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Abstract

Several machine learning tasks require to represent the

data using only a sparse set of interest points. An ideal de-

tector is able to find the corresponding interest points even

if the data undergo a transformation typical for a given do-

main. Since the task is of high practical interest in computer

vision, many hand-crafted solutions were proposed. In this

paper, we ask a fundamental question: can we learn such

detectors from scratch? Since it is often unclear what points

are "interesting", human labelling cannot be used to find a

truly unbiased solution. Therefore, the task requires an un-

supervised formulation. We are the first to propose such

a formulation: training a neural network to rank points

in a transformation-invariant manner. Interest points are

then extracted from the top/bottom quantiles of this rank-

ing. We validate our approach on two tasks: standard RGB

image interest point detection and challenging cross-modal

interest point detection between RGB and depth images. We

quantitatively show that our unsupervised method performs

better or on-par with baselines.

1. Introduction

Machine learning tasks are typically subdivided into two

groups: supervised (when labels for data are provided by

human annotators) and unsupervised (no data labelled). Re-

cently, more labelled data with millions of examples have

become available (for example, Imagenet [30], Microsoft

COCO [17]), which led to significant progress in supervised

learning research. This progress is partly due to the emer-

gence of convenient labelling systems like Amazon Me-

chanical Turk. Still, the human labelling process is expen-

sive and does not scale well. Moreover, it often requires a

substantial effort to explain human annotators how to label

data.

Learning an interest point detector is a task where la-

belling ambiguity goes to extremes. In images, for example,

we are interested in a sparse set of image locations which

can be detected repeatably even if the image undergoes a

significant viewpoint or illumination change. These points

can further be matched for correspondences in related im-

ages and used for estimating the sparse 3D structure of the

scene or camera positions. Although we have some intu-

ition about what properties interest points should possess,

it is unclear how to design an optimal detector that satisfies

them. As a result, if we give this task to a human assessor,

he would probably select whatever catches his eye (maybe

corners or blobs), but that might not be repeatable.

In some cases, humans have no intuition what points

could be "interesting". Let’s assume one wants to

match new images to untextured parts of an existing 3D

model [27]. The first step could be an interest point de-

tection in two different modalities: RGB and depth map,

representing the 3D model. The goal would be to have the

same points detected in both. It is particularly challenging

to design such a detector since depth maps look very differ-

ent from natural images. That means simple heuristics will

fail: the strongest corners/blobs in RGB might come from

texture which is missing in depth maps.

Aiming at being independent of human assessment, we

propose a novel approach to interest point detection via un-

supervised learning. Up to our knowledge, unsupervised

learning for this task has not yet been explored in previ-

ous work. Some earlier works hand-crafted detectors like

DoG [18]. More recent works used supervised learning to

select a "good" subset of detections from a hand-crafted de-

tector. For example, LIFT [38] aims to extract a subset of

DoG detections that are matched correctly in the later stages

of the sparse 3D reconstruction. However, relying on exist-

ing detectors is not an option in complicated cases like a

cross-modal one. Our method, by contrast, learns the solu-

tion from scratch.

The idea of our method is to train a neural network that

maps an object point to a single real-valued response and

then rank points according to this response. This ranking

is optimized to be repeatable under the desired transforma-

tion classes: if one point is higher in the ranking than an-

other one, it should still be higher after a transformation.

Consequently, the top/bottom quantiles of the response are

repeatable and can be used as interest points. This idea is

illustrated in Fig. 1.
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When detecting interest points, it is often required to

output not only the position of the point in the image, but

also some additional parameters like scale or rotation. The

detected values of those parameters are influenced by the

transformations applied to the images. All transformations

can be split into two groups based on their desired impact

on the output of the detector. Transformations for which

the detector is supposed to give the same result are called

invariant. Transformations that should transform the result

of a detector together with the transformation — and thus

their parameters have to be estimated as latent variables —

are called covariant [22]. When learning a detector with our

method, we can choose covariant and invariant transforma-

tions as it suits our goals. This choice is implemented as a

choice of training data and does not influence the formula-

tion.

