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Abstract

Matching local image descriptors is a key step in many

computer vision applications. For more than a decade,

hand-crafted descriptors such as SIFT have been used for

this task. Recently, multiple new descriptors learned from

data have been proposed and shown to improve on SIFT in

terms of discriminative power. This paper is dedicated to

an extensive experimental evaluation of learned local fea-

tures to establish a single evaluation protocol that ensures

comparable results. In terms of matching performance, we

evaluate the different descriptors regarding standard crite-

ria. However, considering matching performance in isola-

tion only provides an incomplete measure of a descriptor’s

quality. For example, finding additional correct matches be-

tween similar images does not necessarily lead to a better

performance when trying to match images under extreme

viewpoint or illumination changes. Besides pure descriptor

matching, we thus also evaluate the different descriptors in

the context of image-based reconstruction. This enables us

to study the descriptor performance on a set of more practi-

cal criteria including image retrieval, the ability to register

images under strong viewpoint and illumination changes,

and the accuracy and completeness of the reconstructed

cameras and scenes. To facilitate future research, the full

evaluation pipeline is made publicly available.

1. Introduction

Matching local image features is a crucial step in

many computer vision applications, e.g., in Structure-from-

Motion (SFM) and Multi-View Stereo (MVS) [1,17,33,37,

39,40], image retrieval [31,34,47,48], and image-based lo-

calization [35, 36, 56]. In many of these applications, the

overall performance strongly depends on the quality of the

initial feature matching stage. Consequently, determining

which local feature descriptors offer the most discriminative

power and the best matching performance is of significant

interest to a large part of the computer vision community.

For more than a decade, SIFT [26] has arguably been the

most popular feature descriptor for such tasks. Recently, the

ability of neural networks to learn feature representations

from data that are superior to prior hand-crafted ones has

led to significant progress in the field of computer vision,

e.g., in object detection and recognition [12,23,41]. Conse-

quently, neural networks have also been applied to the prob-

lem of descriptor learning [3, 14, 24, 42] in order to derive

more discriminative representations for local features. The

resulting methods demonstrate clear improvements over

standard hand-crafted representations, such as SIFT [26],

SURF [4], or DAISY [46]. However, there is usually no

direct comparison with more advanced hand-crafted SIFT

variants such as RootSIFT [2], RootSIFT-PCA [7], or DSP-

SIFT [9]. Moreover, learned descriptors are typically eval-

uated on the patch classification benchmark from Brown et

al. [6]. The task measures how well a descriptor can distin-

guish between related and unrelated patches based on their

distance in descriptor space. Yet, a better performance on

this benchmark does not necessarily imply a better match-

ing quality, as shown by Balntas et al. [3]. For example,

pruning steps such as Lowe’s ratio test [26] or mutual near-

est neighbor constraints might compensate for a higher false

positive matching rate in terms of descriptor distance. Sim-

ilarly, reaching a better average matching performance does

not automatically imply a better performance in terms of

subsequent processing steps. In the context of SFM, find-

ing additional correspondences for image pairs where SIFT

already provides enough matches does not necessarily re-

sult in more accurate or complete reconstructions. At the

same time, descriptors with a better average matching per-

formance might still not find enough correspondences to be

able to handle hard image pairs where SIFT fails.

In this paper, we present a thorough experimental evalu-

ation of learned and advanced hand-crafted feature descrip-

tors in order to better understand their performance. In de-

tail, this paper makes the following contributions: i) We

provide a more detailed study of the matching performance

of the different descriptors using a wider range of evaluation

criteria and scenes than previous evaluations such as [3]. ii)

Besides analyzing the matching quality in isolation of fur-

ther processing steps, we also investigate the impact of dif-

ferent descriptors on the challenging and more practical task
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of image-based reconstruction. For example, this allows us

to better determine whether learned descriptors can help to

register hard images, e.g., photos depicting the scene under

strong viewpoint or illumination changes. In addition, we

are interested to understand to what extent a better match-

ing performance affects the outcome of further processing

stages, e.g., the accuracy and completeness of the models

produced by SFM and MVS. iii) Our evaluation confirms

that, as expected, learned descriptors often surpass SIFT on

all evaluation metrics. However, we also observe that ad-

vanced versions of hand-crafted descriptors [7, 9] perform

on par or better than the state-of-the-art learned feature de-

scriptors, especially in the more complex SFM scenarios.

As such, our paper demonstrates that there is still significant

room for improvement for learning more powerful feature

descriptors. iv) To facilitate further research in developing

better descriptors, we make our benchmark publicly avail-

able1. This includes a large database corresponding patches.

2. Related Work

In the following, we provide a detailed overview of de-

scriptor learning methods and a review of the hand-crafted

descriptors used as baselines. In addition, we discuss the

existing evaluation protocols and their limitations.

2.1. Descriptor Learning

Descriptor learning is usually formulated as a supervised

learning problem. Given a set P of positive pairs and a set

N of negative pairs, the objective is to learn a representation

in which the descriptors belonging to the same physical ob-

ject are close in descriptor space while unrelated descriptors

are far apart. The approaches often differ in the exact def-

inition of this property. For example, Simonyan et al. [43]

use the margin constraint

d(p1,p2) + τ < d(n1,n2) ∀(p1,p2) ∈ P, (n1,n2) ∈ N ,

(1)

where d(, ) is a distance metric (usually L2) and τ ∈ R>0 is

a margin. This approach can easily be extended to different

types of positives and negatives, e.g., by using a larger mar-

gin τ2 for random negative pairs and a smaller one τ1 < τ2
for negative pairs with a small initial distance [32]. Enforc-

ing a small intra-class variance for descriptors belonging to

the same physical point and a large inter-class variance for

unrelated descriptors can also be expressed via a hinge em-

bedding [29] or contrastive loss [13]

l(d1,d2) =

{

d(d1,d2) if (d1,d2) ∈ P

max (0, τ − d(d1,d2)) if (d1,d2) ∈ N
,

(2)

which tries to enforce a minimum distance τ > 0 between

unrelated descriptors. As an alternative to working with

1http://www.cvg.ethz.ch/research/local-feature-evaluation/

pairs of descriptors, it is also possible to operate on triplets

(p1,p2,n), with (p1,p2) ∈ P and (p1,n), (p2,n) ∈ N .

