architecture that is conditioned on sketched boundaries and

sparse color strokes to generate realistic cars, bedrooms,

or faces. We demonstrate a sketch based image synthesis

system which allows users to scribble over the sketch to in-

dicate preferred color for objects. Our network can then

generate convincing images that satisfy both the color and

the sketch constraints of user. The network is feed-forward

which allows users to see the effect of their edits in real

time. We compare to recent work on sketch to image syn-

thesis and show that our approach generates more realistic,

diverse, and controllable outputs. The architecture is also

effective at user-guided colorization of grayscale images.

1. Introduction

Recently, numerous image synthesis methods built on

neural networks have emerged [41, 25, 12, 37, 21, 13].

These methods can generate detailed and diverse (if not

quite photorealistic) images in many domains. However,

it is still unclear how to control these powerful new tools.

How can we enable everyday users (non-artists) to harness

the power of deep image synthesis methods and produce re-

alistic imagery? Several recent methods have explored con-

trollable deep synthesis [8, 50, 55, 14, 56, 18, 46] and we fo-

cus on two complementary forms of control – sketches and

color strokes. Sketches are a compelling form of control be-

cause anyone can draw (potentially very badly) and because

it is easy to edit sketches, e.g. to remove or add objects,

whereas the equivalent operations in the image domain re-

quire artistic expertise. Color is a compelling form of con-

trol because many sketches or grayscale scenes are funda-

mentally ambiguous with respect to color [54], but it is easy

for a user to intervene, e.g. to scribble that drapes should be

blue and the valance should be red (Figure 1). Both forms

of control are relatively sparse and require a deep network

to synthesize image detail beyond what is contained in the

input. The deep network must also implicitly learn a signif-

icant amount of high-level image understanding, e.g. what

colors are allowable for particular objects, the boundaries

of objects such that color does not bleed beyond a single se-

mantic region, and the appropriate high frequency textures

for different scene elements.

We propose a deep adversarial (GAN) image synthesis

architecture trained to generate realistic images from sparse

and simple sketched boundaries and color strokes. We train

our network on a diverse set of synthetic sketches option-

ally augmented with randomly sampled color strokes. The

network learns to recover the color and detail lost to the

sketching process and to extrapolate the sparse color indi-

cations to semantic scene elements. We show qualitative

results of image synthesis in three domains – faces, cars,

and bedrooms. We test on synthetic sketches as well as im-

perfect hand-drawn sketches.

Our approach is similar to Sketch Inversion [14], which

also generates images from sketches, although we show the

benefit of adversarial training, introduce color control sig-

nals, demonstrate results on image domains beyond faces,

and demonstrate that users can perform simple edits to

sketches to control the synthesis. Our control signals are
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most similar to Zhu et al. [56] – they also demonstrate

that GANs can be constrained by sketch and color strokes.

However, our architecture is a feed-forward mapping from

sketch and color to images while Zhu et al. perform an op-

timization to map user sketches into the latent GAN space

in order to find the most similar image on the natural im-

age manifold (as understood by the GAN). Their approach

does not see user inputs at training time and thus cannot

learn the complex mapping between user inputs and desired

image outputs. Their method is also significantly slower be-

cause it is not a strictly feed-forward process and this hin-

ders interactive image editing. The concurrent work of Isola

et al. [18] significantly overlaps with our own. Both ap-

proaches use conditional GANs for the sketch to photo as

well as grayscale to color synthesis tasks, although they do

not focus on user control of the synthesis.

The contributions of this paper include:

• We are the first to demonstrate an adversarial deep ar-

chitecture that can learn to generate realistic images

from imperfect sketches with sparse color ‘scribbles’.

Our feed-forward architecture is fast and interactive.

• We improve the quality of sketch-to-image synthesis

compared to existing work [14]. We produce higher

resolution, more diverse images spanning more image

domains (bedrooms and cars in addition to faces).

• Our method can generate realistic images from diverse

sketch styles, including imperfect human sketches or

synthetic sketches. We achieve this generality by aug-

menting our training data with multiple sketch styles.

