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Abstract

Visual recognition of wet surfaces and their degrees of

wetness is important for many computer vision applica-

tions. It can inform slippery spots on a road to autonomous

vehicles, muddy areas of a trail to humanoid robots, and

the freshness of groceries to us. In the past, monochromatic

appearance change, the fact that surfaces darken when wet,

has been modeled to recognize wet surfaces. In this paper,

we show that color change, particularly in its spectral be-

havior, carries rich information about a wet surface. We

derive an analytical spectral appearance model of wet sur-

faces that expresses the characteristic spectral sharpening

due to multiple scattering and absorption in the surface. We

derive a novel method for estimating key parameters of this

spectral appearance model, which enables the recovery of

the original surface color and the degree of wetness from

a single observation. Applied to a multispectral image, the

method estimates the spatial map of wetness together with

the dry spectral distribution of the surface. To our knowl-

edge, this work is the first to model and leverage the spec-

tral characteristics of wet surfaces to revert its appearance.

We conduct comprehensive experimental validation with a

number of wet real surfaces. The results demonstrate the

accuracy of our model and the effectiveness of our method

for surface wetness and color estimation.

1. Introduction

Recognition of surface conditions of scene constituents,

not just what they are (object recognition) and where they

are (place recognition) but whether they are, for instance,

clean, smooth, rusty, or soft, is vital for computer vision to

succeed in the real world. Wetness is one of the key sur-

face conditions that is critical to robustly recognize in com-

puter vision applications. Water or other liquids absorbed

by the surface cause muddy trails that humanoid robots may

have to carefully walk over, slippery roads after rain for au-

tonomous vehicles to brake earlier, and fruits to maintain

their freshness for us to consume. The degree of wetness
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Figure 1: Example spectral distributions of dry and wet

surface points (red and blue curves, respectively). The

wet spectral distribution shows characteristic darkening (de-

crease in magnitude) and spectral sharpening (narrowing of

distribution, i.e., contrast increase). The spectral energy is

normalized for better visualization; the actual magnitude is

significantly higher than that of the wet surface across the

spectrum. We derive a novel spectral appearance model that

accurately encodes both of these characteristics of wet sur-

faces and use it to estimate wetness and color from a single

multispectral image.

directly reflects the desirable or undesirable condition of

the surface: the more the muddier and the fresher. Can we

estimate the wetness of a surface just from its looks? In

this paper, we derive a rigorous spectral appearance model

for water-wet surfaces. Our model and method for surface

wetness and color recovery, however, can be applied to any

liquid if we know its spectral behavior.

Making a surface wet causes characteristic appearance

change. As shown in Figure 1, there are two fundamental

components to this appearance change. The first is the de-

creased intensity across the spectrum, whose magnitude is

proportional to the degree of wetness. This monochromatic

characteristic of wet surface appearance has been modeled
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and used for recognition and image synthesis in the past.

For the special case when a thin film of water is present

on the surface, Angstrom [1] showed that the probability of

light being absorbed by the surface due to internal reflection

at the film-air interface increases and leads to darkening of

the surface appearance. Lekner and Dorf [9] derived a more

accurate model of this phenomenon, which was used to rec-

ognize wet surfaces and estimate its dry appearance by con-

trolling the brightness [11, 19].

The main cause of the darkening is, however, due to the

water absorbed by the surface itself. Twomey et al. [16]

showed that light scattering in the surface becomes more

forward-centered when the surface becomes wet, leading

to the darkening, which agrees with the spectral model we

derive. Jensen et al. [8] combined this model with that of

Lekner and Dorf to render wet surfaces. Data-driven models

based on images of surfaces with varying degrees of dryness

have also been introduced for image synthesis [10, 5, 14,

20]. These models, however, do not explicitly relate the

degree of surface wetness to its appearance.

Perhaps less known is the second characteristic appear-

ance change of wet surfaces: the effect of water (liquid)

absorbed by the surface on its spectral behavior. As shown

in Figure 1, the spectral distribution of a wet surface re-

gion becomes sharper than that of a dry region with the

same surface color. As we show in this paper, this is due to

the complex interplay of light absorption and multiple scat-

tering inside the surface. Although this important spectral

characteristic of wet surfaces has been empirically studied

for image synthesis [10], to our knowledge, it has not been

rigorously modeled in the past.