The paper is organized as follows. In section 2, we dis-

cuss the related work. In section 3, we introduce our formu-

lation of the detection problem as the unsupervised learning

to rank problem, and show how to optimize it. In section 4,

we demonstrate how to apply our method to interest point

detection in images. Finally, in section 5 we validate our

approach experimentally and conclude in section 6 by sum-

marizing the paper and listing possibilities for future work.

2. Related work

Currently, unsupervised learning comprises many di-

rections: learning the distribution that best explains

data (Gaussian Mixture Models learned via an EM-

algorithm [20], Restricted Boltzmann Machines [10], Gen-

erative Adversarial Nets [7]), clustering, dimensionality

reduction and unsupervised segmentation (kMeans [9],

LLE [29], Isomap [32], PCA [12], Normalized Cuts [31],

t-SNE [34]), learning to simulate task solvers (when a solu-

tion is provided by the solver and the task is automatically

generated [14], [16]), and learning data representation suit-

able for further use in some other task (autoencoders [11],

deep convolutional adversarial nets [28], learning by con-

text prediction [6], learning from tracking in videos [36],

metric learning [37], learning by predicting inpainting [26],

learning by solving jigsaw puzzles [25]).

While some tasks actually have a non-human label (for

example, in solver simulation we can obtain the solution by

running a solver), others (for example, representation learn-

ing) have none at all. Instead, they try to find an auxiliary

task which is hard enough in order to learn a representa-

tion that is useful for already existing tasks (classification,

for example). Designing such a task is non-trivial, therefore

only few successful approaches exist (for example, [6]).

Our approach, on the other hand, does not require de-

signing an unrelated auxiliary task. If we can obtain a re-

peatable ranking, then the top/bottom quantiles of this rank-

ing can be used as detections.

One particular application of our method is interest point

detection in images. Most of the existing image interest

point detectors are hand-crafted to select particular visual

elements like blobs, corners or edges. These include the

DoG detector [18], the Harris corner detector [8] and its

affine-covariant version [21], the FAST corner detector [33]

and the MSER detector [19]. Most recently, there also

emerged methods that do supervised learning building upon

a hand-crafted solution: LIFT [38] aims to extract an SfM-

surviving subset of DoG detections, TILDE [35] uses DoG

for collecting the training set, [15] samples training points

only where LoG filter gives large absolute-value response.

Building upon a hand-crafted detector restricts those super-

vised approaches to a subset of their basic method detec-

tions — which makes those approaches inapplicable in the

cases where there is no good detector yet. Our unsupervised

method instead learns the detector completely from scratch

by optimizing for a repeatable ranking.

Finally, a particularly challenging case in image inter-

est point detection is the cross-modal one: the interest

points should be repeatable among different image modal-

ities. Several works mention this complex issue ([27], [2],

[13], [23]) but do not propose a general solution. Our ap-

proach, on the contrary, is general in a sense that the same

learning procedure could be applied to different tasks: we

show it to work for RGB/RGB and RGB/depth modality

pairs.

3. Detection by ranking

In this section we introduce the problem of learning

an interest point detector as the problem of learning to

rank points. We consider interest points to come from

the top/bottom quantiles of some response function. If

these quantiles are preserved under certain transformation

classes, we have a good detector: it re-detects the same

points. For the quantiles of the ranking to be preserved,

we search for a ranking which is invariant to those transfor-

mations.

Let us consider a set D of objects, every object d ∈ D

being an Nd-dimensional tuple of points (p1d, . . . , p
Nd

d ).
Each point pid comes from a set P of points. Each object d

can undergo transformations from a set T : D 7→ D. Each

transformation t ∈ T preserves certain point correspon-

dences: some points in object t(d) will correspond to points

in object d. We assume one point can have at most one cor-

respondence in the other object. To simplify the notation,

we assume the correspondences have the same indexes in

an object d before and after a transformation. We denote the

set of corresponding point indexes as Cdt = {i1, . . . , iKdt
},

where Kdt is the number of correspondences for points in d

and t(d).
We want to rank object points and represent this ranking

with a single real-valued response function H(p|w), where
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Figure 1. Left: an image undergoes a perspective change transformation. Right: our learned response function, visualized as a heat

map, produces a ranking of image locations that is reasonably invariant under the transformation. Since the resulting ranking is largely

repeatable, the top/bottom quantiles of the response function are also repeatable (examples of interest points are shown by arrows).