• Finally, we demonstrate that our adversarial architec-

ture is also promising for image colorization. We show

encouraging results for grayscale to RGB conversion

and introduce controllable colorization using the same

sparse color strokes used with sketches.

2. Related Work

Synthesizing images by learning from image collections

is a long standing interest of the computer graphics and vi-

sion communities. Previously, the most successful methods

tended to be non-parametric approaches which found clever

ways to reuse existing image fragments [30, 9, 15, 22, 6, 3].

In the last few years, parametric models built on deep

convolutional networks have shown promising results [12,

8, 37, 21, 13]. While deep image synthesis methods can-

not yet create realistic, high-resolution images they have an

implicit ability to generalize that is difficult for data-driven

non-parametric methods (e.g. the ability to hallucinate un-

seen viewpoints of particular chairs based on the appear-

ance changes of other chairs [8]). Because our visual world

is both enormously complex (with appearance depending

on viewpoints, materials, attributes, object identity, light-

ing, etc.) and heavy-tailed, non-parametric methods are

limited even in the “big data” era. But deep image synthe-

sis methods might implicitly factorize our visual world and

thus generalize to situations beyond the training examples.

A common approach to deep image synthesis is to learn

a low dimensional latent representation that can later be

used to reconstruct an image, e.g. with Variational Autoen-

coders (VAEs) [21] or Generative Adversarial Networks

(GANs) [12]. In general, deep image synthesis can be con-

ditioned on any input vector [46], such as attributes [50],

3d viewpoint parameters and object identity [8], image and

desired viewpoint [55], or grayscale image [54, 17, 23] .

Generative Adversarial Networks (GANs) Among the

most promising deep image synthesis techniques are Gener-

ative Adversarial Networks (GANs) [12, 37] in which a gen-

erative network attempts to fool a simultaneously trained

discriminator network that classifies images as real or syn-

thetic. The discriminator discourages the generator from

producing obviously fake images. In particular, straight-

forward regression loss for image synthesis often leads to

‘conservative’ networks which produce blurry and desatu-

rated outputs close to the mean of the data yet perceptually

unrealistic. After training, the generator network is able to

produce diverse images from a low dimensional latent in-

put space. Although optimizing in this latent space can be

used to ‘walk’ the natural image manifold (e.g. for image

editing [4, 56] or network visualization [31, 32]), the space

itself is not semantically well organized – the particular di-

mensions of the latent vector do not correspond to semantic

attributes although mapping them to an intermediate struc-

ture image [47] can give us more insight.

Conditional GANs Instead of synthesizing images from

latent vectors, several works explore conditional GANs

where the generator is conditioned on more meaningful in-

puts such as text [39, 38], low resolution images (super-

resolution) [24, 20], or incomplete images (inpainting) [35,

34, 51]. Conditional GANs have also been used to trans-

form images into different domains such as product im-

ages [52] or different artistic styles [27]. One can also con-

dition the discriminator on particular inputs, e.g. Reed et

al. [39] condition both the generator and discriminator on

an embedding of input text, which makes the discriminator

more powerful. In this paper, only our generator is condi-

tioned on input sketches and color strokes leaving the dis-

criminator to discern real vs fake and not to evaluate the

appropriateness of an output given the particular input.

Controlling deep image synthesis Several recent works

share our motivation of adding user editable control to deep

image generation. Examples of control signals include 3d

pose of objects [8], natural language [39], semantic at-

tributes [50], semantic segmentation [5], and object key-
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points and bounding box [38].

The artistic style transfer approach of Gatys et al. [11]

could also be considered a mechanism to control deep im-

age synthesis. Their method does not ‘learn’ transforma-

tions end-to-end but instead uses a pre-trained network and

optimizes for output images which have deep network fea-

ture activations (content) similar to one input image and

deep network feature correlations (style) similar to another

input image. The approach does not perform well for trans-

formations which requires the synthesis of realistic detail

(e.g. trying to preserve the ‘content’ of a sketch and the

‘style’ of a photograph).

