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Abstract

We focus on the non-Lambertian object-level intrinsic

problem of recovering diffuse albedo, shading, and spec-

ular highlights from a single image of an object. Based on

existing 3D models in the ShapeNet database, a large-scale

object intrinsics database is rendered with HDR environ-

ment maps. Millions of synthetic images of objects and their

corresponding albedo, shading, and specular ground-truth

images are used to train an encoder-decoder CNN, which

can decompose an image into the product of albedo and

shading components along with an additive specular com-

ponent. Our CNN delivers accurate and sharp results in this

classical inverse problem of computer vision. Evaluated on

our realistically synthetic dataset, our method consistently

outperforms the state-of-the-art by a large margin.

We train and test our CNN across different object cate-

gories. Perhaps surprising especially from the CNN clas-

sification perspective, our intrinsics CNN generalizes very

well across categories. Our analysis shows that feature

learning at the encoder stage is more crucial for develop-

ing a universal representation across categories. We ap-

ply our model to real images and videos from Internet, and

observe robust and realistic intrinsics results. Quality non-

Lambertian intrinsics could open up many interesting appli-

cations such as realistic product search based on material

properties and image-based albedo / specular editing.

1. Introduction

Specular reflection is common to objects encountered in

our daily life. However, existing intrinsic image decom-

position algorithms, e.g. SIRFS [4] and Direct Intrinsics

(DI) [22], only deal with Lambertian or diffuse reflection.

Such mismatching between the reality of images and the

model assumption often leads to large errors in the intrinsic

Figure 1: Specularity is everywhere on objects around us

and is essential for our material perception. Our task is

to decompose an image of a single object into its non-

Lambertian intrinsics components that include not only

albedo and shading, but also specular highlights. We build a

large-scale object non-Lambertian intrinsics database based

on the ShapeNet dataset, and render millions of synthetic

images with specular materials and environment maps. We

train an encoder-decoder CNN that delivers much sharper

and more accurate results than the prior art of direct intrin-

sics (DI). Our work enables realistic applications of intrin-

sics to image-based albedo and specular editing.

image decomposition of real images (Fig. 1).

In this paper, our target is to handle specular reflection

and solve non-Lambertian object intrinsics from a single

image. According to optical imaging physics, we extend

the old Lambertian model to a non-Lambertian model with

the specular component as an additive residue term:
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old : image I = albedo A× shading S (1)

new : image I = albedo A× shading S + specular R (2)

Inspired by DI [22], we employ a data-driven deep learning

approach to capture the associations between the image and

its albedo, shading and specular components.

The immediate challenge of our non-Lambertian object

intrinsics task is the lack of ground-truth data, especially for

our non-Lambertian case, and human annotation appears to

be infeasible. Existing intrinsics datasets are not only Lam-

bertian in nature, with only albedo and shading components,

but also have their own individual caveates. The widely

used MIT Intrinsic Images dataset [13] is very small by to-

day’s standard, with only 20 object instances under 11 illu-

mination conditions. MPI Sintel [9] intrinsics dataset, used

by Direct Intrinsics, is too artificial, with 18 cartoon-like

scenes at 50 frames each. Intrinsics in the Wild (IIW) [6] is

the first large-scale intrinsics dataset of real world images,

but it provides sparse pairwise human ranking judgements

on albedo only, inadequate for benchmarking full image in-

trinsic image decompositions.

Another major challenge is how to learn multiple image

regression tasks at both pixel- and intensity- accurate lev-

els. Deep learning has been tremendously successful for

image classification and somewhat successful for semantic

segmentation and depth regression. The main differences

lie in the spatial and tonal resolutions demanded by the out-

put. The state-of-the-art DI CNN model [22] is adapted

from a depth regression CNN with a coarse native spatial

resolution. Their results are not only blurry, but also with

false structures – there could be variations in the intrinsics

predicted over a completely flat region of the input image.

While benchmark scores for many CNN intrinsics models

[23, 37, 38, 22, 24] are improving, the visual quality of these

results remains poor, compared with those from traditional

approaches based on hand-crafted features and multitudes

of priors [7].