Potential cost functions are the margin ranking loss [51]

l(p1,p2,n) = max (0, τ + d((p1,p2)− d(p1,n)) (3)

and the ratio loss [18]

l(p1,p2,n) =

(

edp

edp + edn

)2

+

(

edn

edp + edn

)2

, (4)

where dp = d(p1,p2) and dp = d(p1,n). The latter tries

to enforce that the distance between related descriptors is

significantly smaller than the distance to an unrelated de-

scriptor, without explicitly specifying a margin.

The input to the descriptor learning algorithm varies

between the different approaches. For example, methods

based on metric learning [52] often use a fixed descriptor

representation as input and learn a discriminative metric

for comparing descriptors [6, 32, 43, 44]. In contrast, ap-

proaches that learn a new descriptor representation usually

operate on raw image patches [3, 42, 43, 55].

One way to obtain the large amount of training data re-

quired for learning is to extract positive and negative pairs

from 3D models [6,24,44]. As a result of the reconstruction,

each 3D point is associated with at least two image descrip-

tors and their corresponding local patches. Consequently,

the measurements from a single point form positive pairs

while measurements from different 3D points are used to

define negative pairs. While SFM already uses a descrip-

tor, e.g. SIFT, to compute the pairwise feature matches used

for reconstruction, the resulting models can still be used to

learn more discriminative descriptors: Due to the transitiv-

ity of matching, a 3D point might be associated with patches

A, B, and C. Correspondences might initially be obtained

between A and B and between B and C, but not between A

and C, e.g., due to a large viewpoint or illumination change.

Thus, the data is suitable to learn a better descriptor that is

able to directly match between A and C. An alternative to

using SFM or MVS models is to use image retrieval tech-

niques [31] to obtain the positive and negative pairs [32,43].

2.2. Learned Descriptors

Learning Patch and Descriptor Embeddings. Given an

image patch, descriptor learning can be formulated as find-

ing a discriminative embedding into a new space. For ex-

ample, PCA-SIFT [22] uses principal component analysis

(PCA) to embed a gradient image of a patch while Lep-

etit and Fua [25] embed patches using a random forest.

Obviously, embeddings can also be applied to already ex-

isting descriptors, e.g., (Root)SIFT-PCA [7] employs PCA

to project (Root)SIFT descriptors into a lower dimensional

space. Philbin et al. [32] learn both linear and non-linear

discriminative projections into lower dimensional spaces
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based on margin constraints. The non-linearity is imple-

mented using a neural network with a single hidden layer.

Simonyan et al. [43] model the problem of learning a dis-

criminative projection into a low-dimensional space as a

convex optimization problem. The resulting linear projec-

tions outperform the non-linear ones from Philbin et al.

[32]. While the other methods learn embeddings into Eu-

clidean spaces, Strecha et al. [44] propose a discrimina-

tive projection into a binary space where Hamming dis-

tances can be computed very efficiently. For our experi-

mental evaluation, we use both RootSIFT-PCA and the pro-

jection learned by Simonyan et al. (in conjunction with the

ConvOpt descriptor [43]). The former serves as a baseline

method representing advanced hand-crafted descriptors.

Learning Pooling Regions. Hand-crafted and learned de-

scriptors are constructed by applying a series of filter banks

to an image patch, followed by pooling (e.g., into histogram

bins in the case of SIFT) and normalization. Fixing the ar-

rangement, e.g., on a polar grid, and the positions of the

pooling regions, Brown et al. [6] learn descriptors by opti-

mizing over the remaining pooling parameters such as the

size of the regions. Following a similar approach, Trzcinski

et al. [49] employ a boosting approach to learn binary de-

scriptors from a set of weak learners that represent pooling

strategies. Simonyan et al. [43] model the problem of learn-

ing the pooling regions as a convex energy minimization

problem based on the margin constraint from Eq. 1. The

size of the resulting Convex Optimization (ConvOpt) de-

scriptor is controlled by enforcing sparsity when selecting

a subset of the pooling regions. More complex descriptors

can be trained by combining the learning of pooling regions

with learning (linear) discriminative projections [6, 43]. In

this paper, we use the ConvOpt descriptor, combined with

a discriminative projection into a lower dimensional space

[43], as a representative of approaches that learn pooling

regions. It is selected since it outperforms both Brown et

al. [6] and Trzcinski et al. [49]. As a baseline for hand-

crafted descriptors, we employ DSP-SIFT [9], a variant of

SIFT that pools gradients over multiple scales rather than

only the scale at which the SIFT feature was detected.