The most similar controllable deep image synthesis ap-

proach is Zhu et al. [56] which optimizes for an image that

is similar to an input sketch (potentially with color strokes)

that lies on a learned natural image manifold. However,

identifying a matching image within this manifold that is

similar content-wise to the sketch can be challenging when

the sketch and the image are significantly different. For

the ‘sketch brush’ in [56], they get around this by optimiz-

ing for image with the same edges as user sketch that also

lies within a natural image manifold as approximated by a

pre-trained GAN. However, image edges are not necessar-

ily a good proxy for human sketched strokes [42] and their

method has no capacity to learn the mapping between user

inputs and desired outputs. In contrast, our method enables

control via sketch and color strokes in a unified framework

learned end-to-end. Sketch Inversion [14] is also closely re-

lated to our work but they do not address color control. We

compare our sketch-to-photo results with Sketch Inversion.

Controllable Colorization Our color control strokes are in-

spired by Colorization Using Optimization [26] which in-

terpolates sparse color strokes such that color changes tend

to happen at intensity boundaries. The algorithm does not

learn the association between objects and colors and thus

can only interpolate user provided colors (e.g. a tree in the

background of a scene will not be green if the user only

marked foreground objects). The algorithm also does not

learn the spatial extent of objects, and thus colors might

‘snap’ to spurious boundaries or bleed over weak intensity

edges that are none-the-less salient boundaries. Our deep

network learns object color tendencies and object extent and

thus can cleanly color objects either with no color strokes

or with color strokes on a subset of scene elements (Fig-

ure 1). Similar control strokes have been applied to sketch

and manga imagery [36, 45], but the results remain non-

photorealistic and lack lighting and shading.

We are unaware of sparse scribbles being used as input

constraints to deep generative networks, although Scribble-

Sup [28] uses sparse scribbles to supervise the output of

semantic segmentation networks. The scribbles are training

data and there is no user control at test time.

Concurrent work Concurrent to our work, the ‘pix2pix’

method of Isola et al. [18] also uses conditional GANs for

sketch to photo and grayscale to color synthesis. Addition-

ally, they explore several other interesting image-to-image

‘translation’ tasks. Unlike our approach, they use a “U-Net”

architecture [40] which allows later layers of the network to

be conditioned on early layers where more spatial informa-

tion is preserved. They condition both their generator and

discriminator on the input whereas we condition only the

generator. Their results are high quality and they are able

to synthesize shoes and handbags from coarse sketches [10]

even though their training data was simple image edges. In

contrast, we take care to train on a diversity of synthetic

sketch styles. The most significant difference between our

works is that we introduce sparse color control strokes and

demonstrate how to train a network so that it learns to in-

telligently interpolate such control signals, whereas Isola et

al. [18] does not emphasize controllable synthesis.

3. Overview

In this paper, we explore adding direct and fine-grained

user controls to generative neural networks. We propose

a generic feed-forward network that can be trained end-to-

end to directly transform users’ control signals, for example

a hand-drawn sketch and color strokes, to a high-res photo

with realistic textural details.

Our proposed network is essentially a deep generative

model that is conditioned on control signals. The network

learns a transformation from control signal to the pixel do-

main. It learns to fill in missing details and colors in a

realistic way. Section 3.1 discusses the network structure

that is shared by all applications presented in the paper.

Section 3.2 introduces the objective functions, in particular

the combination of content loss and adversarial loss, which

encourages the result to be photo-realistic while satisfying

user’s fine-grained control. Section 4 and 5 show how to en-

force two different user controls in the proposed framework

– using hand-drawn sketches to determine the gist or shape

of the contents and using sparse color strokes to propagate

colors to semantic regions. Section 6 applies the proposed

framework in several interactive applications.

3.1. Network Architecture

We design a feed-forward neural network that takes an

image as input and generates a photo of the same resolu-

tion as output. When generating an image conditioned on a

high dimensional input in the same domain (i.e. from image

to image), typically an encoder-decoder type of network ar-

chitecture is adopted, for example in sketch inversion [14],

image colorization [54, 17], and sketch simplification [43].