Our work addresses these challenges and makes the fol-

lowing contributions.

1. A new non-Lambertian object intrinsics dataset. We

develop a new rendering-based object-centric in-

trinsics dataset with specular reflection based on

ShapeNet, a large-scale 3D shape dataset.

2. A new CNN model with accurate and sharp results.

Our approach not only significantly outperforms the

state-of-the-art on multiple error metrics, but also pro-

duces much sharper and detailed visual results.

3. Analysis on cross-category generalization. Surpris-

ing from deep learning perspective on classification

and segmentation, our intrinsics CNN shows remark-

able generalization across categories: networks trained

only on chairs also obtain reasonable performance on

other categories such as cars. Our analysis on cross-

category training and testing results reveals that fea-

tures learned at the encoder stage are the key for de-

veloping a universal representation across categories.

Our model delivers solid non-Lambertian intrinsics results

on real images and videos, closing the gap between intrinsic

image algorithm development and practical applications.

2. Related Work

Intrinsic Image Decomposition. Much effort has been

devoted to this long standing ill-posed problem [5] of de-

composing an image into a reflectance layer and a shading

layer. Land and McCann [20] observe that large gradients

in images usually correspond to changes in reflectance and

small gradients to smooth shading variations. To tackle this

ill-posed problem where two outputs are sought out of a sin-

gle input, many priors that constrain the solution space have

been explored, such as reflectance sparsity [30, 32], non-

local texture [31], shape and illumination [4], etc. Another

line of approaches explores additional input information,

such as image sequences [35], depth [3, 11] and user strokes

[8]. A major challenge in intrinsics research is the lack of

datasets with ground-truth intrinsics. Grosse et al. [13] cap-

ture the first real image dataset in a lab setting, with limited

variations. Bell et al. [6] use crowdsourcing to obtain sparse

human judgements on sampled pairs of pixels.

Deep Learning. Narihira et al. [23] is the first to use

deep learning to learn albedo from IIW’s sparse human

judgement data. Zhou et al. [37] and Zoran et al. [38]

extend the IIW-CRF model with a CNN learning compo-

nent. Direct Intrinsics [22] is the first entirely deep learning

model that outputs intrinsics predictions, based on a depth

regression CNN model [12] and trained on the synthetic

Sintel intrinsics dataset. Their results are blurry due to

downsampling and convolution followed by deconvolution,

and poor due to training on artificial scenes. To improve

prediction accuracies and retain sharp details, we build our

model upon the success of skip layer connections used in

CNNs for classification [15], segmentation [29] and inter-

polation [27].

Reflectance Estimation. Multiple images are usually

required for an accurate estimation of surface albedo. Ait-

tala et al. [2] propose a learning based method for single im-

age inputs, assuming that the surface only contains stochas-

tic textures and is lit from known lighting directions. Most

methods work on homogeneous objects lit by distant light

sources, with surface reflectance and environment lighting

estimated via blind deconvolution [28] or trained regression

networks [27]. Our work aims at general intrinsic image
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decomposition from a single image, without constraints on

material or lighting distributions. Our model predicts spa-

tially varying albedo maps and supports general lighting

conditions.

Learning from Rendered Images. Images rendered

from 3D models are widely used in deep learning, e.g. for

training object detectors and viewpoint classifiers [33, 21,

14, 25]. Su et al. [34] obtain state-of-the-art results for

viewpoint estimation by adapting CNNs trained from syn-

thetic images to real ones. ShapeNet [10] provides 330,000

annotated models from over 4,000 categories, with rich tex-

ture information from artists. We build our non-Lambertian

intrinsics dataset and algorithms based on ShapeNet, ren-

dering and learning from photorealistic images on many va-

rieties of common objects.

3. Intrinsic Image with Specular Reflectance

We derive our non-Lambertian intrinsic decomposition

equation based on physics-based rendering. Given an in-

put image, the observed outgoing radiance I at each pixel

can be formulated as the product integral between incident

lighting L and surface reflectance ρ via this rendering equa-

tion [17]:

I =

∫
Ω+

ρ(ωi, ωo)(N · ωi)L(ωi) dωi. (3)

Here, ωo is the viewing direction, ωi is the lighting direc-

tion from the upper hemisphere domain Ω+, and N is the

surface normal direction of the object.