Learning Filter Banks. While the approaches described

in the previous paragraph [6,43,49] use a fixed set of filters

and learn the pooling regions, approaches based on Con-

volutional Neural Networks (CNN) [3, 42] fix the pooling

strategy and instead learn the filter banks. Simo-Serra et

al. [42] use a siamese architecture [5] with a 3-layer CNN

to minimize the contrastive loss from Eq. 2. Simo-Serra et

al. notice that most randomly sampled negative patch pairs

are easy to separate. In order to train their Deep Descriptor

(DeepDesc), they thus mine for hard positive and negative

pairs that can be used during learning. While Simo-Serra et

al. [42] use pairs of patches, Balntas et al. [3] use a triplet

network [18] consisting of two convolutional followed by

one fully connected layer. Their TFeat descriptor is trained

using hard-negative mining and Balntas et al. propose ver-

sions based on the margin ranking loss from Eq. 3 or the

ratio loss from Eq. 4. We use both DeepDesc and TFeat

trained with the margin ranking loss for our evaluation.

Joint Descriptor and Metric Learning. The approaches

described above learn functions that map local image

patches to discriminative descriptors embedded in a Eu-

clidean space. As such, they employ the L2 distance to

compare descriptors. An alternative strategy is to jointly

learn a descriptor representation and a distance metric that

can be used to compare them [14, 54, 55]. Such approaches

are potentially more powerful as deep neural networks can

be used to implement a non-linear metric. However, this

strength is also a great draw-back as it requires a forward

pass through the learned model for comparing each pair

of descriptors. Not only is such a pass computationally

more complex than computing a single L2 distance, but

the network also prevents the use of traditional spatial sub-

division schemes for fast (approximate) nearest neighbor

search, such as kd-trees or hierarchical k-means trees [30].

This limits the scalability of methods that jointly learn a

descriptor representation and a metric for comparison. In

this paper, we evaluate datasets with millions of descriptors.

Consequently, we focus on learned descriptors that can be

efficiently compared via the L2 distance.

Joint Detector and Descriptor Learning. The methods

discussed above take an image patch as input and com-

pute the corresponding feature descriptor as output. Hence,

they are not tied to a single detector providing the patch but

could easily be combined with any feature detector. How-

ever, jointly optimizing both the descriptor and detector

should provide better results as the detector is trained to fire

on regions that can be matched by the descriptor and vice

versa. Recently, Yi et al. [24] proposed such an approach by

combining the DeepDesc descriptor with a Difference-of-

Gaussians (DoG)-like detector [26]. We include their LIFT

feature in our evaluation.

2.3. Evaluation Protocols

Mikolajczyk et al. [28] evaluate affine region detectors

by introducing standard metrics and small-scale datasets

under various photometric and geometric image transfor-

mation. Later, Mikolajczyk and Schmid [27] extend this

evaluation to several local descriptors. As a superset of this

evaluation, Heinly et al. [16] evaluate binary descriptors and

propose additional metrics and datasets.

Most learned descriptors are evaluated on the patch pair

classification benchmark [6], which measures the ability of

a descriptor to discriminate positive from negative patch

pairs. The standard protocol of the benchmark is to generate

the ROC curve by thesholding the distance values between

pairs of patches. The final reported number is the false pos-
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itive rate at 95% true positive rate (FPR95). However, as

shown by Balntas et al. [3], a better FPR95 score does not

automatically translate to better nearest neighbor matching

because of usual filtering steps, such as Lowe’s ratio test or

the mutual nearest neighbor constraint. In practice, feature

matching is typically followed by a geometric verification

stage to prune outliers [1, 17, 31, 34, 36, 37, 39]. Due to the

exponential complexity in the number of outliers [10], it is

practically more important to have good precision for man-

ageable runtimes of geometric verification. The authors of

LIFT and TFeat make a first step to provide more insight

into the practicality of the descriptors in a real-world appli-

cation. Both evaluate their performance in terms of image-

based reconstruction on the Strecha benchmark [44]. As we

will show in this paper, this dataset is rather easy and pro-

vides only little practical insight.

To facilitate comparability with the evaluations by Miko-

lajczyk and Heinly et al., we follow their benchmark proto-

col to evaluate the raw matching performance on a per im-

age pair basis. As the core contribution of this paper, we

also study the impact of matching performance in the more

practical setting of an image-based reconstruction pipeline

[37, 40] using challenging small- and large-scale datasets.

As part of the image-based reconstruction pipeline, SFM

uses descriptor matching in the first stage to produce a graph

of corresponding features in multiple views. Hence, all sub-

sequent stages strongly rely on a good descriptor represen-

tation. Motivated by this, we derive evaluation metrics in

all stages of the pipeline: feature matching, geometric veri-

fication, image retrieval, and sparse and dense modeling, in

order to give new practical insights into the performance of

the evaluated descriptors, as detailed in following section.

3. Evaluation

In the first part of this section, we detail and motivate the

proposed evaluation protocol. The second part then presents

and discusses the results of the evaluation.

3.1. Setup and Protocol

The following paragraphs describe the setup of our eval-

uation to ensure repeatability of the experiments. The entire

protocol is provided to the public as an evaluation frame-

work to foster future research in feature learning.

Evaluated Descriptors. We evaluate the performance of

RootSIFT (short SIFT) [2] as a baseline descriptor, and

RootSIFT-PCA (short SIFT-PCA) [7] and DSP-SIFT [9]

as two representatives of advanced hand-crafted features.

To evaluate the learned descriptors, we selected four state-

of-the-art methods from the different groups of descriptor

learning approaches: ConvOpt [43], DeepDesc [42], TFeat

[3], and LIFT [24]. All features are evaluated using the

same standardized test setup, as specified in the following.