In a typical network structure, the input gets downsampled

several times to a lower dimension, then goes through a se-

quence of non-linear transformations, and finally gets up-
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Figure 2. Network Architecture. For the generator (top), we follow

the encoder-decoder design, and use three downsampling steps,

seven residual blocks at the bottleneck resolution and three up-

sampling steps. Residual blocks use stride 1. Downsampling uses

convolutions with stride 2. Upsampling uses bilinear upsampling

followed by residual blocks. We use fully convolutional network

for the discriminator (bottom). See scribbler.eye.gatech.edu for

code and architecture details.

sampled to the desired output size. Recently, He et al. [16]

proposed the residual connection that uses skip layers al-

lowing network blocks to learn only the residual compo-

nent. The use of residual block eases the training of deeper

networks which improves the capability of neural network

for more complex tasks.

We employ an encoder-decoder architecture with resid-

ual connections. Starting from the network design in Sketch

Inversion [14], we introduce several important modifica-

tions to improve the visual quality of output and accom-

modate higher resolution input and more challenging im-

age categories, such as car and bedroom. In particular, we

add one more up/downsampling layer and double the num-

ber of filters in all convolutional layers between the last

downsampling layer and the first upsampling step. In ad-

dition, we replace the deconvolutional layers with the bilin-

ear upsampling step followed by two residual blocks, due to

the recent finding that deconvolutional layers have the ten-

dency to produce checkerboard artifacts commonly seen in

deep generative models [33]. Overall, our architecture has

around 7.8 millions learnable parameters, while the Sketch

Inversion network we implemented has around 1.7 millions.

See Figure 2 for a diagram of our architecture.

3.2. Objective Function

Given pairs of training images (input, ground-truth),

where the input image is derived from the ground-truth

photo (synthetically generated sketches and color strokes in

our case), the simplest and most common loss is the av-

erage per-pixel L2 difference between the generated image

and the ground-truth, which we denote as Lp.

Previous work [14] showed that adding a feature loss

to the objective function is beneficial for image generation

tasks. Feature loss Lf is defined as the L2 difference in

a feature space, where a feature is extracted from a cer-

tain layer of a pre-trained neural network representing high-

level information of images.

While pixel and feature losses are widely used to ex-

plicitly correlate synthesized output with input, using them

alone is often not sufficient to generate diverse, realistic im-

ages. More importantly, in our problem setup, condition-

ing on coarse user controls leaves us with a highly ill-posed

problem where the potential solution space is multimodal.

Therefore, with only pixel and feature losses, the network

tends to average over all plausible solutions, due to the lack

of a loss which pushes for realism and diversity.

For image categories like face, the results tend to have

similar skin tones [14]. For more complicated categories

like cars and bedrooms, where the foreground and back-

ground contents can have large variety of shapes and colors,

the results might not be visually plausible, since neutral col-

ors are chosen by the network to minimize MSE. The sec-

ond and third rows in Figure 3 demonstrate the problems.

To encourage more variations and vividness in results,

we experiment with adding an adversarial loss to the ob-

jective function. Generative adversarial networks (GAN),

proposed by Goodfellow et al [12], have attracted consider-

able attention recently. A generative network Gθ is jointly

trained with a discriminative adversarial network Dφ, so

that the discriminator tries to distinguish between the gen-

erated images and ground-truth images, while the generator

tries to fool the discriminator into thinking the generated re-

sult is real. Dosovitskiy et al [7] showed that compliment-

ing the feature loss with an adversarial loss leads to more

realistic results. The adversarial loss Ladv is defined as:

Ladv = −

∑
logDφ(Gθ(xi)) (1)

We find that adversarial loss is also beneficial for our

sketch-based image synthesis problem (Figure 3). With ad-

versarial training, the network puts less emphasis on exactly

reproducing ground-truth, but instead focuses on generating

more realistic results with plausible color and shape devia-

tion from ground-truth.

Adversarial training tends to be unstable, especially at

the start of training when the generator does not produce

anything meaningful and the discriminator can easily distin-

guish between real and fake. We find that using a weak dis-

criminator Dφ helps stabilize the training. We also avoided

conditioning the discriminator on the input image, as this

tends to increase the instability [35]. In particular, we use a

fully convolutional structure without fully connected layers

and batch normalization. Section 7 introduces additional

tricks for successful adversarial training.