Surface reflectance ρ is a 4D function usually defined as

the bi-directional reflectance distribution function (BRDF).

Various BRDF models have been proposed, all sharing a

similar structure with a diffuse term ρd and a specular term

ρs, and corresponding coefficients αd, αs:

ρ = αd · ρd(ωi, ωo) + αs · ρs(ωi, ωo) (4)

For the diffuse component, lights scatter and produce view-

independent and low-frequency smooth appearance. By

contrast, for the specular component, lights bounce off the

surface point only once and produce shinny appearance.

The scope of reflection is modeled by diffuse albedo αd and

specular albedo αs.

Combining reflection equation (4) and rendering equa-

tion (3), we have the following image formation model:

I = αd

∫
Ω+

ρd(ωi, ωo)L(ωi) dωi

+ αs

∫
Ω+

ρs(ωi, ωo)L(ωi) dωi = αdsd + αsss,

(5)

where sd and ss are the diffuse and specular shading respec-

tively. Traditional intrinsics models consider diffuse shad-

ing only, by decomposing the input image I as a product of

Figure 2: Our mirror-link CNN architecture has one shared

encoder and three decoders for albedo, shading, specular

components separately. Mirror links connect the encoder

and decoder layers of the same spatial resolution, providing

visual details. The height of layers in this figure indicates

the spatial resolution.

diffuse albedo A and shading S. However, it is only proper

to model diffuse and specular components separately, since

their albedos have different values and spatial distributions.

The usual decomposition of I = A × S is only a crude

approximation.

Specular reflectance αsss has characteristics very differ-

ent from diffuse reflectance αdsd: Both specular albedo and

specular shading have high-frequency spatial distributions

and color variations, making decomposition more ambigu-

ous. We thus choose to model specular reflectance as a sin-

gle residual term R, resulting in the non-Lambertian exten-

sion: I = A× S + R, where input image I is decomposed

into diffuse albedo A, diffuse shading S, and specular resid-

ual R respectively.

Although our image formation model is developed based

on physics based rendering and physical properties of dif-

fuse and specular reflection, it does not assume any specific

BRDF model. Simple BRDF models (e.g. Phong) can be

employed for rendering efficiency while complex models

(e.g. Cook-Torrance) can lead to higher photo-realism.

4. Learning Intrinsics

We develop our CNN model and training procedure for

non-Lambertian intrinsics.

Mirror-Link CNN. Fig. 2 illustrates our encoder-

decoder CNN architecture. The encoder progressively ex-

tracts and down-samples features, while the decoder up-

samples and combines them to construct the output intrin-

sic components. The sizes of feature maps (including in-

put/output) are exactly mirrored in our network. We link

early encoder features to the corresponding decoder lay-

ers at the same spatial resolution, in order to obtain pixel-

accurate sharp details preserved in early encoder layers.

Since output components are closely related to each other,

we share the same encoder and use separate decoders for

A,S,R.
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Figure 3: Environment maps are employed in our render-

ing for realistic appearance, both outdoor and indoor scenes

are included. The environment map not only represents the

dominate light sources in the scene (e.g. sun, lamp and win-

dow) but also includes correct information on the surround-

ings (e.g. sky, wall and building). Although a dominate light

might be sufficient for shading a Lambertian surface, de-

tailed surroundings provide the details in the specular.

Similar structures have been used in Deep Reflectance

Map (DRM) [27] and U-Net [29]. DRM solves an inter-

polation problem from high resolution sparse inputs to low

resolution dense map outputs in the geometry space, ignor-

ing the spatial inhomogeneity of reflectance. U-Net deals

with image segmentation. We use multiple decoders with a

shared encoder for multiple image regression outputs.