In this paper, we derive a comprehensive spectral appear-

ance model of wet surfaces. We specifically focus on the

general appearance change induced by liquid absorbed in

the surface itself. Our model explains both the monochro-

matic darkening and spectral sharpening of wet surfaces.

It also rigorously relates the degree of surface wetness to

its appearance change. Collectively, the model enables the

recovery of the degree of wetness and the original (dry) sur-

face color from a single observation. The model is derived

based on two key ideas for describing light behavior in wet

surfaces. The first is to represent the scattering anisotropy

with a linear combination of its distributions when the sur-

face is completely dry and completely wet. This enables us

to relate the degree of wetness to the shape of anisotropic

scattering with a single parameter. The second is to express

the light absorption rate for light scattering in the surface

with a single parameter by interpreting the light interaction

as a stochastic walk through wet and dry areas in the sur-

face. We assume that the overall optical path length during

multiple scattering can be separated into paths in wet and

dry areas, and define the degree of wetness as the propor-

tion of wet paths in the overall optical path. These two key

assumptions enable us to express the complex appearance of

surfaces with arbitrary degrees of wetness with a simple bi-

linear equation. The bilinear model consists of a Hadamard

product of a matrix expressing the spectral surface color and

a Vandermonde matrix encoding light absorption by the liq-

uid induced by multiple scattering, and a matrix represent-

ing the degree of wetness of the surface.

Our model lends itself to a simple yet powerful method

for recovering the surface wetness and original color from a

single observation. We assume that the spectral distribution

of absorption by the liquid is known or can be measured a

priori [2]. We show that we can recover a spatial map of

surface wetness and the original (dry) spectral distribution

from a single multispectral image. The recovered wetness

is absolute if there are completely dry and completely wet

points of the same material in the image. It becomes relative

to the driest or wettest point if neither are present. We also

demonstrate that we can recover the underlying texture and

spatial wetness of a wet textured surface.

We conduct an extensive quantitative evaluation of the

method using various real-world surfaces. The experimen-

tal results validate the accuracy of our model and show that

we can accurately recover the surface wetness and color

from a single multispectral image. These results demon-

strate a promising first step for recognizing and estimating

surface conditions from appearance.

2. A Spectral Model of Multiple Scattering

In this section, we derive an analytical spectral appear-

ance model of wet surfaces. We first derive a spectral ap-

pearance model for dry surfaces and extend it to wet sur-

faces. Scattering is the key radiometric behavior in a wet

surface. Although light scattering in participating media has

been studied in the past [3, 13, 6, 12] and applied to critical

applications including remote sensing [4, 18, 17] and medi-

cal imaging [8, 15], its spectral behavior in wet surfaces still

remains to be addressed.

2.1. Light Scattering in Dry Surfaces

Surfaces consist of particles interwoven with air or other

medium that cause scattering and absorption every time a

light ray hits them. These radiometric events determine the

color and brightness of the surface. We start our derivation

with the simple case of single scattering at a certain wave-

length. Let us denote the irradiance received at a surface

point with I0. According to a widely adopted single scatter-

ing model [13], the intensity of light after single scattering

can be computed as the product of the incident irradiance

I0, the phase function that approximates the scattered light
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Figure 2: (a) The relation between the scattering parameter

g and the shape of the scattering distribution. (b) Differ-

ent light paths with varying degrees of scattering inside the

surface collectively radiate from the same surface point.

distribution, and the light absorption in the surface:

I1(g,ω, u, r1) = I0 p(g,ω)e−ur1 (1)

p(g,ω) =

∞
∑

l=0

(2l + 1)

4π
glPl(ω · ω0) ,

where p(g,ω) is the empirical Henyey-Greenstein phase

function, g(−1 ≤ g ≤ 1) is the scattering anisotropy param-

eter that encodes the shape of the scattering distribution, ω

is the viewing direction, and Pl is the Legendre Polynomial.