Feature Detection. To ensure comparability between the

evaluated descriptors, we use the standard SIFT keypoint

detector for all descriptors but LIFT, which implements its

own DoG-like detector. The SIFT detector uses DoG and

we use 4 octaves starting with a two times up-sampled

version of the original image, 3 scales per octave, a peak

threshold of 0.02

3
, an edge threshold of 10, and a maximum

of 2 detected orientations per keypoint location. These val-

ues have been optimized for the purpose of SFM and are,

e.g., used as defaults in COLMAP [37,40]. Following stan-

dard procedure by the original methods, we then extract

64 × 64 pixel patches as the input to each descriptor. Note

that all descriptors have been learned based on DoG key-

points. We experimented with different detector settings for

LIFT and found that the defaults by the authors performed

best. On average, DoG detects 5,262 and LIFT 4,173 fea-

tures for the images in the Oxford5k dataset [31].

Descriptor Matching. Throughout all experiments, the L2

distance serves as an efficient distance metric to calculate

the similarity between two descriptors. To compute the cor-

respondences between pairs of images, we enforce mutual

nearest neighbors, i.e., a corresponding descriptor in one

image must be the nearest neighbor for the corresponding

descriptor in the other image and vice versa. This has been

shown to reduce the amount of false correspondences for

ambiguous structures and significantly improved the results

for all descriptors [16, 37]. In contrast to standard practice

in SIFT matching, we do not enforce the ratio test by prun-

ing descriptors whose top-ranked nearest neighbors are very

similar. The reason being that the ratio test is highly depen-

dent on the distribution of descriptor distances [26]. Prelim-

inary experiments showed that the ratio test is not generally

applicable to any of our evaluated descriptors but SIFT. For

the smaller datasets with up to 2,000 images, we exhaus-

tively compute correspondences between all pairs of im-

ages. For the larger datasets, we use Bag-of-Words (BoW)

to match each image only against a fixed number of top-

ranked neighbor images. For the nearest neighbor search,

we employ a state-of-the-art image retrieval system [38] us-

ing Hamming embedding [20] and visual burstiness weight-

ing [21]. Following standard procedure, we ensure that the

vocabulary is trained on a completely unrelated image col-

lection. Correspondingly, we use a vocabulary of 262,144

words with a branching factor of 512 trained offline on Ox-

ford5k [31] for all the experiments. To ensure a good quan-

tization of the descriptor space and to evaluate the perfor-

mance of each descriptor on the task of image retrieval, we

train a custom vocabulary for each descriptor.

Geometric Verification. Descriptor matching as described

in the previous paragraph is solely based on appearance in-

formation. For the purpose of SFM and to quantify the

matching performance on a per image pair basis, we esti-

mate the two-view geometry and determine the resulting in-
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lier correspondences using the multi-model geometric veri-

fication approach described in [37]. Moreover, we are inter-

ested in quantifying the matching performance in the prac-

tical context of image-based reconstruction. Towards this

goal, we use the successfully verified image pairs with a

minimum of 15 inlier feature correspondences as the input

to COLMAP [37, 40]. While both the sparse and dense re-

construction results provide insight into the practicality of

the descriptors in a real-world application, SFM also imple-

ments a much stricter and more accurate geometric verifica-

tion tool using multi-view information, as compared to the

initial two-view verification. Hence, we also evaluate key

metrics of the resulting sparse and dense reconstructions

produced by SFM and MVS, as detailed in the following.

Matching Metrics. Equivalent to the binary descriptor

evaluation by Heinly et al. [16], we first evaluate the raw

matching performance on a per image pair basis using the

standard metrics Putative Match Ratio, Precision, Match-

ing Score, and Recall. First, the Putative Match Ratio =

#Putative Matches / #Features quantifies the selectivity of

the descriptor in terms of the fraction of the detected fea-

tures initially identified as a match. Second, the Precision

= #Inlier Matches / #Putative Matches defines the inlier

ratio of the putative matches, as determined by geomet-

ric verification. The Matching Score = #Inlier Matches /

#Features defines the number of initial features that will re-

sult in inlier matches. Last, the Recall = #Inlier Matches /

#True Matches describes the number of identified ground-

truth matches. We refer the reader to Heinly et al. [16] for

more details and an in-depth motivation of these metrics.