Finally, we also add a total variation loss Ltv to encour-

age smoothness in the output [19].

Our final objective function becomes:

L = wpLp +wfLf +wadvLadv +wtvLtv (2)
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Figure 3. Results comparison. From top to bottom: input sketch, Sketch Inversion with content loss, our network with content loss, our

network with content loss and adversarial loss

4. Sketch-based Photo Synthesis

In this section, we explore how to apply the proposed

feed-forward network to hallucinate content, color and tex-

ture to reconstruct a photo based on an input sketch of arbi-

trary style. To train such a deep neural network, we need

lots of training sketch-photo pairs. Though high quality

hand-drawn sketches are readily available online, the cor-

responding photos based on which sketches are drawn are

not. Therefore, we apply high-quality line drawing synthe-

sis algorithms to generate synthetic sketches from photos.

In order to handle real hand-drawn sketches at test time,

we apply various data augmentations to the training data to

improve the generality of the network. In this paper, we

experiment with three image classes – faces [29], cars, and

bedrooms [53]. We believe the proposed framework can

generalize well to other categories given similar amounts of

training data and training time.

4.1. Generation of Training Sketches

For each image category – face, car, or bedroom – we ap-

ply the boundary detection filter XDoG [49] on 200k photos

to generate the corresponding synthetic sketches. The input

(and output) resolution during training is 128x128.

To make the network invariant to the exact locations

of the objects, we randomly crop both the input and the

ground-truth images. For the face and bedroom categories,

we first resize the images to 256x256 before randomly crop-

ping them to 128x128. For the car category, we scale the

images to 170x170 before cropping, since most cars already

occupy large image areas, enlarging them too much means

XDoG 

[Holger et al. 2012]
Photoshop

Style Transfer

[Ulyanov et al. 2016]

CUHK

[Wang and Tang 2009]

Figure 4. We generate synthetic sketches from photos using five

different algorithms. We also include and augment a small set of

hand-drawn sketch-photo pairs to help generalize the network to

handle real hand-drawn sketch inputs.

losing the global spatial arrangement and context.

In addition to random cropping, we also randomly adjust

the brightness level of the sketch to get different levels of

details from the same sketch (i.e. some sketch lines will

disappear with higher brightness level). Finally, we also

randomly cut off some lines in the sketch, by overlaying a

random number of white strokes (the background color of

sketch input) on top of the sketch. We randomize the length,

width and locations of the white strokes.

4.2. Network Generalization

Real hand-drawn sketches exhibit a large variety of

styles, from abstract pen-and-ink illustrations to elabo-

rate pencil-like drawings with shading. The characteristics

of the hand-drawn sketches might be very different from

the synthetic sketches we generated algorithmically. Even

with the various augmentations, random cropping, random

brightness adjustment and random cut-off, the trained net-

work might still overfit to that particular style of sketches.

To improve the network generality, we further augment the

training data by adding multiple styles of sketches.

For the face category, we obtain 20k additional images

and for each image we randomly choose one of the follow-

ing four algorithms to synthesize a corresponding sketch.

See example sketches in Figure 4.

• StyleNet [11] We apply neural network-based style

transfer algorithm to transfer the texture style of a pen-

cil drawing to the ground-truth photo.

• Photoshop filters [2] Applying Photoshop’s ’photo-

copy’ effect to ground-truth images, we can generate

two different versions of sketches with different levels

of details and stroke darkness.

• Gaussian blur on inverse image [1] Using Photo-

shop, we can also synthesize another sketch style by

performing Gaussian blur on an inverse (grayscale)

image in Photoshop color dodge mode. This creates

detailed line drawings with very little shading.

• CUHK Finally, we add the CUHK dataset, which con-

tains 188 hand-drawn portrait sketches and their cor-
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Figure 5. Sketch-based photo synthesis of hand-drawn test sketches. Despite the diverse sketch styles, our network usually produces high

quality, diverse results. Notice the skin tone and hair color variations in the output. Some outputs are non-photorealistic because they are

being somewhat faithful to caricatured input sketches. Unfortunately, some results have unrealistically high low-frequency contrast and

appear unnaturally lit.

responding photos [48]. To give higher weights to the

high quality hand-drawn sketches, we apply mirroring

and varying degrees of rotation to the sketches and end

up with 1869 images in total.

