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Abstract

This paper deals with deep neural networks for predict-

ing accurate dense disparity map with Semi-global match-

ing (SGM). SGM is a widely used regularization method for

real scenes because of its high accuracy and fast compu-

tation speed. Even though SGM can obtain accurate re-

sults, tuning of SGM’s penalty-parameters, which control a

smoothness and discontinuity of a disparity map, is uneasy

and empirical methods have been proposed. We propose a

learning based penalties estimation method, which we call

SGM-Nets that consist of Convolutional Neural Networks.

A small image patch and its position are input into SGM-

Nets to predict the penalties for the 3D object structures.

In order to train the networks, we introduce a novel loss

function which is able to use sparsely annotated disparity

maps such as captured by a LiDAR sensor in real environ-

ments. Moreover, we propose a novel SGM parameteriza-

tion, which deploys different penalties depending on either

positive or negative disparity changes in order to represent

the object structures more discriminatively.

Our SGM-Nets outperformed state of the art accuracy

on KITTI benchmark datasets.

1. Introduction

Stereo disparity estimation is one of the most important

problems in computer vision. The disparity map is widely

used, for example in object detection [13], surveillance [29],

autonomous driving for cars [27], and unmanned air vehi-

cles [24].

Many disparity estimation methods have been proposed

for many years [32]. A standard pipeline for the dense dis-

parity estimation starts by finding local correspondences

between stereo images. Incorrect correspondences occur

due to various reasons such as occlusion and pixel intensity

noise. In order to refine the disparity map, regularization

methods [15, 31, 33, 35] and some filters [36, 40, 38] are

applied, and the fine dense disparity is finally obtained. In

the KITTI website [1], many state of the art researches focus

on accurate local correspondence methods with deep learn-

∗This work has been done while the first author was visiting at ETH

Zürich.
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Figure 1. (a) Left image. (b) Ground truth disparity map. Occlu-

sion in black. Disparity map by using SGM with (c) Hand tuned

penalties and (d) SGM-Net. The difference of inputs is only SGM

penalties.

ing [38, 21, 3] and apply Semi-global matching (SGM) [15]

as regularization. Recently, deep learning methods such as

FlowNet [6] and DispNet [22] which play end-to-end of

the pipeline have been proposed. However, the methods

haven’t achieved sufficient accuracy compared to the stan-

dard pipeline so far. We guess one of the reason for the

lower accuracy comes from the differences between train-

ing and testing datasets as mentioned in [9, 26].

In this paper, we focus on the regularization part of the

standard pipeline since many sophisticated local correspon-

dence methods have been proposed. SGM is a widely used

regularization method due to its high accuracy while keep-

ing low computation cost. Some papers have reported its

real time computation even on mobile devices [16, 14].

SGM has penalty-parameters, we call them “penalties” in

this paper, and they control the smoothness and discontinu-

ity of the disparity map. So far, the penalties are designed

empirically and are uneasy to be tuned.

We consider the penalties should be different depending

on 3D object structures. For instance, the penalties should

capture the fact that road is smooth. We propose a learn-

ing based penalties prediction method which uses CNNs.

CNNs provide high performances from primitive level pro-

cessing such as stereo correspondences to high level ones

such as scene classification [2, 20] and object detection

[11, 39]. Deep learning using a CNN offers a promising

way for our purpose. However, it isn’t straightforward to

involve the CNN for the task, i.e. How to train and con-

struct the CNNs for SGM?

The contributions of this paper are the following: (1) A
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learning based penalties estimation for SGM. We propose

a new loss function in order to train neural networks which

inputs are small patches and their location. To the best of

our knowledge, we are the first to leverage neural networks

for SGM. Figure 1(c) shows a dense disparity map obtained

with hand tuned SGM penalties. Erroneous pixels on road

region are correctly estimated by our method in Fig. 1(d).

(2) New SGM parameterization that separates the positive

and negative disparity changes in order to represent object

structures discriminatively. (3) Quantitative evaluation on

both synthetic [22] and real scenery [10, 23]. The datasets

are very challenging due to saturation of intensity, reflec-

tions, motion blurs, and image noises. SGM-Nets were able

to outperform state of the art accuracy on KITTI datasets

without the need for an explicit foreground shape prior such

as a vehicle.