Scale invariant Loss. There is an inherent scale ambigu-

ity between albedo and shading, as only their product mat-

ters in the intrinsic image decomposition. DI [22] employs

a weighted combination of MSE loss and scale-invariant

MSE loss for training their intrinsic networks. Similar to

their work, we apply the same loss functions to albedo and

shading, while simply take MSE loss for specular. Since

we focus on object-level intrinsics, only pixels in the object

mask have been used for calculating the loss function and

its gradients.

ShapeNet-Intrinsics Dataset. We obtain the geometry

and albedo texture of 3D shapes from ShapeNet, a large-

scale richly-annotated, 3D shape repository [10]. We pick

31,072 models from several common categories: car, chair,

bus, sofa, airplane, bench, container, vessel, etc. These ob-

jects often have specular reflections.

Environment maps. To generate photo-realistic images,

we collect 98 HDR environment maps from online public

resources [1]. Indoor and outdoor scenes with various illu-

mination conditions are included, as shown in Fig. 3.

Rendering. We use an open-source renderer Mit-

suba [16] to render object models with various environ-

ment maps and random viewpoints sampled from the upper

hemisphere. A modified Phong reflectance model [26, 19]

is assigned to objects to generate photo-realistic shading

and specular effects. Since original models in ShapeNet

are only provided with reliable diffuse albedo, for each ob-

ject we randomly pick a Phong material with uniform dis-

tribution of specular coefficient ks ∈ (0, 0.3) and shininess

Ns ∈ (0, 300), which covers the range from pure diffuse to

high specular appearance (Fig. 1). We render albedo, shad-

ing and specular layers, and then synthesize images accord-

ing to Equation 5.

Training. We split our dataset at the object level in order

to avoid images of the same object appearing in both train-

ing and testing sets. We use 80/20 split, resulting in 24, 932
models for training and 6, 240 for testing. All the 98 envi-

ronment maps are used to rendering 2, 443, 336 images for

the training set. For the testing set, we randomly pick 1 im-

age per testing model. More implementation details can be

found in the supplementary material.

5. Evaluation

Our method is evaluated and compared with SIRFS [4],

IIW [6], and Direct Intrinsics (DI) [22]. We also train DI us-

ing our ShapeNet intrinsics dataset and denote the model as

DI*. We adopt the usual metrics, MSE, LMSE and DSSIM,

for quantitative evaluation. We also include a simple base-

line for shading, which is a constant, and another baseline

for albedo, which is the input image itself.

5.1. ShapeNet Intrinsics Dataset

Table 1 shows benchmark scores on our ShapeNet in-

trinsics test set. Our algorithm consistently outperforms ex-

isting approaches. Compared to off-the-shelf solutions, our

method provides 40-50% performance gain according to the

DSSIM error. Also note that, DI*, i.e. DI trained with our

dataset, produces second best results across almost all the

error metrics, demonstrating the advantage of our ShapeNet

intrinsics dataset.

Numerical error metrics may not be fully indicative of

visual qualities, e.g. the naive baseline also produces low

errors for some cases. Figure 4 provides visual comparisons

against ground-truths.

For objects with strong specular reflectance, e.g. cars,

specular reflection violates the Lambertian condition as-

sumed by traditional intrinsics algorithms. These algo-

ShapeNet MSE LMSE DSSIM

intrinsics albedo shading albedo shading albedo shading

Baseline 0.0232 0.0153 0.0789 0.0231 0.2273 0.2341

SIRFS 0.0211 0.0227 0.0693 0.0324 0.2038 0.1356

IIW 0.0147 0.0149 0.0481 0.0228 0.1649 0.1367

DI 0.0252 0.0245 0.0711 0.0275 0.1984 0.1454

DI* 0.0115 0.0066 0.0470 0.0115 0.1655 0.0996

Ours 0.0083 0.0055 0.0353 0.0097 0.0939 0.0622

specular 0.0042 0.0578 0.0831

Table 1: Evaluation on our synthetic dataset. For the base-

line, we set its albedo to be the input image and its shading

to be 1.0. The last row lists our specular error.
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Input SIRFS IIW DI DI* Ours GT Specular