As shown in Figure 2(a), the shape of the scattering distri-

bution becomes isotropic when g = 0, and it becomes for-

ward scattering when g is near 1, and backward scattering

when g is near −1. The third term describes the amount of

light absorbed by the material when it travels from the first

scattering point to the second, which is computed using the

absorption coefficient u and the path length r1, where the

subscript denotes the number of scattering.

Similarly, light leaving from a surface after experiencing

n times of scattering can be expressed with the product of

the incident irradiance, the averaged phase function across

the first to the n-th ones, and the light absorption

Now, let us derive the radiance (intensity) of a dry sur-

face by accounting for multiple scattering. As shown in

Figure 2(b), a surface point will be radiating a collection of

light rays that experience varying degrees of multiple scat-

tering. We assume that scattering particles of the surface

are uniformly distributed, and the scattering parameter gd

and the absorption coefficient u of a dry surface is spatially

uniform (i.e., we focus on a surface region of identical ma-

terial). We also implicitly assume that the surface is flat and

the incident lighting is angularly uniform (e.g., ambient en-

vironmental light). Under these assumptions that hold for

general flat surface regions of the same color, the intensity

of a surface can be expressed as a weighted sum over n-

times scattered light of the surface irradiance I0:

Id(gd,ω, u, rn)=
∑

n

α(gd, n)In(gd,ω, u, rn)

= I0

∑

n

α(gd, n)p{n}(gd,ω)e−urn

≈ I0

∑

n

α(gd, n)p{n}(gd,ω)e−unr0 , (2)

where the weight function α(gd, n) is the ratio of light that

experiences n-times scattering before reaching the surface

point of interest and p{n} is the n-times convolution of the

phase function. We assume that the mean light path length

r0 is the same regardless of the number of scattering n,

which leads to the total path length rn ≈ nr0.

2.2. Light Scattering in Wet Surfaces

Let us now turn our attention to the case when the sur-

face becomes wet. We can consider wet surfaces as having

liquid replacing the air between scattering particles. The

interwoven liquid affects the overall shape of the scatter-

ing distribution and introduces additional absorption during

scattering. The degree of wetness defines how much liquid

was absorbed into the surface. In this section, we model

how the intensity of a surface point changes as a function of

the degree of wetness.

We first consider the extreme case, in contrast to a com-

pletely dry surface, when the liquid fills all areas between

scattering particles. We refer to this completely wet condi-

tion as “saturated.” We assume that light absorption by the

surface between successive scattering can be determined by

the product of absorption in the original dry surface and that

of the liquid itself. This is a safe assumption to make as long

as the surface material and the liquid absorbed by the sur-

face are spatially exclusive (i.e., the material is not soluble

in the liquid). The intensity of a saturated surface point can

then be expressed as

Is(gs,ω, u, v, r0)= I0

∑

n

τn(gs,ω)a(u, r0)nb(v, r0)n

τn(gs,ω)=α(gs, n)p{n}(gs,ω)

a(u, r0)= e−ur0

b(v, r0)= e−vr0 , (3)

where gs is the scattering parameter of the saturated surface,

and v is the absorption coefficient of the liquid. gs is usu-

ally larger than gd since the scatting parameter of liquid is

generally higher than that of air.

Next, let us consider the general case of wet surfaces:

liquid partially filling the surface. Without loss of gener-

ality, instead of considering partial replacement of air be-

tween scattering particles with liquid, we interpret wet sur-

faces as consisting of saturated and dry areas co-existing

under the surface with a ratio proportional to the degree of

wetness. With this definition of wet surfaces, the overall

light path length during multiple scattering can be separated

into saturated paths and dry paths. The degree of the wet-

ness γ is defined as the ratio of wet area in the overall light

path, where γ is 0 if the surface is completely dry, and γ

is 1 if it is completely wet (i.e., saturated). The scattering
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parameter of wet surfaces gw then becomes

p{n}(gw,ω) = p{(1−γ)n}(gd,ω)p{γn}(gs,ω)

=

∞
∑

l=0

(2l + 1)

4π
g

(1−γ)nl

d
g
γnl
s Pl(ω · ω0)