In the following sections, we first focus on related works

in Sec. 2. Then, we explain SGM so that some equations are

ready for our method (Sec. 3). In Sec. 4, SGM-Nets which

predict SGM penalties are described. We address the imple-

mentation details in Sec. 5. An effectiveness of our method

is demonstrated with both synthetic and real datasets in Sec.

6. Section 7 summarizes this paper.

2. Related works

A standard pipeline for dense disparity estimation con-

sists of two parts, i.e. local correspondence and regulariza-

tion. Learning based correspondence functions have been

widely studied [38, 21, 3]. They leverage CNNs for local

correspondence and hand tuned SGM for regularization. In

this section, we will discuss hand tuned SGM and learning

based Markov Random Field (MRF) which is a general case

of SGM [7].

Hand tuned penalties for SGM. So far, SGM penal-

ties have been manually tuned or designed [17, 15, 38, 28].

The simplest way is that the penalties are fixed over images

[17]. Another assumption is that pixels which have a large

gradient, i.e. edges, are more likely to be discontinuities,

which means that the penalties at the pixels should be mit-

igated in order to allow disparity jumps [15]. In more ad-

vanced method, the penalties are set smaller not only when

edges in a reference image are detected, but also they co-

incide with edges at the corresponding position in a target

image [38]. In [28], stereo correspondence confidence is es-

timated. Then pixels with high confidence should be trusted

and the penalties at the pixels are mitigated.

Learning based penalties for MRF. Conditional Ran-

dom Field (CRF) parameters learning method for stereo

was proposed [25], however the penalties are learned over

manually tuned intervals of image gradients. Some papers

which learn CRF parameters with CNN have been proposed

[41, 19, 34]. However, [41, 19] aim for semantic segmen-

tation, and their formulations and ideas are unable to be ap-
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Figure 2. Aggregation of costs and estimated disparity.

plied to learn SGM penalties. Very recently, the method for

stereo was proposed [34], however some of energy terms

(local smoothness and object potentials) are designed man-

ually.

Our method fully learns SGM penalties with CNN in or-

der to improve disparity maps. Moreover, not only stan-

dard SGM parameterization but also new parameterization

that separates the positive and negative disparity changes

are able to be applied. We end up using CNNs for matching

(based on [38]) AND for determining SGM penalties.

3. Semi-global matching

Before introducing SGM-Net, we first explain Semi-

Global Matching (SGM) [15]. An energy function E for

solving SGM is defined as

E(D) =
∑

x

(

C(x, dx) +
∑

y∈Nx

P1T [|d
x − dy| = 1]

+
∑

y∈Nx

P2T [|d
x − dy| > 1]

)

.
(1)

C(x, dx) represents a matching cost at pixel x = (u, v) of

disparity dx. The first term represents the sum of matching

costs at all pixels for the disparity map D. The second term

represents slanted surface penalty P1 for all pixels y in the

neighborhood Nx of x. The third term indicates penalty

P2 for discontinuous disparity. P2 is typically set small ac-

cording to the magnitude of the image gradient, for example

P2 = P ′2/|I(x)− I(y)| so that the discontinuities are eas-

ily selected [15]. T [·] represents Kronecker delta function

which gives 1 when a condition in the bracket is satisfied,

otherwise 0.

In order to minimize E(D) in Eq. (1), a cost L′r(x, d)
along a path in the direction r of the pixel x at disparity d
as shown in Fig. 2(a) is formulated as

L′r(x0, d) = c(x0, d) + min
(

L′r(x1, d), L
′
r(x1, d− 1) + P1,

L′r(x1, d+ 1) + P1, min
i 6=d±1

L′r(x1, i) + P2

)

.

x1 and c(x, d) represents the previous pixel (x0 − r) and

a pixel-wise matching cost, which is given by for instance

ZNCC (Zero Mean Normalized Cross-Correlation), Cen-

sus [37], or CNN based methods [38, 21, 30, 3]. In order

to avoid very large values due to accumulation along the
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Figure 3. Overview of SGM-Net. SGM estimates dense disparity by incorporating penalty P1 and P2 from SGM-Net. SGM-Net is

iteratively trained on each aggregation direction with image patches and their positions.
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Figure 4. Consecutive 4 pixels and their 5 candidate disparities at

each pixel. The orange and purple line represent the path from

correct disparity d
x0
gt and d5 at root pixel x0, respectively.

path, the minimum path cost at the previous pixel x1 is sub-

tracted, and we get

Lr(x0, d) = c(x0, d) + min
(

Lr(x1, d), Lr(x1, d− 1) + P1,

Lr(x1, d+ 1) + P1, min
i 6=d±1

Lr(x1, i) + P2

)

−min
k

Lr(x1, k).