p ∈ P is a point and w ∈ R
n is a vector of parameters (one

possible choice of H is a neural network). Thus, invariance

of the ranking under transformation t ∈ T can be stated as

follows: for every quadruple (pid, p
j
d, p

i
t(d), p

j

t(d)) satisfying

i, j ∈ Cdt, i 6= j, it holds that











H(pid|w) > H(pjd|w) & H(pi
t(d)|w) > H(pj

t(d)|w)

or

H(pid|w) < H(pjd|w) & H(pi
t(d)|w) < H(pj

t(d)|w) .

(1)

From the condition above it follows that

Observation 1. If H satisfies the ranking constraints (1)

and every point has a correspondence, the top/bottom

quantiles of H before a transformation correspond to the

top/bottom quantiles of H after it.

Thus, to get a repeatable interest point detector, one just

needs to sort all points p of the object d by their response

H(p|w) and take the top/bottom quantiles as interest points.

In the next section, we will state the optimization objec-

tive aiming at preserving the ranking (1).

3.1. Ranking objective and optimization

First, let us introduce a ranking agreement function for

quadruples:

R(pid, p
j
d, p

i
t(d), p

j

t(d)|w) =

(H(pid|w)−H(pjd|w))(H(pit(d)|w)−H(pj
t(d)|w)) .

(2)

Then the ranking invariance condition (1) can be re-written

as

R(pid, p
j
d, p

i
t(d), p

j

t(d)|w) > 0 . (3)

In order to give preference to this invariance, we will as-

sume the object set D and the transformation set T to be

finite (for the sake of training) and minimize the objective:

L(w) =
∑

d∈D

∑

t∈T

∑

i,j∈Cdt

ℓ(R(pid, p
j
d, p

i
t(d), p

j

t(d)|w)) , (4)

where ℓ(R) is a function penalizing non-positive values.

One naive solution would be to use a "misranking count"

loss

ℓ(R) =

{

1, if R ≤ 0 ,

0, otherwise .
(5)

Unfortunately, this loss is hard to optimize as it either does

not have a gradient or its gradient is zero. Instead, we upper-

bound the discontinuous loss with a differentiable one. In

this work, we choose to use the hinge loss

ℓ(R) = max(0, 1−R) . (6)

Then the final form of our minimized objective will be

L(w)=
∑

d∈D

∑

t∈T

∑

i,j∈Cdt

max(0, 1−R(pid, p
j
d, p

i
t(d), p

j

t(d)|w)),

(7)

which is differentiable as long as H(p|w) is differentiable

w.r.t w (that is satisfied if H is a neural network; note

that the objective above is non-convex even if H is linear).

Therefore, we can use gradient descent for the optimization.

4. Image interest point detector learning

Learning detectors from scratch is a hard task since it is

non-trivial to formulate good detector criteria in the opti-

mization framework. As investigated by [22], a good detec-

tor should produce interest points that are robust to view-

point/illumination changes (to detect the same points and

further match them) and sparse (to make feature matching

feasible). To comply with the earlier introduced terminol-

ogy, d is an image, p is a position in the image represented

by a patch, a transformation t is a viewpoint/illumination

change and correspondence sets Cdt are patch-to-patch

correspondences between images observing the same 3D

scene.

It is typical for interest point detectors to ensure spar-

sity in two ways: by retaining the top/bottom quantiles of

the response function (contrast filtering) and by retaining

the local extrema of the response function (non-maximum

suppression). While Observation 1 suggests reproducibility
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of our detections under contrast filtering, it turns out that

non-maximum suppression is also suitable for our detector

according to the following

Observation 2. If H satisfies the ranking constraints (1)

and the vicinity of the correspondence (pd, pt(d)) is visible

in both images d and t(d), then pd is a local extremum in

image d ⇐⇒ pt(d) is a local extremum in image t(d).