At this point, we have 21848 images of 6 different sketch

styles. Pre-trained on the 200k sketches of the XDoG style,

the network is fine-tuned using the 20k multi-style sketches.

We use the same parameter settings as before and train the

network on these additional data for 5 epochs.

4.3. Results and Discussions

For comparison purposes, we implemented the Sketch

Inversion architecture as described in [14]. We trained both

the Sketch Inversion network and our deeper network us-

ing the same training data and parameter settings. Figure 3

shows side-by-side comparisons of the results generated by

Sketch Inversion (second row), our deeper network trained

without (third row) and with adversarial loss (fourth row) on

three different image categories. Compared to Sketch Inver-

sion, our deeper network even without adversarial loss pro-

duces sharper results on complex bedroom scenes and per-

forms better at hallucinating missing details (shapes of eyes

and eyebrows) given simplified sketches with few lines.

With adversarial loss, our network is encouraged to gen-

erate images with sharper edges, higher contrast and more

realistic color and lighting. As discussed in Section 3.2, ad-

versarial loss helps the network generate more diversified

results, avoiding always producing similar skin tones and

hair colors for portraits and dull and unrealistic colors for

the bedrooms and cars. Figure 5 shows diverse hair colors

and skin tones in the result.

Among the three image categories, bedroom is arguably

most challenging, since each bedroom scene can contain

multiple object categories. The fact that our current network

handles it successfully with only 200K training data leads

us to believe the possibility of training a general sketch-

to-photo network across several image categories using an

even deeper network.

After training with multiple sketch styles and various

data augmentations (Section 4.2), our network generates

much more realistic results given arbitrary hand-drawn

sketches as input. Figure 5 shows reconstruction results

based on sketches found by Google search. Note that the

sketches are drawn with diverse styles, some detailed and

realistic, some abstract and simplified. The results show

that our network generalizes well to arbitrary hand-drawn

sketches and is robust to the variations in head pose, back-

ground colors, and textures. Data augmentation such as ran-

dom cropping and cutoff also helps our network hallucinate

missing details. Figure 5 (bottom right) shows that the net-

work can fill in the missing eye to some extent. However,

generating missing object parts is a challenge itself, there-

fore we consider it beyond the scope of this paper.

The network trained with adversarial loss has an inter-

esting behavior. When applying it to cartoonish or unpro-

fessional sketches with exaggerated facial features, the net-

work tends to ‘realistify’ or beautify the input sketch to gen-

erate result more photo-like at the cost of not strictly fol-

lowing the sketch constraints. For example, eyes that are

inhumanly large will get reduced to a realistic size or faces

with weird shapes will be smoothed and ‘beautified’ (see

Figure 5). To produce realistic results, the network learns

not to blindly trust the sketch input and instead uses its un-

derstanding of the natural image manifold acquired during

the adversarial training.

5. User-guided Colorization

The previous section focuses on using gray-scale

sketches to guide the generation of color photos. The lack

of color information in the input causes the problem to be

under-determined, since one sketch can correspond to pho-

tos colored in many different ways. Although the use of
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Figure 6. Guided sketch colorization results on held out test sketches for bedroom (left) and car (right). Without color strokes, our network

produces results that closely follow the input sketch (leftmost column). With color strokes, our network adapts the results to satisfy different

color constraints. Note that the fourth and fifth bedroom sketches are edited to add a framed picture on the wall and a lamp using only

simple user edits.

adversarial loss constrains the output to lie on an approxi-

mated manifold of natural images and therefore limits the

color choices, it is still up to the generator to choose a spe-

cific color.

In this section, we explore how to allow users to directly

control the colors in the output. We modify the input to the

network to include rough color information during training

(Section 5.1). We investigate adding color controls in two

applications: guided sketch colorization (Section 5.2) and

guided image colorization (Section 5.3).