(2)

The disparity D at pixel x0 is computed by the winner-

takes-all strategy of the aggregated costs of all directions r

(4 in Fig. 2(b)) as below:

D(x0) = argmin
d

∑

r

Lr(x0, d). (3)

4. SGM-Net

Figure 3 illustrates an overview of our proposed method.

Our neural network which we call SGM-Net provides P1

and P2 at each pixel. It consists of two phases: training and

testing. During the training phase, SGM-Net is iteratively

trained by minimizing two kinds of costs, which are “Path

cost” in Sec. 4.1.1 and “Neighbor cost” in Sec. 4.1.2. In the

testing, dense disparity is estimated by SGM the penalties

of which are predicted by SGM-Net.

We first explain standard parameterization of SGM in

Sec. 4.1. Then, more discriminative parameterization in

Sec. 4.2. An architecture of SGM-Net is explained in Sec.

4.3.

4.1. Standard parameterization

4.1.1 Path cost

As shown in Eq. (3), a necessary condition to obtain the cor-

rect disparity is that a path traversing the correct disparity

dx0

gt at pixel x0 should be smaller than any other paths, i.e. a

cost Lr at pixel x0 must satisfy Lr(x0, d
x0

i ) > Lr(x0, d
x0

gt ),
∀di ∈ [0, dmax] 6= dgt. We formulate it with a hinge loss

function as below:

Eg =
∑

d
x0
i
6=d

x0
gt

max
(

0, Lr(x0, d
x0

gt )−Lr(x0, d
x0

i ) +m
)

, (4)

where m means margin. The hinge loss function allows

easier formulation of back-propagation compared to other

functions such as softmax loss. In order to allow the back-

propagation of the loss function, we should clarify the gra-

dients of Eq. (4) with respect to P1 and P2. We first show

with an example in Fig. 4. Here, we pay attention to the

costs L of disparity at pixel x0. The costs L are accumu-

lated between pixel x3 and x0 along the path. The traversed

disparities from pixel x0 can be chased by tracking in a

backward direction. In this figure, the costs of disparity dx0

5

and dx0

gt at pixel x0 are represented as

L(x0, d
x0

gt ) = c(x0, d
x0

gt ) + c(x1, d
x1

1 ) + c(x2, d
x2

3 )

+ c(x3, d
x3

3 ) + P2(x2)− β

L(x0, d
x0

5 ) = c(x0, d
x0

5 ) + c(x1, d
x1

4 ) + c(x2, d
x2

3 )

+ c(x3, d
x3

3 ) + P1(x1) + P1(x2)− β,

(5)

where β means the minimum path cost in Eq. (2). To gen-

eralize them, the accumulated cost along the path becomes

Lr(x0, d
x0

i ) = γ +
∑

n

(

P1,r(xn)T [|δd
xn←d

x0
i | = 1]

+P2,r(xn)T [|δd
xn←d

x0
i | > 1]

) (6)

δdxn←d
x0
i means the series of disparity difference (dxk −

dxk−1 , ∀k ∈ [1, n]) between consecutive pixels xk and

xk−1 along direction r, the root of which is disparity dx0

i at
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(a) GT

(b) Initial state of SGM-Net (c) SGM-Net with the path cost

(d) SGM-Net with the neighbor cost

A

B

(e) SGM-Net with all costs

Original image

B

A

Figure 5. Comparison of the costs for the loss function.

pixel x0. γ represents accumulated matching costs and sub-

tracted minimum costs at every pixels. Note that γ doesn’t

contain P1 and P2.