= p{n}(g
(1−γ)

d
g
γ
s ,ω) (4)

gw = g
(1−γ)

d
g
γ
s . (5)

The absorption in wet surfaces with a degree of wetness

γ can be written as a(u, r0)b(v, r0)γ. The intensity of wet

surfaces is derived by substituting this into Equation 3

Iw(gd, gs,ω, u, v, γ, r0)

= I0

∑

n

α(gw, n)p{n}(gw,ω)a(u, r0)nb(v, r0)γn

= I0

∑

n

τn(gw,ω)a(u, r0)nb(v, r0)γn . (6)

When the degree of wetness takes on a large value (i.e.,

when the surface becomes more wet), the scattering param-

eter gw also becomes large from Equation 5. This makes

the scattering more concentrated in the forward direction.

As a result, the overall light path length of multiple scatter-

ing before it reaches the surface interface back into the air

becomes longer. Intuitively, this means the incident light

will penetrate deeper before it comes back. In other words,

the surface becomes optically thicker. This increases the to-

tal amount of absorption during multiple scattering which

explains darkening of wet surfaces.

2.3. Spectral Scattering in Wet Surfaces

Let us now model the spectral behavior of light in wet

surfaces by extending the monochromatic model we just

derived. We will visit each of the properties of the multi-

ple scattering model that are wavelength dependent. We as-

sume Mie scattering which is insensitive to wavelength dif-

ferences [7]. The scattering parameter g (gd for dry, gs for

saturate, and gw for general wet surfaces) is thus a constant

for any wavelength. Since light absorption usually varies

depending on the wavelength, we denote the absorption co-

efficient with u(λk), v(λk), where λk is the k-th wavelength

we measure with a spectrometer or multispectral camera

(k = {1, . . . ,K}). The weight function α and the phase func-

tion p do not depend on wavelength. With these notations,

the spectral appearance model of wet surfaces can be writ-

ten as

I(gd, gs, u(λk), v(λk), γ)

= I0

∑

n

τn(gw,ω)a(u(λk), r0)nb(v(λk), r0)γn . (7)

The conditions “dry” and ‘saturated” are the two extreme

cases of this model with γ = 0 and γ = 1, respectively.

We can simplify notations by assuming that the incident

light is a pre-calibrated white light source and, as a result,

the incident illumination I0 can be normalized to 1. The

phase function p{n}(g,ω) can be rewritten as p(g{n},ω) from

its definition (Equation 1). Since the incident light is angu-

larly uniform, we may consider ω to be constant:

τn(g) = α(g, n)p{n}(g) = α(g, n)p(gn)

ak = e−u(λk)r0

bk = e−v(λk)r0 .

The spectral appearance model of wet surfaces can be

expressed in a concise matrix form

W = (A ◦B)T (8)

W = [w1, · · ·wk, · · ·wK]T

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(a1)1 (a1)2 . . . (a1)N

(a2)1 (a2)2 . . . (a2)N

...
... (ak)n

...

(aK)1 (aK)2 . . . (aK)N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(b1)γ (b1)2γ . . . (b1)Nγ

(b2)γ (b2)2 . . . (b2)Nγ

...
... (bk)nγ

...

(bK)γ (bK)2γ . . . (bK)Nγ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T = [τ1, · · · τk, · · · τN]T ,

where wk is the intensity of the wet surface for the k-th

wavelength λk, and N is the maximum number of multiple

scattering we consider. The operator ◦ denotes Hadamard

product. Matrix A encodes the spectral distribution of the

surface, matrix B represents the absorption by up to N-th

multiple scattering, and T expresses the transmission by the

phase function as a function of wetness. Matrix B is a Van-

dermonde matrix reflecting the fact that the intensity of a

wet surface point becomes a polynomial evaluation of mul-

tiple scattering as seen in Equation 7.