Reconstruction Metrics. In addition to evaluating the

raw matching performance on individual image pairs, we

also evaluate the performance of the different descriptors in

the practical and more challenging setting of image-based

reconstruction. Typically, the image-based reconstruction

pipeline first uses SFM to calibrate the cameras of the input

images and to infer a sparse model of the scene. Then, the

output of SFM serves as the input to MVS to obtain a dense

representation of the scene, e.g., in the form of depth maps,

a dense point cloud, or a meshed surface model. Gener-

ally, the ultimate goal of image-based reconstruction is to

produce high-quality 3D models. The quality of SFM re-

sults strongly depends on accurate and complete two-view

correspondences as input, and MVS relies on an accurate

and complete SFM reconstruction [37]. Thus, SFM and

MVS results are good indicators for the descriptor perfor-

mance in the initial feature matching stage. Furthermore,

by chaining two-view correspondences into a graph of fea-

ture tracks [37], SFM can exploit multi-view redundancy

to more reliably verify the validity of correspondences. To

evaluate the completeness and accuracy of the reconstruc-

tion results, we determine a number of key metrics: First,

the number of registered images and sparse points quantify

the completeness of the reconstruction. A larger number of

registered images enables more complete MVS reconstruc-

tion and a larger number of 3D points with many image

observations constitute a more complete and accurate scene

representation. Second, we determine the number of obser-

vations per image, i.e., the number of verified image projec-

tions of sparse points, and the track length, i.e., the number

of verified image observations per sparse point. These two

metrics are crucial for an accurate calibration of the cam-

eras and reliable triangulation, as they provide redundancy

in the estimation. Third, bundle adjustment stands at the

core of SFM as a joint non-linear refinement of the cam-

eras and points. The overall reprojection error in bundle

adjustment indicates the accuracy of the reconstruction and

is mainly impacted by the accuracy and redundancy of the

input data, which depend on the completeness of the graph

of feature correspondences and the keypoint localization ac-

curacy. For a subset of the datasets, ground-truth camera lo-

cations are available, and we evaluate the mean metric pose

accuracy of the camera locations by aligning the recon-

structed model to the ground-truth using robust 3D similar-

ity transformation estimation. Last, the MVS problem boils

down to dense correspondence estimation between multi-

ple views. To produce accurate and complete results, MVS

requires an accurate intrinsic and extrinsic camera calibra-

tion. Moreover, more registered images provide additional

multi-view photo-consistency constraints and lead to more

complete results. Hence, we determine the number of re-

constructed dense points as a single measure of the over-

all completeness of the reconstruction and the accuracy of

the SFM results. In addition, we have ground-truth depth

maps for a subset of the datasets to also directly evaluate

the metric accuracy and absolute completeness of the dense

reconstruction results.

Datasets. We evaluate all descriptors on existing small-

and large-scale benchmark datasets. For the two-view eval-

uation, we follow the evaluation protocol and the datasets

provided by Heinly et al. [16]. The benchmark tests the

descriptor performance with respect to different types and

levels of photometric and geometric image transformations

(image blur, exposure, white balance, JPEG compression,

scale and/or rotation, planar and non-planar geometry, il-

lumination, etc.). For the reconstruction evaluation, we

employ various existing benchmark datasets. The well-

known MVS benchmark by Strecha et al. [45] (Fountain

and Herzjesu) consists of around 10 high-resolution images

per dataset with highly accurate ground-truth camera loca-

tions and dense depth maps. To evaluate the completeness

and accuracy of the depth maps, we follow the evaluation

protocol by Hu and Mordohai [19]. Next, we evaluate the

performance on the South Building dataset [15], which con-

sists of 128 highly overlapping images with mostly repeti-

tive scene structure captured by the same camera in a struc-
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SIFT SIFT-PCA DSP-SIFT ConvOpt DeepDesc TFeat LIFT

Dimensionality 128 80 128 73 128 128 128

Size [bytes] 128 320 512 292 512 512 512

Platform CPU CPU CPU GPU GPU GPU GPU

Extraction [s] 9.3 10.5 23.7 49.9 24.3 11.8 212.3

Matching [s] 0.14 0.11 0.14 0.10 0.14 0.14 0.14

Table 1. Key properties of the evaluated descriptors. Average tim-

ings reported for the Oxford5k dataset. Extraction speed includes

keypoint detection and are specified per image. Matching speed is

specified per image pair.

tured pattern around the building. Finally, Internet photo

collections present the descriptors with more challenges due

to the high variance in the input data. We test the de-

scriptors on the large-scale Internet datasets by Wilson and

Snavely [53]. Each dataset contains several thousand im-

ages of well-known landmarks across the world collected

from Flickr. To simulate a harder matching and recon-

struction scenario, each dataset is embedded into a distrac-

tor set of unrelated images. As such, the descriptors must

generalize well to the heterogeneity of Internet data to ro-

bustly handle effects such as large illumination and view-

point changes, repetitive structure, image compression and

distortion artifacts, or unrelated distractor images. Finally,

we evaluate the reconstruction performance on the large-

scale Cornell dataset by Crandall et al. [8]. The dataset

consists of 6,514 unstructured and uncalibrated images of

the Cornell campus. The images were taken in a relatively

sparse pattern during different seasons and times of the day

and thus pose extreme challenges to the descriptors in terms

of illumination and viewpoint changes. A subset of 348

images is equipped with ground-truth camera locations ob-

tained through surveying methods that we use to evaluate

the pose accuracy. We use the Oxford5k dataset [31] to train

the visual vocabulary for image matching.

Implementation. To enable comparability in the tim-

ings, all experiments were conducted on the same machine

with two 14-core Intel E5-2697 2.60GHz CPUs, 512GB of

RAM, and 4 NVIDIA Titan X. We use the SIFT imple-

mentation by VLFeat [50] and, for all other descriptors,

the open-source implementations and models provided by

the authors. Traditionally, the descriptor learning models

are trained on the multi-view correspondence dataset by

Brown et al. [6]. We choose their best-performing pre-

trained models, if multiple are provided. The descriptor

matching uses an efficient GPU implementation, and we use

COLMAP [37,40] for the SFM and MVS evaluation, while

CMVS [11] is used to cluster the larger datasets into more

manageable image clusters for the dense reconstruction.