Eq. (6) is put into Eq. (4), then the loss function Eg with

non-zero cost at pixel x0 is differentiated with respect to P1

and P2. Finally, below equations are obtained:

∂Eg

∂P1,r
=

∑

d
x0
i
6=d

x0
gt

∑

n

(

T [|δdxn←d
x0
gt | = 1]− T [|δdxn←d

x0
i | = 1]

)

∂Eg

∂P2,r
=

∑

d
x0
i
6=d

x0
gt

∑

n

(

T [|δdxn←d
x0
gt | > 1]− T [|δdxn←d

x0
i | > 1]

)

.

(7)

For example, a derivative of Eg in Eq. (5) is obtained as

follows:

∂Eg

∂P1(x1)
= −1,

∂Eg

∂P2(x1)
= 0,

∂Eg

∂P2(x2)
= 1,

when Eg = Lr(x0, d
x0

gt )− Lr(x0, d
x0

5 ) +m > 0.

(8)

With the equations, we are able to minimize the loss func-

tion by using the standard framework, i.e. forward and back

propagation. We call this loss function “Path cost”.

Note that the path cost does not require dense ground

truth so that we can easily use the dataset taken under real

environment such as KITTI [10]. On the other hand, the

path cost has a potential problem. The intermediate paths

aren’t taken into account directly. For instance, the red dot

lines in Fig. 4 indicate the paths which traverse the correct

disparities at each pixel. Orange lines, which have paths

before and after pixel x2 that are different from the correct

ones, lead to wrong penalties at pixels x3 and x2.

The partially wrong penalties create artifacts as shown

in Fig. 5. Fig. 5(c) shows a disparity map by SGM the

penalties of which are predicted by SGM-Net trained only

this loss function. Comparing to initial parameters of SGM-
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Figure 6. Considerable relations of disparities between consecu-

tive pixels: (a) Border, (b) Slant, and (c) Flat. Correct path and

wrong ones are represented in red and blue-green, respectively.

Net (Fig. 5(b)), the disparity map becomes better, however

a detail such as A has disappeared.

4.1.2 Neighbor cost

In order to remove the ambiguity of disparities traversed

along the path, we introduce “Neighbor cost” function. The

basic idea is that the path which traverses correct disparities

at consecutive pixels must have the smallest among all paths

as shown in Fig. 6. In this figure, a cost Fb(·), Fs(·), or

Ff (·) along the path in red is smaller than the other costs

N(·) in green. The neighbor cost is represented as

EnX
=
∑

d 6=d
x1
gt

max
(

0, FX(x1, d
x1

gt )−N(x1, d
x0

gt , d)+m
)

, (9)

where N(·) means

N(x1, d
x0

gt , d) = Lr(x1, d) + P1,r(x1)T [|d
x0

gt − d| = 1]

+ P2,r(x1)T [|d
x0

gt − d| > 1]
(10)

and FX(·) is a function depending on relations of a dispar-

ity change between consecutive pixels: border Fb(·), slant

Fs(·), and flat Ff (·).
Border is the case where there is a discontinuity in con-

secutive pixels as shown in Fig. 6(a). The path cost FX(·)
between dx0

gt and dx1

gt is defined as

Fb(x1, d
x1

gt ) = Lr(x1, d
x1

gt ) + P2,r(x1). (11)

Slant (Fig. 6(b)) represents a surface that has a small dis-

parity change such as road plane. FX(·) becomes

Fs(x1, d
x1

gt ) = Lr(x1, d
x1

gt ) + P1,r(x1). (12)

Flat (Fig. 6(c)) is a frontoparallel plane to a camera. In this

case, none of the penalty is added. It is defined as

Ff (x1, d
x1

gt ) = Lr(x1, d
x1

gt ). (13)

Eq. (9) can be differentiated in a similar way to the path cost

explained previous section. By using the neighbor cost, the

detailed part A in Fig. 5(d) are preserved.

A necessary condition to apply the neighbor cost is that

the disparity at pixel x1 has to be estimated correctly, i.e.
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accumulated cost Lr(x1, d
x1

gt ) must have the smallest accu-

mulated cost Lr of all disparities. Otherwise, the dispar-

ity at pixel x0 is unlikely to be correctly predicted. The

advantage of the neighbor cost is that the aggregated cost

at both consecutive pixels is supposed to be minimized at

the correct disparity. Meanwhile, it is difficult to apply the

neighbor cost to all pixels because of the necessary condi-

tion. When SGM-Net is trained only with the neighbor cost,

erroneous pixels occur (B in Fig. 5).