Figure 4: Results on the ShapeNet Intrinsics dataset. Our

baselines include SIRFS, IIW, Direct-Intrinsics with re-

leased model by the author (DI), and model trained by our-

selves on our synthetic dataset (DI*). The top row of each

group is albedo, and the bottom is shading. The Specular

column shows the ground-truth (top) and our result (bot-

tom). We observe that specularity has basically been re-

moved from albedo/shading, especially for cars. Even for

the sofa (last row) with little specular reflection, our method

still produces good visual results. See more results in our

supplementary material.

rithms, e.g. SIRFS and IIW, simply cannot handle such

specular components. Learning-based approaches, DI, DI*,

or our method, could still learn from the data and per-

form better in these cases. For DI, the network trained

on our dataset also has significantly better visual quality,

compared with their released model trained on the Sintel

dataset. However, their results are blurry, as a consequence

from their deep convolution and deconvolution network ar-

chitecture without our mirrored skip-layer connections.

Our model produces sharper images preserving many vi-

sual details, such as boundaries in the albedo and specu-

MIT MSE LMSE DSSIM

intrinsic albedo shading albedo shading albedo shading

SIRFS 0.0147 0.0083 0.0416 0.0168 0.1238 0.0985

DI 0.0277 0.0154 0.0585 0.0295 0.1526 0.1328

Ours 0.0468 0.0194 0.0752 0.0318 0.1825 0.1667

Ours* 0.0278 0.0126 0.0503 0.0240 0.1465 0.1200

Table 2: Evaluation on MIT intrinsics dataset.

Input SIRFS DI Ours Ours* GT

Figure 5: Results on the MIT dataset. Ours* is our

ShapeNet trained model fine-tuned on MIT, with data gen-

erated by the GenMIT approach used in DI [22].

lar images. Large specular areas on the body of cars are

also extracted well in the specular residue component, re-

vealing the environment illumination. Such specular areas

would confuse earlier algorithms and bring serious artifacts

to albedo/shading predictions.

5.2. MIT Intrinsics Dataset

We also run our network on the MIT intrinsics dataset

[13]. While our environment light model is colored and de-

signed for common real-world images, the MIT-intrinsics

dataset uses a single grayscale directional light model in a

lab capture setting, a scenario that is not included in our

ShapeNet intrinsics dataset. The light model differences

lead to dramatic visual differences and cause domain shift

problems for learning based approaches [22]. We also fol-

low [22] to fine tune our network on the MIT dataset.

Table 2 lists benchmark errors and Fig 5 provides sample

results for visual comparisons. SIRFS produces the best nu-

merical results, since the pure Lambertian surface reflection
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and grayscale lighting setup best fits the assumption of such

prior-based intrinsics algorithms. Direct intrinsics [22] re-

quires fine tuning to reach similar performance. Our model

fine tuned on the MIT dataset produces comparable results

as SIRFS and better than DI finetuned on MIT; in addition,

our results preserve more details compared to DI.

5.3. Real­World Images

Figure 6 shows our results on real-world images, most

of them are product images. Although our model is trained

entirely on synthetic data, it provides more realistic results

than other algorithms, due to photo-realistic rendering that

simulates the physical effects of diffuse and specular reflec-

tion and to the generalization properties of our model.

Our model also produces surprisingly good results on

objects never included in our dataset, e.g. the mouse, toy

and tomato. In these results such as the car, mouse and

potato, specular highlights are correctly estimated, and the

corresponding albedo maps are recovered with correct col-

ors. Note that highlight pixels are particularly challenging,

since they could be so bright that no diffuse colors are left in

the input pixels, essentially invalidating many chroma based

intrinsics solutions.

Finally, we apply our model to videos frame by frame,

and obtain coherent results without using any constraints

on temporal consistency. Please see our supplementary ma-

terials.

6. Cross-category generalization

ShapeNet provides semantic category information for

each object, allowing in-depth analysis for cross-category

performance analysis of our learning based intrinsic image

decomposition task. We conduct category-specific training

of our network on 4 individual categories which have more

than 3,000 objects each: car, chair, airplane and sofa. We

evaluate the network on the entire dataset as well as these

4 categories. All these networks are trained with the same

number of iterations regardless the number of training data.