It is easy to see why this observation is true: if the

position is ranked higher/lower than all the neighbors in

one image, the corresponding position should be ranked

higher/lower than the corresponding neighbors in another

image.

Thus the proposed objective is beneficial for the detec-

tor pipeline which consists of non-maximum suppression

and contrast filtering. This pipeline is followed by many

detectors including the popular DoG detector [18]. In the

following section, we explain how to train an image interest

point detector with our objective.

4.1. Training

We need to sample from both the image set D and the

transformation set T to perform training with the objec-

tive (7). We could, of course, take images and transfor-

mations from any available image dataset with correspon-

dences. But this does not address two important questions:

• How to achieve invariance exactly to the transforma-

tions that we want? For example, most real images are

taken up-right, so there is no relative rotation between

any pair of them. But we want our detector to be robust

to cases where there is such a rotation.

• How to augment the training images? For example,

all the objects in the training images might be well-

illuminated. But in the testing images some objects

might be in the shadow, while others are in the light.

We might want to be robust to such cases.

In this chapter we will show how to achieve each goal by

randomly transforming training quadruples

Q = (pkd, p
m
d , pkt(d), p

m
t(d)) . (8)

To achieve invariance to a transformation class Ti, we

can sample two random transformations ti1 ∈ Ti, ti2 ∈ Ti

and apply a quadruple of transformations (ti1 , ti1 , ti2 , ti2)
to the training quadruples Q element-wise. This expresses

our preference to preserve the ranking even if a random

transformation from Ti is applied to the image.

To augment the data with a transformation class Ta, we

can sample two random transformations ta1
∈ Ta, ta2

∈ Ta

and apply (ta1
, ta2

, ta1
, ta2

) to Q. This means that we apply

the same transformation to both patches in the correspon-

dence to create more training data.

Finally, there are some invariant/augmenting transforma-

tions which can’t be easily parametrized and sampled (e.g.,

the non-Lambertian effect). In that case, we fully rely on

their distribution, coming from the real data.

5. Experiments

Our objective function (7) is based on pairs of correspon-

dences, forming training quadruples (an example of such a

quadruple is shown in Fig. 2). To train a detector, we need

to obtain those correspondences. We investigated learning

• an RGB detector from ground-truth correspondences

(they come from projecting laser-scanned 3D points

onto images),

• a fully-unsupervised RGB detector (correspondences

are obtained by randomly warping images and chang-

ing illumination),

• a cross-modal RGB/depth detector (correspondences

are trivially obtained as coinciding locations in view-

aligned Kinect RGBD frames).

We further describe the setup of those experiments.

Detector class. We concentrate on the most commonly

used type of detectors: scale-space-covariant, rotation-

invariant ones (although our method is suitable for any com-

bination of detector covariances/invariances). For example,

DoG belongs to that type. Those detectors consider an in-

terest point p to be characterized by an image location x, y

and a scale s. The points are detected in a 3-dimensional

space (scale-space) using a response function

H(p|w) = H(x, y, s|w) . (9)

Consequently, non-maximum suppression and contrast fil-

tering work in this 3-dimensional space as well (with a

3 × 3 × 3 neighborhood). Since rotation is not estimated,

the detector is required to be invariant to it. The invariance

is achieved by the random sampling (see Section 4.1).

Detector evaluation. DoG is the most widely used detec-

tor nowadays, so we use it as a baseline in our evaluation.

The whole detector is a multi-stage pipeline in which we

aim to substitute a crucial part: the filter used to convolve

the image. In order to make a fair evaluation, we fix all the

other stages of the pipeline. The whole procedure works

as follows. First, we apply the response function H(p) to

all spatial positions of the image at all considered scales.

This is the stage we are aiming to substitute with a learned

function (DoG filter in the standard pipeline). Second, we

do non-maximum suppression in scale-space. Third, we do

accurate localization based on the second-order Taylor ex-

pansion of the response function around potential interest

points [18]. Finally, we only take points for which the ab-

solute value of the response is larger than a threshold.
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Figure 2. Quad-network forward pass on a training quadruple. Patches (1, 3) and (2, 4) are correspondence pairs between two different

images, so 1, 2 come from the first image and 3, 4 come from the second image. All of the patches are extracted with a random rotation.