In order to compensate the advantage and difficulty of

the path and neighbor costs, they are put together, and fi-

nally the loss function becomes

E =
∑

r∈R

( ∑

x1,x0∈Gb

Enb
+

∑

x1,x0∈Gs

Ens
+

∑

x1,x0∈Gf

Enf
+ξ

∑

x0∈G

Eg

)

,

(14)

where ξ means a blending ratio. We randomly extracted the

same number of pixels for border Gb, slant Gs, and flat Gf

on each direction r. All G∗ have annotation of true dispar-

ity. For the path cost, we randomly select from G which

pixels have the ground truth. The magnitude of penalties

P1 and P2 are related to accumulated costs Lr. Meanwhile,

the accumulated costs also depend on the penalties. There-

fore, the penalties are estimated iteratively as shown in Fig.

3. The disparity map given by SGM-Net trained with Eq.

(14) is shown in Fig. 5(e).

4.2. Signed parameterization
We have explained standard parameterization of SGM.

In this section, we propose a new parameterization. Fig-

ure 7(a) shows a basic idea of this parameterization. P1

and P2 have different penalties depending on either posi-

tive or negative disparity change so we call it “signed pa-

rameterization”. This strategy is observed to work well for

structures such as road surface and side wall (Fig. 7(b)).

Disparities along top to bottom direction on the road (red),

which is able to be assumed as slanted plane, is more likely

to become larger, so P−1 tends to be larger than P+
1 . As dis-

parities on the left side wall (green) can be considered the

same way, P+
1 is more likely to be larger than P−1 along left

to right direction.

In this parameterization, the cost L′r is modified to

L
′±
r (x0, d) = c(x0, d) + min

(

L
′±
r (x1, d),

min
i=d±1

L
′±
r (x1, i) + P+

1,rT [d− i = 1]
︸ ︷︷ ︸

T
+

1
[·]

+ P−1 T [i− d = 1]
︸ ︷︷ ︸

T
−

1
[·]

,

min
i 6=d±1

L
′±
r (x1, i) + P+

2,rT [i < d]
︸ ︷︷ ︸

T
+

2
[·]

+ P−2,rT [i > d]
︸ ︷︷ ︸

T
−

2
[·]

)

.

The equation shows discriminative penalties depending on

the sign of the disparity change.

A path cost E±g is represented the same way as Eg in

Eq. (4) by replacing Lr with L±r . As in standard param-
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Figure 7. (a) Signed parameterization. (b) Slant structure penalty

P1 at disparities along green (side wall) and red (road) lines.

eterization, L±r (x0, d) is computed simply by subtracting

minimum value at a previous pixel from L
′±
r (x0, d). L

±
r is

generalized as below:

L±r = γ+
∑

n

(

P+
1,rT

+
1 [·]+P−1,rT

−
1 [·]+P+

2,rT
+
2 [·]+P−2,rT

−
2 [·]

)

.

The derivative of E±g can be derived from the above equa-

tion.

The neighbor cost E±nX
deriving from Eq. (9) becomes

more complex in this case. We have to consider five cases

instead of three in the standard parameterization. There are

two cases for border, two for slant, and one for flat. N(·) is

replaced by

N±(x1, d
x0

gt , d) =L±r (x1, d)

+ P+
1,r(x1)T [δ = 1] + P−1,r(x1)T [δ = −1]

+ P+
2,r(x1)T [δ > 1] + P−2,r(x1)T [δ < −1],

where δ = dx0

gt − d. FX of the border pixels is described as

F±b (x1, d
x
gt) = Lr(x1, d

x1

gt ) + P+
2,r(x1)T [d

x0

gt > dx1

gt ]

+ P−2,r(x1)T [d
x0

gt < dx1

gt ]

FX on slanted pixels is represented as

F±s (x1, d
x
gt) = Lr(x1, d

x1

gt ) + P+
1,r(x1)T [d

x0

gt − dx1

gt = 1]

+ P−1,r(x1)T [d
x1

gt − dx0

gt = 1]

FX on flat pixels is the same function as Ff in Eq. (13).