We can extend this spectral appearance model for a wet

surface point to express a wet surface spanning multiple

pixels (m = {1, 2, ...,M})

W = (A ◦ B) ∗ T = C ∗ T (9)

C = (A ◦ B) ,

where W is a K × M second-order tensor, T is a N × M

second-order tensor, and A,B, andC are K × N × M third-

order tensors. The operator ∗ denotes that whenW = C ∗

T , the m-th first-order vector Wm of W is computed by

the product of the m-th matrix Cm and vector Tm for each

m individually. For instance, the element W(k,m) can be

computed by
∑

n C(k, n,m)T (n,m).

3. Surface Wetness and Color Recovery

Based on the newly derived spectral appearance model,

we establish a method for simultaneously estimating the de-

gree of wetness and the original (dry) spectral distribution

of a surface from a single multispectral observation.
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3.1. Problem Setup

As derived in Equation 7, the interaction of light scatter-

ing and absorption by the liquid and surface is bilinear. The

inversion of this model is thus inherently ill-posed. To en-

able robust estimation of its parameters, we make additional

but realistic assumptions. First, we assume that the type of

liquid is known so that the multispectral absorption coeffi-

cients of the liquid v = [v(λ1), . . . , v(λK)] is known or can

be measured beforehand. Second, we assume that we can

specify a region of the surface with the same material (i.e.,

same dry color). If the image is of a homogeneous mate-

rial, we can directly apply our method on the entire image.

Third, we assume that we can identify saturated and dry

pixels in each homogeneous surface region. If neither are

available, the degree of wetness we estimate will become

relative to the “saturated” and “dry” pixels that we auto-

matically assign. For our experiments, we simply use the

darkest and brightest points as the saturated and dry points,

respectively. The scattering parameter can also be consid-

ered as inherently relative. We empirically found that, un-

less we use a large value close to 1 for gd, the optimization

is not sensitive to the selection of gd. From this observation,

we set gd = 0.6 for all experiments.

We determine the weight function α(g, n) based on

Monte Carlo simulation. We first simulate multiple scat-

tering for each g in Equation 1 for perpendicular incident

light. Then we compute the ratio of light that returns to

the surface interface after n-times scattering. We fit a log-

normal function to the simulation results and use it in the

optimization.

GivenW, gd, and v, whereW is multiplied by the cam-

era gain β in the optimization, we estimate the degrees of

wetness for M pixels γ = [γ1, . . . , γM], the absorption coef-

ficients of the dry surface u = [u(λ1), . . . , u(λK)], the mean

light path length r0, and the scattering parameter gs

min
u,γ,r0,β,gs

‖βW− (A(u, r0) ◦ B(v, r0)) ∗ T (gd, gs,γ)‖2

s.t., 0 ≤ u(λk) (k = 1, ...,K)

gd < gs < 1

0 < r0, 0 < β

0 ≤ γm ≤ 1 (m = 1, ...,M) , (10)

in which, if we estimate u, γ, r0, β, and gs, the tensors A,

B, and T can be analytically computed.

3.2. Recovery Method

We use alternating minimization to solve Equation 10.

We first initialize the unknown variables that will be up-

dated in the optimization. Based on experimental ex-

ploratory analysis, we set r
(0)

0
to 0.5. Since A encodes the

absorption of dry surfaces, the initial value A(0) is set to

the spectral observation of the surface subtracted from one

(i.e., we use the observed surface color as the initial surface

color). The initial value of the surface absorption coefficient

u(0) can be directly computed from A(0) and r
(0)

0
. Since the

initial value B(0) will be used to estimate the scattering pa-

rameter of a saturated surface gs, we compute B(0) using

γm = 1, (m = 1, ...,M).

We initialize the gain β using the automatically selected

“dry” pixel. If we denote the input spectrum vector for a

pixel with Wd, the matrices for that pixel in Equation 8 will

be denoted as Ad, Bd, and Td, whose values are computed

using u(0), r
(0)

0
, gd and γ = 0 from Equations 3 and 8. Us-

ing Wd, Ad, Bd, and Td, β(0) is initialized by least square

optimization

β(0)
= argmin

β

‖βWd − (Ad ◦ Bd)Td)‖2

s.t., 0 < β . (11)

We initialize the scattering parameter for saturated sur-

faces g
(0)
s with constrained nonlinear optimization

g(0)
s = argmin

gs

∥

∥

∥β(0)W− (A(0) ◦ B(0)) ∗ T (gd, gs,γ
(0))
∥

∥

∥

2

s.t., gd < gs < 1 . (12)

This optimization can be easily solved by using the inter-

nal point method since the objective function is a nonlinear

function of a scalar gs with linear constraints.