For quantitative evaluation, we use the repeatability mea-

sure described in [22] (with the overlap threshold parame-

ter equal 40%). The repeatability is the ratio between the

number of points correctly detected in a pair of images and

the number of detected points in the image with the low-

est number of detections. It is only meaningful to compare

methods producing the same number of interest points: oth-

erwise some method might report too many points and un-

fairly outperform others (e.g., if we take all points as "in-

teresting", repeatability will be very high). Therefore, we

consider a range of top/bottom quantiles, producing the de-

sired numbers of points and compare all methods for those

fixed numbers.

Response function. In all experiments, the response func-

tion H(p|w) is a neural network. We describe it as a tuple

of layers and use the notation:

• c(f, i, o, p) for convolutional layers with filter size

f × f , taking i input channels, outputting o channels,

using zero-padding of p pixels on each border (stride

is always 1 in all experiments),

• f(i, o) for fully-connected layers, taking i features and

outputting o features,

• e for the ELU non-linearity function [4],

• b for a batch normalization layer,

• (·)n for applying the same network n times.

In all the experiments, the response function is applied to

grayscale 17x17 patches. If the training data is in color, we

convert it to grayscale. The patches are preprocessed as it is

typical for neural networks: the mean over the whole patch

is subtracted, then it is divided by the standard deviation

over the patch.

Augmentation. We augment the training data (see Sec-

tion 4.1) with random rotations from [0, 2π] and random

scale changes from [ 13 , 3].
Optimization details. To optimize the objective (7), we use

the Adadelta algorithm [39], which is a version of gradient

descent that chooses the gradient step size per-parameter

automatically. We implement the model and optimization

on a GPU (Nvidia Titan X) using the Torch7 framework [5].

The batch size is 256, our models are trained for 2000
epochs, each consisting of randomly sampling a pair of

corresponding images and then randomly sampling 10000
quadruples from this pair. Eventually, by the time training

stops our models have seen 20 million sampled quadruples.

5.1. RGB detector from ground­truth correspon­
dences

In this experiment, we show how to use existing 3D data

to establish correspondences for training a detector.

Training. We used the DTU Robot Image Dataset [1]. It

has 3D points, coming from a laser scanner, and camera

poses, which allow to project 3D points into the pairs of im-

ages and extract image patches centered at the projections.

Those projections form the correspondence pairs for train-

ing.

Testing. We used the Oxford VGG dataset [22], commonly

chosen for this kind of evaluation. This dataset consists of

40 image pairs.

NN architectures. In this experiment, we tested two NN ar-

chitectures: a linear model (c(17, 1, 1, 0)) and a non-linear

NN with one hidden layer (c(17, 1, 32, 0), e, f(32, 1)).
Results. We demonstrate that the filter of our learned linear

model is different from the filters of the baselines in Fig. 3.

Furthermore, we show the detections of the linear model in

comparison to DoG in Fig. 4. Our learned model detects

points different from DoG: they are more evenly distributed

in images. That is usually profitable for estimating geomet-

ric transformations between camera frames.

The learned response functions with both investigated

architectures (linear, non-linear) demonstrate better perfor-

mance than baselines in most cases, as shown in Table 1

(results are averaged over all image pairs for each trans-

formation type). Moreover, the non-linear model performs

better than the linear one in the majority of the cases.

Finally, we combine our detector with the SIFT de-

scriptor and measure how well the detected points can be
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matched. For that we use the same matching score as

in [22], i.e., the ratio of correct matches to all matches. Our

detectors (Linear, Non-linear)+SIFT are slightly better than

DoG+SIFT in most cases, as shown in Fig. 5. Our methods

performed worse than DoG only for the UBC dataset, mea-

suring the robustness to the JPEG compression, which was

not included in our training.

Wall (viewpoint) Leuven (illumination)

Trees (blur) UBC (jpeg)
Figure 5. Matching score (the higher, the better) of DoG and our

methods (Linear, Non-linear) on the benchmark from [22].