In order to train the signed parameterization network, we

minimize the loss function E in Eq. (14) in which we re-

place the cost functions with the extended costs for signed

parameterization.

4.3. SGMNet architecture
So far, we described the cost functions for both standard

and signed parameterizations of SGM. SGM-Net architec-

tures are explained in this section. A gray scale image patch

of 5 × 5 pixels and its normalized position are input to the

networks as shown in Fig. 8. It has two convolution layers

both consisting of 16 filters with kernel size 3×3, Rectified

Linear Unit (ReLU) layer after each convolution layer, con-

catenate layer for merging two kinds of information, two
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Figure 8. SGM-Net architecture for standard parameterization.

Image patch and its position are input into the network. Eight

parameters which are P1 and P2 for 4 aggregation directions.

fully connected (FC) layers of size 128 each, and ReLU

after first FC layer. Additionally, we employ Exponential

Linear Unit (ELU) [5] with α = 1 and add constant value 1
so that SGM penalties keep positive value. ReLU has zero

gradients on negative input values, however ELU alleviates

the vanishing gradient problem. It means that ELU speeds

up learning in the neural network and leads to higher accu-

racy.

As a preprocessing step, we subtract the mean from the

image patch, and divide it by a max intensity of the im-

age. The position of the patch is normalized by dividing it

either by the width or the height of the image. In this pa-

per, the costs are accumulated along 4 directions which are

horizontal and vertical. Of course, we could add diagonal

directions. The networks output 8 (= 2 [P1, P2] × 4 [direc-

tion]) or 16 (= 4 [P+
1 , P−1 , P+

2 , P−2 ] × 4 [direction]) values,

which correspond to standard and signed parameterization,

respectively.

Predicted penalties are shown in Fig. 9. On the road,

standard SGM-Net gives larger P1 in a horizontal direction

than that in a vertical direction at A because the road is

usually flat in a horizontal direction and slanted in a vertical

direction. P2 becomes smaller at edges of B and C , which

is the same as the assumption in [15]. D and E are the

situations explained in Fig. 7(b). The penalties are trained

as we expected.

5. Implementation

We refer the reader to the appendix for a summary of

training process. SGM-Nets were implemented with Torch7

[4] on NVIDIA(R) Titan X. As an optimization method,

we tested both Stochastic Gradient Descent and Adaptive

Moment Estimation (Adam) [18], and finally we found the

latter optimization method reached lower error. Adam is

able to control learning rate properly for each parameter

and keep past gradients in order to find optimal parameters

quickly and stably. The networks are trained from scratch,

which means they are initialized randomly, and their train-

ing took a couple of days. Most of time is consumed by

loading matching cost volume files from disks, however it

is much faster than computing MC-CNN [38] every itera-

tion.

Method Train [%]
(scene forwards)

Test [%]
(scene backwards)

Hand tuned
Fixed [17] 21.4 / 20.0 24.0 / 23.2

Dynamic [38] 19.9 / 17.3 24.0 / 22.0

Standard

SGM-Net

Initial 29.4 / 28.9 32.9 / 32.8

Neighbor cost 20.9 / 18.6 23.4 / 22.3

Path cost 17.9 / 15.6 21.7 / 20.1

All 17.7 / 15.2 21.2 / 19.5

All (w/o pos.) 19.7 / 16.4 22.3 / 20.1

Signed

SGM-Net

Initial 29.7 / 29.0 33.2 / 32.9

Neighbor cost 21.4 / 18.2 24.3 / 22.5

Path cost 16.8 / 14.0 20.4 / 18.3

All 16.6 / 14.0 20.4 / 18.3

Table 1. Overall Out-Noc error on synthetic dataset. Comparison

of cost functions and matchers of ZNCC / MC-CNN.

6. Experimental results

In this section, we demonstrate the accuracy of our

method by using “Driving” from SceneFlow datasets [22]

as synthetic images and KITTI 2012 (K12) [10] and 2015

(K15) [23] datasets as real scenes. SceneFlow dataset pro-

vides pixel-wise disparity for ground truth so that the neigh-

bor cost can be used. Actually, such dense ground truth

is difficult to collect with laser sensors under real environ-

ments.