In the alternating minimization for surface wetness and

color recovery, we iteratively optimize the following four

sub-problems. Here, we explain the i-th iteration in the op-

timization. First, we optimize and update the degree of wet-

ness γ using u(i−1),r
(i−1)

0
, β(i−1) and g

(i−1)
s by solving

γ(i)
= argmin

γ

∥

∥

∥β(i−1)W− (A(i−1) ◦ B(i−1)) ∗ T (gd, g
(i−1)
s ,γ)

∥

∥

∥

2

s.t., 0 ≤ γm ≤ 1 (m = 1, ...,M) . (13)

This optimization can also be easily solved using gradient

descent.

Second, we update the multispectral absorption coeffi-

cient u and the mean path length r0 using β(i−1), γ(i), and

g
(i−1)
s by solving

{u(i), r
(i)

0
}

=argmin
u, r0

∥

∥

∥β(i−1)W−(A(u, r0) ◦ B(v, r0)∗T (gd, g
(i−1)
s ,γ(i))

∥

∥

∥

2

s.t., 0 ≤ uk (k = 1, ...,K)

0 < γm ≤ 1 (m = 1, ...,M) , (14)

where tensors A(i),B(i) are updated using the updated pa-

rameters u(i) and r
(i)

0
.

Third, we update the gain β(i) using the other variables

based on Equation 11. Fourth, we also update the saturated

scattering parameter g
(i)
s using the other variables based on

Equation 12. These four steps are iterated until conver-

gence. After convergence, the final estimates u, γ, r0, gs

are obtained, and tensors A, B, and T can be analytically

computed from these estimates.
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Figure 3: Relation between surface weight and estimated

degree of wetness γ during drying of wet cotton, gauze, felt,

sand, and leather with several colors, where the horizontal

axis is γ, and the vertical axis is weight (g).

cotton gauze felt sand leather all

Ave 0.980 0.977 0.975 0.954 0.980 0.974

Std 0.006 0.024 0.010 0.032 0.002 0.016

Table 1: Correlation coefficients between weight and wet-

ness for each material.

4. Experimental Results

We quantitatively evaluate the accuracy of our model and

surface wetness and color recovery method with a compre-

hensive set of real surfaces. In addition to single colored

surfaces, we also demonstrate the application to textured

surfaces. In these experiments, we use water as the liquid,

but the model and method can be applied to any liquid.

4.1. Surface Wetness

Quantitative evaluation of the estimated degree of wet-

ness, either at a single point or its spatial distribution over

a surface, is challenging as there is no simple way to

measure the ground truth. To quantitatively evaluate our

method’s accuracy with a controlled setup, we assume that

the amount of water we dropped on a surface point would be

directly proportional to the degree of wetness at that point.

This allows us to evaluate the accuracy of the model by

comparing the amount of water we drop and the recovered

surface wetness. We evaluate this by observing and apply-

ing our method to a single surface point.

To generate dry and saturated pixels for a single surface

point, which are necessary for our recovery method, we first

saturate the surface by dropping a certain amount of wa-

ter precisely measured with a pipette. Next, the weight of

the surface is measured which directly reflects the amount

of water absorbed in it, and a multispectral observation is

captured with a spectrometer at the surface point. This is

iterated several times as the surface dries. The degree of

wetness is estimated for each instance using our method.

This experimental process was applied to surfaces with

various homogeneous materials (cotton, gauze, felt, sand,

and brick) and colors (white, red, green, blue, blue-green,

(a) Input

0

0.2

0.4

0.6

0.8

1

(b) γ map

Figure 4: Example of recovered spatial distribution of wet-

ness. Letters “H2O” were drawn on a blue-green cotton sur-

face with water. Our method recovers the surface wetness

which clearly captures the spatial distribution correspond-

ing to those letters.

and yellow-green). A wide band white LED was used for

illumination, and the incident light was perpendicular to the

surface. The illumination and spectrometer were fixed at

the same position for all experiments.

