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Abstract

3D shape models are naturally parameterized using ver-

tices and faces, i.e., composed of polygons forming a sur-

face. However, current 3D learning paradigms for predic-

tive and generative tasks using convolutional neural net-

works focus on a voxelized representation of the object.

Lifting convolution operators from the traditional 2D to

3D results in high computational overhead with little ad-

ditional benefit as most of the geometry information is con-

tained on the surface boundary. Here we study the prob-

lem of directly generating the 3D shape surface of rigid

and non-rigid shapes using deep convolutional neural net-

works. We develop a procedure to create consistent ‘geom-

etry images’ representing the shape surface of a category

of 3D objects. We then use this consistent representation

for category-specific shape surface generation from a para-

metric representation or an image by developing novel ex-

tensions of deep residual networks for the task of geometry

image generation. Our experiments indicate that our net-

work learns a meaningful representation of shape surfaces

allowing it to interpolate between shape orientations and

poses, invent new shape surfaces and reconstruct 3D shape

surfaces from previously unseen images. Our code is avail-

able at https://github.com/sinhayan/surfnet.

1. Introduction

The advent of virtual and augmented reality technologies

along with the democratization of 3D printers has made it

imperative to develop generative techniques for 3D content.

Deep neural networks have shown promise for such gener-

ative modeling of 2D images [2, 9, 24]. Using similar tech-

niques for creating high quality 3D content is at its infancy,

especially because of the computational burden introduced

by the 3rd extra dimension [8, 10, 36]. Recent works in

deep learning for 3D have argued for the redundancy of the

3rd extra dimension as almost all of 3D shape information

is contained on the surface. The authors of field probing

neural networks [18] address the sparse occupancy of voxel

representations by developing adaptive 3D filters to reduce

Figure 1. (a) 3D shape surface interpolation between original (left)

and final (right) surface models with realistic intermediate styles

is made possible by our generative deep neural network. (b) 3D

rigid (or man-made) surface reconstruction from a RGB image,

and (c) 3D non-rigid surface reconstruction from a depth image.

The surfaces are constructed with implicit viewpoint estimation.

the cubic learning complexity. Following a similar argu-

ment, Sinha et al. propose to learn a 2D geometry image

representation of 3D shape surfaces to mitigate the compu-

tational overhead of the 3rd extra dimension [28].

Here, we adopt the geometry image representation for

generative modeling of 3D shape surfaces. Naively creat-

ing independent geometry images for a shape category and

feeding them into deep neural networks fails to generate co-

herent 3D shape surfaces. Our primary contributions are:

(1) A procedure to create consistent and robust geometry

images for genus-0 surfaces across a shape category invari-

ant to cuts and the intermediate spherical parametrization

by solving a large scale correspondence problem, and (2)

extending deep residual networks to automatically generate

geometry images encoding the x, y, z surface coordinates

with implicit pose estimation and preservation of high fre-

quency features for rigid as well as non-rigid shape cate-

gories. We demonstrate that neural networks trained using

images or a parametric representation as inputs, and geom-

etry images as outputs possess the ability to generate shape

surfaces for unseen images, intermediate shape poses and

interpolate between shape surfaces as shown in figure 1.

Our paper is organized as follows. Section 2 discusses rel-

evant work. Section 3 discusses the geometry image cre-

ation. Section 4 discusses the neural network architecture.

Section 5 shows the result of our method, and section 6 dis-

cusses limitations and future work.
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2. Related Work

Creating 3D content is an important problem in com-

puter vision. Early works focussed on coherent synthesis of

3D primitives and surface patches [3]. Recent approaches

for assembly-based 3D shape creation from components use

probabilistic models [5, 15], or deep-learned models [13].

Estimates of wireframe for 3D objects are obtained by a 3D

geometric object class model in [39]. Kar et al. learn a de-

formable 3D model for shape reconstruction from a single

image [16]. Huang et al. show that joint analysis of image

and shape collection enables 3D shape reconstruction from

a single image [13].

The success of deep learning architectures for generat-

ing images [2, 9] has resulted in extension of these tech-

niques to generate models of 3D shapes. The authors of

3D ShapeNets [37] perform pioneering work on using deep

neural nets for 3D shape recognition and completion. Gird-

har et al. [10] learn a vector representation for 3D objects

using images and CAD objects which are used for gen-

erating 3D shapes from an image. A volumetric denois-

ing auto-encoder is demonstrated for 3D shape completion

from noisy inputs in [26]. Choy et al. propose a 3D re-

current reconstruction neural network for 3D shape cre-

ation from single or multiple images [8]. A probabilistic

latent space of 3D shapes is learnt by extending generative-

adversarial model of [9] to the 3D domain in [36]. All these

deep learning methods use 3D voxel representation for gen-

erating the 3D shapes. A conditional generative model is

proposed in [25] to infer 3D representation from 2D im-

ages. Although, this method can generate both 3D voxels

or meshes, the mesh representation is limited to standard

parameterizations which restrict shape variability. A 3D in-

terpreter network is developed in [35] which estimates the

3D skeleton of a shape.