As SGM-Net parameters, we set ξ = 0.1 and m = 2.5
for all experiments.1

6.1. Synthetic images
Among some settings of “Driving”, we selected 35mm

focal length and slow motion images so that a layout and

blur of the images look similar to KITTI datasets. Road

regions on the bottom of the images have large disparities,

hence it makes difficult to train the network on GPU due to

memory size restriction. Therefore, we cut both top and bot-

tom 100 pixels from the original images and got 960× 340
pixels images. We extracted stereo pairs every 5 frames in

order to remove similar scenes. Finally, we got each 160

frames from “forwards” and “backwards” scenes for train-

ing and testing, respectively.

As a comparison, we employ hand tuned penalties for

SGM which are fixed [17] or dynamically determined [38].

The penalties are tuned so as to reach the minimum error

over training images, and they are applied to testing im-

ages. On the latter method, the penalties are based on the

magnitude of image intensity difference along an aggrega-

tion direction, which takes into account intensity difference

of both the left image and the corresponding pixels in the

right image. Additionally, there is a parameter which con-

trols the penalties depending on the aggregation direction.

Here we compare not only to the hand tuning methods

but also to behaviour of SGM-Nets with respect to combi-

nations of the cost functions and advantage of positional in-

1Except MC-CNN in Sec. 6.1, we set m = 5.0 in this case.
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Figure 9. Predicted P1 and P2 by standard and signed SGM-Nets. The color of P1 and P2 encodes strength of respective values, blue and

red mean small and large, respectively.

5.59 3.49 2.55

27.67 22.44 20.20

20.53 13.10 12.40

Figure 10. Disparity maps of test images (scene backwards) on the synthetic dataset. An original image, hand tuned [38], standard SGM-

Net (All), and signed SGM-Net (All) results are shown from left to right. Numbers of top right on the disparity map indicate Out-Noc

error.

formation on two types of matching function (ZNCC which

window size is 5× 5 pixels and MC-CNN [38]). The value

v of ZNCC is converted to (1 − v)/2 in order to fit the

energy function. As an error criterion, we evaluate the per-

centage of erroneous pixels on non-occluded areas with an

error threshold of 3 pixels. We didn’t apply any post pro-

cessing to the disparity maps. Table 1 shows the errors of

each method. Bold font means the best accuracy in each

group (hand tuned, standard and signed SGM-Nets). On

both matching functions, signed SGM-Net gets the best, and

hand tuned method [38] gets the worst. SGM-Nets are prop-

erly trained from initial random parameters. By using all

cost functions (path and neighbor costs), both SGM-Nets

got the best. Moreover, the positional information works

well. In the following experiments, we picked up the best

method from each of the group, i.e. hand tuned (Dynamic)

and standard and signed SGM-Nets with all cost functions.

Figure 10 shows disparity maps of test images estimated

by hand tuned [38], standard, and signed SGM-Nets. SGM-

Nets are able to outperform accuracy, even though some

parts of the disparity map are difficult to estimate correctly

because of saturation, motion blurs, image noises, and etc.

Hand tuned SGM is likely to be happen streaking artifacts

that appear around a tree (middle row in Fig. 10), road and

vehicles (bottom row in Fig. 10). SGM-Nets are able to

Training data
Test (K15 tr.) D1-all by

Standard / Signed SGM-Net

Synthetic 5.09% / 5.58%

Synthetic + K12 tr. 4.49% / 4.38%

Table 2. Comparison of used training datasets.

mitigate them because our method estimates the penalties

so as to have a margin m between true disparity and others

in Eq. (4) and (9).

6.2. Real images

Ground truth disparity maps are not provided for test im-

ages of KITTIs, hence we have to submit the disparity maps

of the test images on the website [1]. However the number

of the submission is restricted. Therefore, we use one of

KITTIs training images as training for SGM-Nets and an-

other as evaluation. MC-CNN provides its trained network

for each K12 and K15. We use MC-CNN trained in cor-

responding training dataset. We employ the default error

criterion of KITTIs and it is the same in Sec. 6.1.