5.1. Generation of Training Color Strokes

One of the most intuitive ways to control the outcome of

colorization is to ‘scribble’ some color strokes to indicate

the preferred color in a region. To train a network to recog-

nize these control signals at test time, we need to synthesize

color strokes for the training data. We generate synthetic

strokes based on the colors in the ground-truth image.

To emulate arbitrary user behaviors, we blur the ground-

truth image and sample a random number of color strokes

of random length and thickness at random locations. We

pick the ground-truth pixel color at the stroke starting point

as the stroke color and continue to grow the stroke until the

maximum length is reached.

When growing a stroke, if the difference between the

current pixel color and the stroke color exceeds a certain

threshold, we restart the stroke with a new color sampled at

the current pixel. By randomizing various stroke parame-

ters, we are able to synthesize color strokes similar to what

users would draw during test time.

5.2. Guided Sketch Colorization

The goal here is to add color control to our sketch-based

image synthesis pipeline. Our previous objective function

still holds: we want the output to have the same content as

the input (pixel and feature loss), and appear realistic (ad-

versarial loss). Pixel loss is essential here as it forces the

network to be more precise with color by paying more at-

tention to the color strokes. We modify the training data

by placing color strokes on top of the input sketches. We

(a)

(b)

(c)
(d)

Figure 7. Guided Image Colorization: a) grayscale input, b) origi-

nal color image, c) deep colorization result [54], d) First and third

rows: color strokes overlaid on top of the input (zoom in to see the

color strokes). Second and fourth rows: colorization results.

then train the network as before using a parameter setting

that emphasizes content loss and de-emphasizes adversar-

ial loss, so that the results better satisfy color constraints

(Section 7.2). Figure 6 shows the results of reconstructing

bedroom and car scenes based on an input sketch and color

strokes. Note that the colors of the strokes deviate a lot

from the colors in the ground-truth image, nevertheless, the

network is able to propagate the input color to the relevant

regions respecting object boundaries.

5.3. Guided Image Colorization

Recent work [17, 54] explores training deep neural net-

work models for the image colorization tasks. However, the

selection of colors in the output is entirely up to the net-

work. In this section, we investigate using color strokes

(Section 5.1) to guide the colorization process. We gener-

ate training data by extracting a one-channel grayscale im-

age from the ground-truth photo and combining it with the

three-channel image containing color strokes.

Figure 7 shows various colorization results on a car im-

age. Given a gray-scale image, our system synthesizes real-

istic looking cars based on strokes drawn with different col-

ors at random locations. Note that most strokes are placed

on the body of the car and therefore do not influence the
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Figure 8. Interactive image editing. The user can incrementally

modify the sketch to change the eyes, hair, and head decorations.

colorization of the other regions. Due to adversarial train-

ing, the sky is colored blue and the trees are colored green,

regardless of the colors of the foreground object. Inter-

nally, the network learns to recognize semantic contents and

therefore can put right colors in the relevant regions while at

the same time satisfying user constraints wherever possible.

6. Interactive Image Generation Tools

Our network transforms an input sketch of resolution

256x256 to a photo-like result in 20ms. The real-time per-

formance enables instant visual feedback after incremental

edits in image generation and editing applications.

Using sketch and color strokes to enforce fine-grained

control is useful for several design applications. For exam-

ple, an interior designer can quickly sketch out rough shapes

of the objects, specify colors in various regions and let our

system fill in missing details and textures to generate a plau-

sible bedroom scene. After seeing the result, the designer

can interactively modify the shapes and colors of the objects

and receive instant visual feedback. Figure 6 illustrates the

potential design workflow. Similarly, a car designer can fol-

low similar workflow to design new cars and test out the

looks in different background settings.

Our portrait synthesis system could be a tool for artists to

design virtual characters (see Figure 8). Based on the initial

design, one can change the shape of eyes and/or hairstyle,

add glasses and/or head decorations, etc. In addition to de-

sign, portrait reconstruction technology is useful for foren-

sic purposes, e.g. law enforcement visualization of sus-

pects [14].

7. Network Training Details

With the unpredictable nature of adversarial training, we

find it helpful to separate the training into two stages.