Figure 3 shows the relation between the weight (vertical)

and the estimated degree of wetness (horizontal). Table 1

shows the average and standard deviation of the correlation

coefficient between measured weight and estimated surface

wetness γ for each material. In these results, all correlation

coefficients take on high values (over 0.95) indicating that

the weight and wetness are linearly correlated. This shows

that the method accurately estimates the degree of wetness.

4.2. Spatial Distribution of Surface Wetness

Next, we evaluate the recovery accuracy of the spatial

distribution of surface wetness. As we cannot measure the

ground truth wetness distribution, we qualitatively assess

the accuracy. We captured multispectral images with a mul-

tispectral camera (EBA Japan NH-8) whose spatial resolu-

tion is 1280×1024 pixels and spectral resolution is 5nm in

the range from 400nm to 950nm. We used a standard white

reference to calibrate the response function of the camera

and the spectral distribution of the illumination.

We applied our method to a single multispectral image of

a cotton bluegreen surface with the characters “H2O” drawn

with water (Figure 4(a)). Figure 4(b) shows the recovered

spatial distribution of wetness. We can clearly read the let-

ters in the estimated wetness as the recovered γ map accu-

rately reflects the high contrast degree of wetness induced

by the water drawing.

Figure 5 shows detailed results of recovering the param-

eters of our model from a single multispectral image for a

number of real surfaces: green felt, blue felt, red cotton,

green cotton, and blue gauze. Figures in column (a) show

the input multispectral images visualized in RGB. Figures

in (b) show the estimated spatial distributions of surface

wetness (i.e., the γ map). We can see that the recovered

γ maps agree well with the wetness we see in the input

images. These results suggest that our method accurately

3972



(i)

Input

0

Gamma map

0.5

ga
m

m
a

1

0

0.5

1
Intensity and Wetness

Intensity (normalized)
Wetness (gamma)
Inverse of intensity

400

600

800

w
av

el
en

gt
h 

[n
m

]

00.5

Mtrl ab A matrix

400

600

800

w
av

el
en

gt
h 

[n
m

]

00.04

Wtr ab r:0.309 B matrix

200 400 600
Number of scattering

400 600 800
wavelength [nm]

0

0.2

0.4

0.6

0.8

1

1.2
Input and Estimated (normalized)

Input-dry
Input-sat
Estimated-dry
Estimated-sat

x1 x2 x1 x2

(ii)
0

0.5

1

0

0.2

0.4

0.6

0.8

1
Intensity and Wetness 400

600

800

01

Mtrl ab A matrix

400

600

800

00.04

Wtr ab r:0.348 B matrix

200 400 600 400 600 800
0

0.2

0.4

0.6

0.8

1
Input and Estimated (normalized)

(iii)
0

0.5

1

0

0.2

0.4

0.6

0.8

1
Intensity and Wetness 400

600

800

00.2

Mtrl ab A matrix

400

600

800

00.04

Wtr ab r:1 B matrix

200 400 600 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2
Input and Estimated (normalized)

(iv)
0

0.5

1

0

0.2

0.4

0.6

0.8

1
Intensity and Wetness 400

600

800

00.2

Mtrl ab A matrix

400

600

800

00.04

Wtr ab r:0.74 B matrix

200 400 600 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

Input and Estimated (normalized)

(v)
0

0.5

1

0

0.2

0.4

0.6

0.8

1
Intensity and Wetness 400

600

800

024

Mtrl ab A matrix

400

600

800

00.04

Wtr ab r:0.257 B matrix

200 400 600 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

Input and Estimated (normalized)

(a) (b) (c) (d) (e)

Figure 5: Experimental results of surface wetness and color recovery for various real-world surfaces: felt-green, felt-blue,

cotton-red, cotton-green, and gauze-blue. (a) Input image. (b) A 3D γ map showing the spatial distribution of the degree

of wetness. (c) Graphs for intensity (red), γw (blue) along the black line of (a), and the inverse intensity (magenta). (d)

Visualization of recovered dry spectral distribution matrix A (upper) and multiple scattering liquid (water) absorption matrix

B (bottom), where the plots on the left show the spectral distributions for single scattering (i.e., first column of the matrices).