3.2. Results and Discussion

Performance. Table 1 summarizes the key performance

properties for each descriptor including timings, memory

requirements, etc. on the Oxford5k dataset. The memory

footprint and the descriptor dimensionality have important

SIFT SIFT-PCA DSP-SIFT ConvOpt DeepDesc TFeat LIFT

Putative Match Ratio in %

Blur 3.7 5.7 7.0 5.2 4.6 4.2 6.5

JPEG 20.9 29.3 34.0 26.8 24.4 22.9 27.5

Exposure 33.0 34.1 35.3 32.8 10.4 31.2 34.9

Day-Night 5.5 6.8 6.2 7.2 3.6 5.5 5.4

Scale 12.1 25.2 23.4 23.8 23.0 21.5 19.6

Rotation 12.8 17.6 17.3 10.0 11.9 8.7 1.3

Scale-rotation 2.4 6.0 5.8 4.7 4.5 3.7 2.0

Planar 5.9 10.0 10.1 9.4 7.7 8.0 8.0

Non-planar 7.8 8.8 8.7 8.4 7.4 7.2 8.3

Internet 3.2 4.6 4.4 4.3 2.7 3.4 4.8

Precision in %

Blur 43.8 46.5 48.4 45.2 41.9 46.3 44.5

JPEG 98.5 96.5 98.3 94.1 91.6 95.8 95.9

Exposure 99.3 98.0 98.6 96.6 68.0 97.3 97.5

Day-Night 93.8 80.4 77.8 73.9 37.8 76.5 71.2

Scale 43.0 95.5 95.5 92.2 89.1 94.3 89.1

Rotation 33.2 33.1 33.1 32.2 32.3 32.3 7.9

Scale-rotation 32.8 46.7 46.8 42.3 39.1 43.9 18.7

Planar 33.9 37.3 39.9 34.3 32.5 33.6 33.2

Non-planar 43.3 42.2 43.1 38.4 34.5 39.3 40.4

Internet 39.8 40.3 39.7 35.6 27.2 36.6 37.1

Matching Score in %

Blur 3.7 5.5 6.8 4.9 4.1 4.0 6.2

JPEG 20.8 28.8 33.7 26.1 23.5 22.6 27.1

Exposure 32.8 33.5 34.9 31.8 9.1 30.5 34.2

Day-Night 5.3 5.9 5.5 5.8 1.8 4.7 4.3

Scale 11.7 24.4 22.8 22.6 21.3 20.7 18.2

Rotation 12.8 17.5 17.2 9.7 11.6 8.5 0.9

Scale-rotation 2.4 5.8 5.6 4.3 3.9 3.5 1.6

Planar 5.7 9.6 9.9 8.7 6.9 7.5 7.4

Non-planar 7.7 8.4 8.4 7.8 6.5 6.9 7.7

Internet 3.1 4.1 4.0 3.5 1.8 2.8 4.1

Recall in %.

Blur 17.0 22.4 27.2 20.0 16.9 17.0 17.9

JPEG 37.9 51.6 62.8 46.6 41.0 39.2 51.5

Exposure 79.0 81.0 84.1 76.5 18.2 73.1 64.0

Day-Night 25.6 29.2 26.2 28.9 8.4 22.9 19.3

Scale 22.4 84.0 73.9 76.1 71.9 68.9 98.4

Rotation 20.8 28.5 28.1 16.1 19.1 14.1 2.3

Scale-rotation 6.4 16.4 15.2 12.0 10.9 9.6 5.3

Planar 11.4 18.0 18.6 16.4 13.3 14.2 17.9

Table 2. Evaluation results for the descriptor benchmark by Heinly

et al. [16]. First, second, third best results highlighted in bold.

implications for the required storage capacity for large-scale

datasets, since we evaluate datasets containing thousands of

images with millions of descriptors. For example, the raw

SIFT keypoints and descriptors for Cornell already com-

prise ≈ 11GB of data. Furthermore, the descriptor di-

mensionality impacts the speed of the descriptor matching,

which in practice has squared complexity in terms of the

number of features per image when using efficient exhaus-

tive GPU matching. Due to its low dimensionality, Con-

vOpt provides ≈ 40% faster feature matching. Among the

different descriptors, there is a large variance in extraction

speed. In theory, when implemented efficiently, both SIFT-

PCA and DSP-SIFT have only small overhead over standard

SIFT. While ConvOpt is relatively slow to extract, it is sig-

nificantly faster in the matching stage due to its low dimen-

sionality. Conversely, TFeat is relatively fast to extract and

slower in the matching stage, similar to the other descriptors

with 128 dimensions. LIFT is the slowest method by a large

margin. In general, the extraction of the hand-crafted de-

scriptors is much faster as compared to the learned features

despite running on the CPU. As such, the learned features

are currently not a practical alternative for processing mil-

lions of images, such as in the streaming-based reconstruc-

tion pipeline by Heinly et al. [17] who report a throughput
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Figure 1. Number of registered images for the different methods.
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Figure 2. Number of sparse points for the different methods.
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Figure 3. Number of dense points for the different methods.

of 20 images per second on a single GPU.

Image Matching. Table 2 shows the results for the

datasets and metrics of the descriptor evaluation benchmark

by Heinly et al. [16]. The results give insight into which

image transformations are particularly challenging for the

descriptors. We observe that all descriptors consistently

perform worse across the different metrics in the case of

image blur, day-night, and large viewpoint change. As ex-

pected, the learned descriptors typically outperform SIFT

in terms of recall, while SIFT performs better in terms of

precision. Surprisingly though, the advanced SIFT vari-

ants outperform the learned features for almost all met-

rics and matching scenarios. Notably, the performance of

the learned descriptors often has a high variance across

the different datasets, which indicates over-fitting for spe-

cific image transformations, e.g., due to a lack of training

data depicting the entire appearance space of patches. Note

that LIFT has problems with matching between rotated im-

ages, since it was trained on mostly upright Internet images.

Among the learned descriptors, ConvOpt produces overall

the best results and has the lowest variance across the dif-

ferent datasets. Table 3 presents the results for the image-

based reconstruction benchmark and the # Inlier Pairs and #

Inlier Matches metrics demonstrate a similar matching be-

havior in the large-scale setting. Next, we discuss, how the

isolated matching performance impacts the image-based re-

construction results in practice.