Table 3 lists cross-category testing errors. For almost all

the categories, training on the specific dataset produces the

best decomposition results on that category. This result is

not surprising, as the network always performs the best at

what it is trained for. Training with all the datasets leads

to a small prediction error increase, at less than 0.02 in the

DSSIM error.

What is surprisingly is that, on an image of an object cat-

egory (e.g. car) that has never been seen during training (e.g.

chairs), our network still produces reasonable results, with

the DSSIM error on-par or better than existing works that

are designed for general intrinsic tasks (Table 1). Figure

7 shows sample cross-category training and testing results:

All of our models produce reasonable results, demonstrat-

ing cross-category generalization.

Analysis on generalization. Our image-to-image re-

gression network always produces the same physical com-

ponents: albedo, shading and specular maps, unlike clas-

sification networks with semantic labels. Although objects

in different categories have dramatically different shapes,

textures and appearances, those components have the same

physical definitions and share similar structures. Many of

those commonalities are widely used in previous intrinsics

algorithms,e.g. shading is usually smooth and grayscale;

albedo contains more color variations and specular is sparse

and of higher contrast.

When two categories share some properties, their indi-

vidually learned networks apply well to the other. For ex-

ample, the Chair and Sofa categories share similar textures

(textile and wood), albedo, and shapes, thus their predic-

tions on all three output channels transfer well to the other

category.

We also observe non-symmetry in Table 3: e.g. the net-

work trained on Car produces good results on Airplane,

while the network trained with Airplane has relative larger

error on Car. This difference could be explained by the

amount of within-category variations: The car category has

more variations in both shapes and textures, and richer vari-

ations lead to better generalization. This result can also be

observed in the benchmarks on the ALL dataset, where the

Car-category network produces the best results except the

Albedo

ALL Car Chair Airplane Sofa

ALL 0.0939 0.1014 0.0988 0.0893 0.0716

Car 0.1134 0.0808 0.1379 0.1057 0.1002

Chair 0.1181 0.1578 0.0911 0.1166 0.0835

Airplane 0.1201 0.1410 0.1338 0.0757 0.0954

Sofa 0.1131 0.1348 0.1101 0.1067 0.0663

Shading

ALL Car Chair Airplane Sofa

ALL 0.0622 0.0685 0.0549 0.0596 0.0491

Car 0.0687 0.0579 0.0692 0.0683 0.0592

Chair 0.0772 0.1008 0.0561 0.0740 0.0548

Airplane 0.0776 0.0936 0.0738 0.0481 0.0629

Sofa 0.0721 0.0877 0.0594 0.0697 0.0460

Specular

ALL Car Chair Airplane Sofa

ALL 0.0831 0.0866 0.0714 0.1021 0.0730

Car 0.0953 0.0745 0.0962 0.1214 0.0854

Chair 0.0982 0.1162 0.0719 0.1205 0.0800

Airplane 0.1019 0.1115 0.0980 0.0871 0.0939

Sofa 0.0984 0.1115 0.0800 0.1238 0.0673

Table 3: Cross-category DSSIM scores. Each row corre-

sponds to a model trained on the specific category, and each

column corresponds to the result evaluated on the specific

category. Not surprisingly, the lowest errors are mostly on

the diagonal when the training and testing sets are the same,

except for the shading on Chairs. While category-specific

training gives better results on its own category, the re-

sults in other categories are surprisingly only slightly worse,

demonstrating good generalization.
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Input Ours DI* DI SIRFS Input Ours DI* DI SIRFS

Figure 6: Evaluation on real world images. The first column contains input images (top) and our specular predictions

(bottom). For the group of results of an image, the top row gives the predicted albedo and the bottom row gives the shading.

We observe that: 1) DI* trained on our dataset produces better results than the publicly released model DI; however, they

are still blurry without fine details. 2) SIRFS produces erroneous albedo prediction for strong specular cases, as it does not

assume specular reflectance.