5.2. Fully­unsupervised RGB detector

The goal of this experiment is to show that ground-truth

correspondences from an additional data source (like 3D

points from a laser scanner) are not necessary to train a de-

tector with our method. Instead, we can sample random

transformations to obtain correspondences.

Training. In this experiment, we only used images from

the DTU dataset with different illuminations. To generate

the correspondence, a patch was randomly selected from

an image and randomly transformed. We considered affine

warps, preserving area, together with illumination changes,

uniformly sampled from those provided by the dataset. The

affine warps were parametrized as rot(α) ∗ diag(s, 1
s
) ∗

rot(−α)) by a rotation α (uniformly sampled from [0, 2π])
and a scaling factor s. We considered two settings: small

warps (s sampled uniformly from [1, 1.1]) and large warps

(s sample uniformly from [1, 2]).
Testing. We used the Oxford VGG dataset [22] (same as in

the previous experiment).

NN architectures. We considered linear models.

Results. As shown in Table 2, our methods outperform

DoG in more than half of the cases.

5.3. Cross­modal RGB/depth detector

In this experiment, we show how to use our method for

learning a cross-modal detector — a hard problem where

Table 1. Repeatability of a random filter, DoG, and our linear (Lin-

ear) and non-linear (Non-lin) methods. Some entries are omitted

because of having not enough points after non-maximum suppres-

sion. The left-most column is the transformation class, we used

abbreviations: VP for viewpoint, Z+R for zoom+rotation, L for

illumination.

Number of interest points

T Data Method 300 600 1200 2400 3000

VP graf Random 0.06 0.08 0.12 0.17 0.19

DoG 0.21 0.2 0.18 - -

Linear 0.17 0.18 0.19 0.21 0.22

Non-lin 0.17 0.19 0.21 0.24 0.25

wall Random 0.18 0.22 0.27 0.33 0.36

DoG 0.27 0.28 0.28 - -

Linear 0.33 0.36 0.39 0.43 0.44

Non-lin 0.3 0.35 0.39 0.44 0.46

Z+R bark Random 0.02 0.03 0.05 0.08 0.1

DoG 0.13 0.13 - - -

Linear 0.14 0.15 0.15 0.15 -

Non-lin 0.12 0.13 0.14 0.16 0.16

boat Random 0.03 0.05 0.08 0.11 0.12

DoG 0.26 0.25 0.2 - -

Linear 0.27 0.27 0.27 0.26 0.25

Non-lin 0.21 0.24 0.28 0.28 0.29

L leuven Random 0.51 0.57 0.63 0.69 0.71

DoG 0.51 0.51 0.5 - -

Linear 0.69 0.69 0.73 0.73 0.72

Non-lin 0.7 0.72 0.75 0.76 0.77

Blur bikes Random 0.36 0.42 0.48 0.53 0.54

DoG 0.41 0.41 0.39 - -

Linear 0.53 0.53 0.49 0.55 0.57

Non-lin 0.52 0.51 0.51 0.49 0.49

trees Random 0.21 0.26 0.32 0.4 0.43

DoG 0.29 0.3 0.31 - -

Linear 0.34 0.37 0.42 0.45 0.5

Non-lin 0.36 0.39 0.44 0.49 0.5

JPEG ubc Random 0.42 0.47 0.53 0.59 0.61

DoG 0.68 0.6 - - -

Linear 0.55 0.62 0.66 0.67 0.68

Non-lin 0.58 0.62 0.64 0.69 0.7

we do not have an understanding on how to design a good

solution by hand. We learn a detector between RGB and

depth images by training on the NYUv2 dataset [24]. Such

a detector has an application in augmenting an un-colored

3D point cloud with colors from a newly obtained image.

Training. We use 40 random frames from NYUv2, which

contains view-aligned Kinect RGBD frames (an RGB pixel

corresponds to a depth pixel at the same location).

Testing. We use 40 random frames from NYUv2 (unrelated

to the training set).