First, we evaluated an advantage to use real images for

training. K12 training images are used for training, and the

networks are evaluated on K15 training images. As shown

in Tab. 2, real images help to improve accuracy on both

SGM-Nets. In the following experiments, we used both

synthetic and real images for training SGM-Nets.
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8.29 3.95 3.60

6.62 3.42 3.74

1.92 1.51 1.21

Figure 11. KITTI 2012 training images. An original image, hand tuned [38], standard SGM-Net (All), and signed SGM-Net (All) results

are shown from left to right. Yellow arrows indicate noticeable errors. Numbers of top right on the disparity map indicate Out-Noc error.

As there is none of ground truth on upper parts of the image, the parts are more likely to be influenced by synthetic images.

Method
Train (K12 tr.) Test (K15 tr.) D1-all Train (K15 tr.) D1-all Test (K12 tr.)

SGM Post proc. SGM Post proc. SGM Post proc. SGM Post proc.

Hand tuned [38] 3.19% 2.50% 4.72% 3.76% 3.23% 2.60% 5.18% 4.12%

Standard SGM-Net 3.10% 2.50% 4.49% 3.63% 3.04% 2.49% 4.80% 3.99%

Signed SGM-Net 2.99% 2.47% 4.38% 3.69% 3.00% 2.54% 4.76% 3.96%

Table 3. Out-Noc error on KITTI datasets. “SGM” in this table shows errors of pure SGM results, i.e. w/o post processing.

Rank Method Error Time [sec.]

1 Signed SGM-Net 2.29% 67*

2 Standard SGM-Net 2.33% 67*

3 PBCP [28] 2.36% 68*

4 Displets v2 [12] 2.37% 265

5 MC-CNN-acrt [38] 2.43% 67*

Table 4. Out-Noc error on KITTI 2012 testing dataset by October

18th 20163. “*” means GPU computation.

We employ a post process similar to [38] for refining the

disparity map by SGM. As consistency check from right

disparity image is needed in the process, SGM-Nets with

respect to the right image were also trained. We modified

the process as following. Firstly, the bilateral filtering was

changed in order to preserve object borders more strongly.

Secondly, we added speckle filtering to remove small blobs

consisting of outliers.

Figure 11 shows estimated dense disparity maps. We

employed the penalty parameters provided by the authors

of [38] for the hand tuned method. Erroneous pixels on ob-

jects such as road and vehicle are correctly estimated by

SGM-Nets. Table 3 shows overall accuracy in the settings

of training on K12 and testing on K15 and vice versa. As

you can see, SGM-Nets outperform the hand tuned method

in all cases. Signed SGM-Net is the most accurate on pure

SGM results, however it loses accuracy after the post pro-

cessing on K15 since some parts of the disparity maps were

difficult to refine by the processing.

Then, we evaluated SGM-Nets with the test images on

the website. Table 4 and 5 show estimated error and ab-

solute ranking on K12 and K15, respectively. Signed and

standard SGM-Net got the 1st rank on K12 and K15, re-

3At the time of CVPR submission & Excluding anonymous.

Rank Method D1-bg D1-fg D1-all

1 Standard SGM-Net 2.23% 7.44% 3.09%

1 Displets v2 [12] 2.73% 4.95% 3.09%

3 PBCP [28] 2.27% 7.72% 3.17%

4 Signed SGM-Net 2.24% 7.94% 3.18%

5 MC-CNN-acrt [38] 2.48% 7.64% 3.33%

7 DispNetC [22] 4.11% 3.72% 4.05%

Table 5. Out-Noc error on KITTI 2015 testing dataset by October

18th 20163. The ranking is based on D1-all error.

spectively. Annotated density of foreground (vehicle) is

much higher than that of background on K15. Addition-

ally, the foregrounds which have transparent region such as

windshield and reflected region are hard to be predicted to

fit vehicles shape. They make an advantage for the meth-

ods which use object knowledge explicitly such as Displets

[12]. However, our method achieved the same accuracy on

the overall criterion (D1-all) without the prior knowledge.

Note that the most of computation time is consumed by

stereo correspondence. SGM-Nets take only 0.02 seconds

on the GPU.

7. Conclusion
In this paper, we proposed SGM-Nets which provide

learned penalties for SGM. We employed a simple SGM-

Net architecture, and there might be better architectures.

And we have options that are involving some other infor-

mation such as correspondence confidence [28] and seman-

tic labels [8] for more accuracy. Moreover, when someone

will develop much better matching functions in the future,

we will be able to leverage them in our SGM-Nets.
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