Albedo Shading Specular

Car Chair Airplane Sofa Car Chair Airplane Sofa Car Chair Airplane Sofa

Car 0.0808 0.1379 0.1057 0.1002 0.0579 0.0692 0.0683 0.0592 0.0745 0.0962 0.1214 0.0854

Car-Chair 0.1157 0.1303 0.1182 0.0954 0.0769 0.0678 0.0743 0.0598 0.0833 0.0907 0.1215 0.0882

Chair-Car 0.1311 0.1111 0.1125 0.0929 0.0873 0.0582 0.0711 0.0573 0.1089 0.0736 0.1235 0.0810

Chair 0.1578 0.0911 0.1166 0.0835 0.1008 0.0561 0.0740 0.0548 0.1162 0.0719 0.1205 0.0800

Airplane 0.1410 0.1338 0.0757 0.0954 0.0936 0.0738 0.0481 0.0629 0.1115 0.0980 0.0871 0.0939

Airplane-Sofa 0.1502 0.1324 0.0855 0.0938 0.0940 0.0719 0.0546 0.0609 0.1104 0.0932 0.0916 0.0894

Sofa-Airplane 0.1349 0.1149 0.1032 0.0723 0.0954 0.0628 0.0703 0.0510 0.1129 0.0829 0.1151 0.0763

Sofa 0.1348 0.1101 0.1067 0.0663 0.0877 0.0594 0.0697 0.0460 0.1115 0.0800 0.1238 0.0673

Table 4: Cross-category decoder fine-tuning results. We freeze the encoder component and fine-tune the decoder components in a cross-

category setting. Car-Chair denotes the model first trained on cars and then fine-tuned on chairs. Our results show that fine-tuning the

decoder would not bring much performance improvement, if the encoder is already biased towards another category. We also observe

that cross-category fine-tuning makes little difference when the model is evaluated on a third category, e.g. Car-Chair on Sofa performs

similarly to Car on Sofa. These results together indicate the dominating importance of the encoder over the decoder.
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Input Car Chair Airplane Sofa ALL Reference

Figure 7: Cross-category comparison. Training on one spe-

cific category produces the best result when tested on ob-

jects from the same category. Categories with similar ap-

pearance also share similar results, e.g. sofas tested on the

model trained on chairs. Dissimilar categories might pro-

duce results with artifacts, e.g. chairs tested on the model

trained on airplanes.

general ALL-network.

We test the role of encoder/decoder in our image-to-

image regression task, and verify which is more critical for

cross-category generalization. After training on a specific

category, we freeze the encoder and fine tune the decoder on

another category, e.g. we fine tune the car-trained model on

chairs, with the encoder fixed. The encoder features cannot

be changed and we can only modify the way the decoder

composes them. Table 4 shows the results on fine-tuned

models. We observe that finetuning the decoder brings very

limited improvement on the dataset it is fine tuned on, in-

(a) Albedo recoloring.

(b) Specular editing.

Figure 8: Image based appearance editing through intrin-

sic layers. For specular editing, the first row shows scaling

specular reflectance intensity by 1.0, 0.5 and 0; the second

row shows specular editing by user interaction. The first

column shows the original images.

dicating that the encoder features are crucial for learning

the decomposition. That the model trained on ALL cate-

gories produces similar errors to category-specific models is

most likely due to the encoder of our model capturing both

category-dependent and category-independent features.

7. Application

Decomposing images into their intrinsic components

would benefit many applications. Figure 8 shows image-

based material editing [18, 36] examples based on our in-

trinsics results. We can recolor the diffuse albedo map to

simulate a different color paint on the car, while preserv-

ing the shading and specular highlights. With our approach,

specular highlights can also be edited by simple processing,

e.g. scaling, or complex user interaction.

8. Conclusion

We extend the intrinsic image problem by introducing

a specular term and solve this non-Lambertian intrinsics

problem with a deep learning approach. A large scale train-

ing dataset with realistic images is generated using phys-

ically based rendering on the ShapeNet object repository.

Our CNN approach consistently outperforms the state-of-

the-art both visually and numerically. Non-Lambertian in-

trinsics greatly extends Lambertian intrinsics to a much

wider range of real images and real applications such as

albedo and specular editing.
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