Reconstruction. Table 3 lists the numerical values for the

reconstruction evaluation, while Figures 1, 2, and 3 visu-

alize the relative performance of the methods qualitatively.

For the two smaller Strecha datasets (Fountain and Herz-

jesu), which were also evaluated by the authors of LIFT and

TFeat, and the South Building dataset, the learned descrip-

tors generally perform on par with or better than SIFT in

terms of the number of sparse points, the number of image

observations, and the mean track length. As a consequence

of a better matching performance, the two advanced SIFT

versions produce significantly better results than the other

methods in these metrics. However, looking at the number

of registered images, and the final dense modeling perfor-

mance and accuracy metrics, all methods produce roughly

the same reconstruction quality. We interpret these results

as an indication that the Strecha and South Building datasets

are rather easy benchmarks due to the structured camera

setup with high overlap, same illumination conditions, etc.

The higher variance in the results for the larger-scale In-

ternet datasets confirms this interpretation. Here, Madrid

Metropolis, Gendarmenmarkt, and Tower of London were

matched exhaustively, whereas the images in Alamo, Ro-

man Forum, and Cornell were only matched against the

100 nearest neighbors found using image retrieval. The

matching and reconstruction results therefore also test the

discriminative power of the descriptors in the context of

BoW-based image retrieval. In the more challenging case

of Internet photos, the matching performance directly im-

pacts the ability to obtain complete and accurate models.

Opposed to our observations in the raw matching evalu-

ation, where SIFT produces inferior results as compared

to the learned descriptors, in the reconstruction evaluation,

SIFT performs typically on par with the learned descrip-

tors. This implies that a better matching performance does

not necessarily lead to better reconstruction results. DSP-

SIFT performs best among all the methods, both in terms of

sparse and dense reconstruction results. It consistently pro-

duces the most complete sparse reconstruction in terms of

the number of registered images and reconstructed sparse

points, while the dense models have the most points as a

result of accurate camera registration. The mean reprojec-

tion error is similarly good for the descriptors that use the

DoG keypoint detector, with a slightly larger error for DSP-

SIFT, which is potentially caused by the descriptor pooling

across multiple scales leading to more robustness w.r.t. in-
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# Images # Registered # Sparse Points # Observations Track Length Reproj. Error # Inlier Pairs # Inlier Matches # Dense Points Pose Error Dense Error

Fountain SIFT 11 11 10,004 44K 4.49 0.30px 49 76K 2,970K 0.002m (0.002m) 0.77 (0.90)

SIFT-PCA 11 14,608 70K 4.80 0.39px 55 124K 3,021K 0.002m (0.002m) 0.77 (0.90)

DSP-SIFT 11 14,785 71K 4.80 0.41px 54 129K 2,999K 0.002m (0.002m) 0.77 (0.90)

ConvOpt 11 14,179 67K 4.75 0.37px 55 114K 2,999K 0.002m (0.002m) 0.77 (0.90)

DeepDesc 11 13,519 61K 4.55 0.35px 55 93K 2,972K 0.002m (0.002m) 0.77 (0.90)

TFeat 11 13,696 64K 4.68 0.35px 54 103K 2,969K 0.002m (0.002m) 0.77 (0.90)

LIFT 11 10,172 46K 4.55 0.59px 55 83K 3,019K 0.002m (0.002m) 0.77 (0.90)

Herzjesu SIFT 8 8 4,916 19K 4.00 0.32px 27 28K 2,373K 0.004m (0.004m) 0.57 (0.73)

SIFT-PCA 8 7,433 31K 4.19 0.42px 28 47K 2,372K 0.004m (0.004m) 0.57 (0.73)

DSP-SIFT 8 7,760 32K 4.19 0.45px 28 50K 2,376K 0.004m (0.004m) 0.57 (0.73)

ConvOpt 8 6,939 28K 4.13 0.40px 28 42K 2,375K 0.004m (0.004m) 0.57 (0.73)

DeepDesc 8 6,418 25K 3.92 0.38px 28 34K 2,380K 0.004m (0.004m) 0.57 (0.73)

TFeat 8 6,606 27K 4.09 0.38px 28 38K 2,377K 0.004m (0.004m) 0.57 (0.73)

LIFT 8 7,834 30K 3.95 0.63px 28 46K 2,375K 0.004m (0.004m) 0.57 (0.73)