NN architectures. We evaluated the following architec-

tures for the response function H:

• Deep convolutional network (Deep Conv Net):

(c(7, 1, 32, 3), b, e, (c(7, 32, 32, 3), b, e)8, c(17, 32, 1, 0)),
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random DoG ours linear
Figure 3. Filters of linear models. The DoG filter parameters default to the standard implementation [3].

DoG left DoG right ours left ours right
Figure 4. Correct (repeatable) detections. Rows correspond to datasets in the following order: graf1-2, wall1-2, bikes1-2, ubc1-2.

• Shallow fully-connected network (Shallow FC Net):

(c(17, 1, 32, 0), e, f(32, 32), e, f(32, 1)),

• Deep fully-connected network (Deep FC Net):

(c(17, 1, 32, 0), e, (f(32, 32), e)8, f(32, 1)).

Results. The repeatability and filters from the best model

(Deep Conv Net) are shown in Fig. 6 and Fig. 7. Our best

model outperformes others by a large relative value. As

shown in the repeatability plot, DoG produces a relatively

small number of interest points. That is because we extract

the same number of points from both sensors — for the fair

comparison as explained at the beginning of the section —

and DoG produces very few of them (after non-maximum

suppression) in the depth channel, which is very smooth and

lacks texture. On the opposite, our methods produce more

points as they learn to "spread" image patches during train-

ing, making the response distribution more peaky. We com-

pare the detections of our best model to DoG in Fig. 8.

Figure 6. Our deep convolutional model (Deep Conv Net) pro-

duces overall better repeatability than baselines.
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DoG image DoG depth ours image ours depth
Figure 8. Correct (repeatable) detections. Rows correspond to frames 17, 529, 717, 1257 from NYUv2.

Table 2. Repeatability of DoG, our methods learned with large

(WarpL) and small (WarpS) warps.

Number of interest points

T Data Method 300 600 1200 2400 3000

VP graf DoG 0.21 0.2 0.18 - -

WarpL 0.15 0.15 0.17 0.18 0.19

WarpS 0.14 0.17 0.18 0.19 0.2

wall DoG 0.27 0.28 0.28 - -

WarpL 0.35 0.37 0.39 0.42 0.42

WarpS 0.27 0.32 0.36 0.41 0.42

Z+R bark DoG 0.13 0.13 - - -

WarpL 0.09 0.09 0.09 - -

WarpS 0.11 0.12 0.13 0.14 -

boat DoG 0.26 0.25 0.2 - -

WarpL 0.16 0.18 0.18 0.19 0.19

WarpS 0.2 0.21 0.22 0.22 0.23

L leuven DoG 0.51 0.51 0.5 - -

WarpL 0.66 0.64 0.65 0.67 0.67

WarpS 0.69 0.67 0.68 0.71 0.71

Blur bikes DoG 0.41 0.41 0.39 - -

WarpL 0.49 0.46 0.42 0.52 -

WarpS 0.55 0.54 0.52 0.57 0.6

trees DoG 0.29 0.3 0.31 - -

WarpL 0.31 0.35 0.38 0.43 0.47

WarpS 0.33 0.37 0.41 0.44 0.49

JPEG ubc DoG 0.68 0.6 - - -

WarpL 0.54 0.59 0.61 0.61 0.62

WarpS 0.54 0.6 0.65 0.67 0.67

Figure 7. Some 7x7 filters from the first layer of our deep con-

volutional model (Deep Conv Net), it is possible to see edge-like

filters, blob filters and high-frequency filters.

6. Conclusion

In this work, we have proposed an unsupervised ap-

proach to learning an interest point detector. The key idea

of the method is to produce a repeatable ranking of points

of the object and use top/bottom quantiles of the ranking as

interest points. We have demonstrated how to learn such a

detector for images. We show superior or comparable per-

formance of our method with respect to DoG in two differ-

ent settings: learning standard RGB detector from scratch

and learning a detector, repeatable between different modal-

ities (RGB and depth from Kinect). Future work includes

learning the descriptor jointly with our detector. Also, one

could investigate applying our method to detection beyond

images (e.g., to interest frame detection in videos).
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