(e) Comparison of the input multispectral distribution and the recovered distribution using estimated model parameters for

dry and saturated surfaces, where the horizontal axis is the wavelength and vertical axis is the magnitude.
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(i)

(ii)

(iii)

(a) (b) (c)

Figure 6: Wetness (b) and surface texture (c) recovered from

a single image of wet textured surfaces (a). The recovered

spatial wetness and dry texture (albedo) agree well with

what we would expect from the input image. The blue area

in (iii) is made of material that is more resistant to water.

recovers the surface wetness.

In addition to recovering wetness, our approach can es-

timate the original surface color (dry spectral distribution)

including the absorption and scattering parameters in the

optimization. Figure 5(c) shows the distribution of the in-

tensity and the estimated scattering parameter γw of surface

points taken along the black line in (a), where the horizon-

tal axis indicates spatial x coordinates along the black line,

and the vertical axis represents the observed intensity and

g. We clearly see that when the intensity increases, gw de-

creases. Our results describe the well-known darkening of

wet surfaces, and the scattering parameter of dry surfaces is

smaller than that of wet surfaces.

Note that the surface wetness is not merely a simple in-

version of the observed image intensity. To empirically val-

idate this important point, we plotted the inverse intensity

along a cross section shown in the input image for the first

surface. As Figure 5(i-c) clearly shows, the surface wetness

is indeed different from the inverted input intensity.

Figure 5(d) shows the changes in absorption coefficients

of dry surfaces (i.e., matrix A) at the top and those of wet

surfaces (i.e., matrix B) at the bottom after multiple scatter-

ing. Here the vertical axis represents the sampled wave-

lengths and the horizontal axis represents the number of

scattering n. We also show the first-order absorption co-

efficients (i.e., single scattering) corresponding to the first

column of A and B on the left side of the graphs. In these

graphs, we can clearly see that multispectral absorption be-

comes sharper after multiple scattering. This shows that

our model successfully explains the spectral sharpening and

contrast increased color of wet surfaces.

Figure 5(e) shows a comparison of the multispectral dis-

tribution of dry (blue) and saturated (red) surfaces of the

input data (dot line) and its estimated value (solid line)

computed as ABT using the estimated model parameters,

where the horizontal axis represents the wavelength and the

vertical axis is the intensity observed at each wavelength.

Our estimate is very similar to ground truth, which shows

that our model can successfully recover the color of dry and

saturated surfaces.

4.3. Wet Textured Surfaces

Next, we apply our method to recover the spatial wetness

distribution and surface texture (albedo) from a single mul-

tispectral image of a wet textured surface. We assume that

we can pre-segment the image into single-colored surface

regions and apply our model to each region independently.

For this, we first classify pixels based on the color using

k-means clustering. Since pixels lying on the boundary of

different colored regions may not strictly obey our model,

we exclude them from the calculation of model parameters.

The method is then applied to each colored region sepa-

rately to recover the spatial wetness and underlying spec-

tral distribution (albedo) and these values are interpolated

across the region boundaries.

Figure 6(a) shows input images for several wet textured

surfaces. Figure 6(b) shows the estimated spatial distribu-

tion of wetness and Figure 6(c) shows the recovered surface

texture. In all these results, the wetness maps and surface

texture appear to match what we would expect from the in-

put images.

5. Conclusion

In this paper, we derived a spectral appearance model of

wet surfaces that explicitly relates the degree of wetness to

surface appearance. Our model explains the two fundamen-

tal characteristics of wet surface appearance: darkening and

spectral sharpening. Based on this model, we introduced

a method for recovering the spatial distribution of wetness

and the dry color from a single multispectral image of a wet

surface. Experimental results using various real-world sur-

faces validate the accuracy of our model. We believe our

model and method provide a sound foundation for lever-

aging visual cues embedded in wet surfaces and open new

avenues of research towards visual analysis of surface con-

ditions.
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