South Building SIFT 128 128 62,780 353K 5.64 0.42px 1K 1,003K 1,972K – –

SIFT-PCA 128 107,674 650K 6.04 0.54px 3K 2,019K 1,993K – –

DSP-SIFT 128 110,394 664K 6.02 0.57px 3K 2,079K 1,994K – –

ConvOpt 128 103,602 617K 5.96 0.51px 4K 1,856K 2,007K – –

DeepDesc 128 101,154 558K 5.53 0.48px 6K 1,463K 2,002K – –

TFeat 128 94,589 566K 5.99 0.49px 3K 1,567K 1,960K – –

LIFT 128 74,607 399K 5.35 0.78px 3K 1,168K 1,975K – –

Madrid Metropolis SIFT 1,344 440 62,729 416K 6.64 0.53px 14K 1,740K 435K – –

SIFT-PCA 465 119,244 702K 5.89 0.57px 27K 3,597K 537K – –

DSP-SIFT 476 107,028 681K 6.36 0.64px 21K 3,155K 570K – –

ConvOpt 455 115,134 634K 5.51 0.57px 29K 3,148K 561K – –

DeepDesc 377 68,110 348K 5.11 0.53px 19K 1,570K 516K – –

TFeat 439 90,274 512K 5.68 0.54px 18K 2,135K 522K – –

LIFT 430 52,755 337K 6.40 0.76px 13K 1,498K 450K – –

Gendarmenmarkt SIFT 1,463 950 169,900 1,010K 5.95 0.64px 28K 3,292K 1,104K – –

SIFT-PCA 953 272,118 1,477K 5.43 0.69px 43K 5,137K 1,240K – –

DSP-SIFT 975 321,846 1,732K 5.38 0.74px 56K 7,648K 1,505K – –

ConvOpt 945 341,591 1,601K 4.69 0.70px 56K 6,525K 1,342K – –

DeepDesc 809 244,925 949K 3.88 0.68px 31K 2,849K 921K – –

TFeat 953 297,266 1,445K 4.86 0.66px 39K 4,685K 1,181K – –

LIFT 942 180,746 964K 5.34 0.83px 27K 2,495K 1,386K – –

Tower of London SIFT 1,576 702 142,746 963K 6.75 0.53px 18K 3,211K 1,126K – –

SIFT-PCA 692 137,800 1,090K 7.91 0.60px 12K 2,455K 1,124K – –

DSP-SIFT 755 236,598 1,761K 7.44 0.64px 33K 8,056K 1,143K – –

ConvOpt 719 274,987 1,732K 6.30 0.62px 39K 7,542K 1,129K – –

DeepDesc 551 196,990 964K 4.90 0.55px 25K 2,745K 653K – –

TFeat 714 206,142 1,424K 6.91 0.57px 28K 5,333K 1,182K – –

LIFT 715 147,851 1,045K 7.07 0.72px 23K 4,079K 729K – –

Alamo SIFT 2,915 743 120,713 1,384K 11.47 0.54px 23K 7,671K 611K – –

SIFT-PCA 746 108,553 1,377K 12.69 0.55px 12K 4,669K 564K – –

DSP-SIFT 754 144,341 1,815K 12.58 0.66px 16K 10,115K 629K – –

ConvOpt 703 102,044 1,001K 9.81 0.48px 3K 850K 452K – –

DeepDesc 665 152,537 1,207K 7.92 0.48px 16K 4,196K 607K – –

TFeat 683 127,642 1,443K 11.31 0.52px 16K 6,356K 648K – –

LIFT 768 112,984 1,477K 13.08 0.73px 23K 9,117K 607K – –

Roman Forum SIFT 2,364 1,407 242,192 1,805K 7.45 0.61px 25K 6,063K 3,097K – –

SIFT-PCA 1,463 244,556 1,834K 7.50 0.61px 16K 4,322K 2,799K – –

DSP-SIFT 1,583 372,573 2,879K 7.73 0.71px 26K 9,685K 3,748K – –

ConvOpt 1,376 195,305 1,173K 6.01 0.55px 11K 2,111K 3,043K – –

DeepDesc 1,173 174,532 1,275K 7.31 0.60px 9K 1,834K 2,434K – –

TFeat 1,450 271,902 1,963K 7.22 0.61px 19K 5,584K 3,477K – –

LIFT 1,434 220,026 1,608K 7.31 0.75px 17K 4,732K 2,898K – –

Cornell SIFT 6,514 4,999 1,010,544 6,317K 6.25 0.53px 71K 25,603K 12,970K 1.537m (0.793m) –

SIFT-PCA 3,049 640,553 4,335K 6.77 0.54px 26K 13,793K 6,135K 11.498m (1.088m) –

DSP-SIFT 4,946 1,177,916 7,233K 6.14 0.67px 73K 26,150K 11,066K 2.943m (1.001m) –

ConvOpt 1,986 632,613 4,747K 7.50 0.57px 42K 18,615K 5,321K 5.824m (0.904m) –

DeepDesc 3,489 1,225,780 6,977K 5.69 0.55px 73K 28,845K 10,159K 3.832m (0.695m) –

TFeat 5,428 1,499,117 9,830K 6.56 0.59px 89K 40,640K 15,605K 2.126m (0.593m) –

LIFT 3,798 1,455,732 7,377K 5.07 0.71px 81K 39,812K 10,512K 3.113m (0.712m) –

Table 3. Results for our reconstruction benchmark. Pose error as mean (median) over all images. Dense error for 2cm (10cm) threshold [19].

First, second, third best results highlighted in bold. Number of images, sparse points, and dense points visualized in Figs. 1, 2, and 3.

accurate keypoint localization. Surprisingly, LIFT produces

the largest reprojection error and relatively short tracks for

all datasets, indicating inferior keypoint localization perfor-

mance as compared to the hand-crafted DoG method. In

addition, even though it was trained on the Roman Forum

model, it does not perform better than DSP-SIFT or TFeat.

4. Conclusion

This paper presented a thorough experimental evaluation

of learned and advanced hand-crafted feature descriptors

to better understand their performance across a wide range

of scenarios. The evaluation demonstrated that advanced

hand-crafted features still perform on par or better than re-

cent learned features in the practical context of image-based

reconstruction. The current generation of learned descrip-

tors shows a high variance across different datasets and ap-

plications. This clearly evidences the necessity to evalu-

ate a descriptor’s discriminative power over a wide range of

datasets. In addition, to overcome the demonstrated limita-

tions, we believe that the next generation of learned descrip-

tors needs more training data. To facilitate further research,

we make our full evaluation pipeline and a large training

dataset of patches publicly available.
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