7.1. Optimizing for Content Loss

In the first stage, we set the adversarial weight wadv

from equation 2 to 0 and let the network focus on mini-

mizing the content loss which is a combination of pixel and

feature loss. To enforce a fine-grained control using the in-

put sketch, we choose the ReLU2-2 layer of the VGG-19

net [44] to compute the feature loss, since higher level fea-

ture representations tend to encourage the network to ignore

important details such as the exact locations of the pupils.

We set the weights of pixel loss and feature loss wp, wf

to 1, and the weight of TV loss wtv to 1e-5. We train the

network for around 3 epochs using a batch size of 32 before

moving on to the second stage of the training.

7.2. Adding Adversarial Loss

Given the network pretrained for content loss, we fine

tune it with different loss settings for different applications.

For photo reconstruction from gray-scale sketches (Sec-

tion 4), we turn off the pixel loss, keep the feature loss and

add the adversarial loss with the following weight setting,

wf = 1,wp = 0,wtv = 0,wadv ≈ 1e8. For coloriza-

tion applications (Section 5), we emphasize the feature and

pixel loss and de-emphasize the adversarial loss, so that the

output better follows the color controls, wf = 10,wp =
1,wtv = 0,wadv ≈ 1e5.

We train the adversarial discriminator alongside our gen-

erative network for three epochs using a learning rate be-

tween 1e-5 and 1e-6.

8. Conclusion and Future Work

In this paper, we propose a deep generative framework

that enables two types of user controls to guide the result

generation – using sketch to guide high-level visual struc-

ture and using sparse color strokes to control color pattern.

Despite the promising results, our current system suf-

fers from several limitations. First, we sometimes observe

blurry boundaries between object parts or regions of differ-

ent colors which diminishes the overall realism of the re-

sults.

Figure 6 shows the color leaking problem on the car

results, where the color of the car’s hood leaks into the

background. Second, our system struggles between strictly

following color/sketch controls and minimizing adversarial

loss. In other words, adversarial loss prohibits the gener-

ated images from taking uncommon colors and shapes. If

the user specifies a rare color, for example, purple for car,

red for trees, our network will map it to a different color

deemed more realistic by the adversarial loss.

Going forward, we would like to investigate how to im-

prove the results by encouraging sharp color boundaries and

finding systematic ways to deal with rare control signals.

Acknowledgments

This work is supported by a Royal Thai Government

Scholarship to Patsorn Sangkloy, NSF CAREER award

1149853 to James Hays, NSF award 1561968 and Adobe

gift funding.

5407



References

[1] Convert photo to line drawing.

www.youtube.com/watch?v=Gyu2yPwiQvA, 2012. 5

[2] Create filter gallery photocopy effect with single step in pho-

toshop. www.youtube.com/watch?v=QNmniB 5Nz0/, 2016.

5

[3] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: a randomized correspondence algorithm for

structural image editing. ACM Transactions on Graphics-

TOG, 28(3):24, 2009. 2

[4] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Neu-

ral Photo Editing with Introspective Adversarial Networks.

ArXiv e-prints, Sept. 2016. 2

[5] A. J. Champandard. Semantic style transfer and turn-

ing two-bit doodles into fine artworks. arXiv preprint

arXiv:1603.01768, 2016. 2

[6] T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu.

Sketch2photo: internet image montage. ACM Transactions

on Graphics (TOG), 28(5):124, 2009. 2

[7] A. Dosovitskiy and T. Brox. Generating images with per-

ceptual similarity metrics based on deep networks. In NIPS,

2016. 4

[8] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learn-

ing to generate chairs with convolutional neural networks.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015. 1, 2

[9] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In Computer Vision, 1999. The Pro-

ceedings of the Seventh IEEE International Conference on,

volume 2, pages 1033–1038 vol.2, 1999. 2

[10] M. Eitz, J. Hays, and M. Alexa. How do humans sketch

objects? ACM Trans. Graph., 31(4), July 2012. 3

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2414–2423, 2016. 3, 5

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems, pages 2672–2680, 2014. 1, 2, 4

[13] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and

D. Wierstra. Draw: A recurrent neural network for image

generation. In ICML, 2015. 1, 2
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