Different from all above approaches, our thrust is to gen-

erate category-specific 3D point clouds representative of a

surface instead of voxels to represent 3D objects. Our work

is motivated by geometry image [11] representation used for

learning 3D shapes surfaces in [28]. Our neural network ar-

chitecture is inspired by deep residual nets [12] which have

achieved impressive results on image recognition tasks, and

by the architectural considerations in [1] to generate chairs.

3. Dataset Creation

Our method to generate 3D shapes surfaces relies on a

geometry image representation, i.e. a remesh of an arbitrary

surface onto a completely regular grid structure (see [11]

and supplement). Here, we consider car and airplanes to

be prototypical examples of rigid, and the hand to be an

example of a non-rigid shape. We detail the procedure to

generate the geometry images and RGB or depth images

required to train the 3D surface generating neural network.

Figure 2. (a) Hand mesh model. (b, d) Depth images rendered for

different hand articulations. (c, e) Corresponding 3D surface plot

of geometry images encoding the x, y, z coordinates.

3.1. Non-rigid shapes

We use a kinematic hand model with 18 degrees of free-

dom (DOF), represented as H(ω), as standard in hand pose

estimation literature [29]. Here, ω denotes the set of 18

joint angle parameters. We generate synthetic depth maps

by uniformly sampling each of the 18 joint parameters in the

configuration space under dynamic and range constraints

for joint angles. All hand mesh models contain 1065 ver-

tices and 2126 faces wherein each vertex corresponds to the

same point on the hand model, and the vertices have the

same connectivity structure across all mesh models. The

dataset covers a wide range of hand articulations from vari-

ous viewpoints due to the 3 wrist rotation angles.

We generate 200,000 mesh files and store the 18 param-

eters, the 1065 vertex coordinates and the corresponding

depth images. All depth images are normalized, cropped

and resized such that the pixel with lowest depth has max-

imum intensity of 255, the hand is centered and the im-

ages are of size 128 × 128. Next, a randomly chosen mesh

model is authalically and spherically parameterized using

the method of [28]. Authalic spherical parametrization pre-

serves the protruded features such as the fingers because the

triangles on the original mesh model preserve their area on

the derived parametrization. This spherical parametrization

is converted to a flat and regular geometry image by first

projecting onto an octahedron and then cutting it along 4

of its 8 edges (see [23]). Geometry images can be encoded

with any suitable feature of the surface mesh model such

as curvature or shape signatures [30] (also see supplement).

As we are interested in reconstructing the 3D surface, all

our geometry images are encoded with the x, y, z values

of points on the mesh model. These images are efficiently

computed using the spherical parametrization of a single

mesh model as all points across hand mesh models naturally

correspond to each other. The geometry image of all meshes

are of dimension 64×64×3 corresponding to approximately

≈ 4000 points area sampled on the hand. Methods for non-

rigid shape correspondence such as [6, 19, 34] can be used

to develop dense one-to-one correspondence between mesh

models when the correspondence information is unavail-

able. Figure 2 shows the mesh model, the rendered depth

images and the 3D surface plots of 64 × 64 × 3 geometry

image. Figure 3 shows the variation of geometry images

encoding x, y, z coordinates for two different hand articu-
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Figure 3. Variation of geometry image due to hand articulation.

The columns correspond to x, y, z-coordinate geometry image,

and the encoded 3D plot by the geometry image, respectively.

lations. Observe that as the hand rotates, the intensities at

the same spatial location in the geometry image of the y

coordinate, y1 and y2, are negatively correlated.

3.2. Rigid or man-made shapes

We create data for cars and aeroplanes mesh models from

the ShapeNet database [4] to feed into our neural network

architecture. We discuss the preprocessing steps and the

correspondence development to create robust geometry im-

age data for these synsets.

Preprocessing: There are two constraints for the spherical

parametrization technique of [28] to work on a mesh model.

First, the surface mesh needs to follow the Euler characteris-

tic. Almost all mesh models in ShapeNet do not follow the

Euler characteristic, and hence, we first voxelize all mesh

models at resolution 128× 128× 128, and then create a α-

shape at α-radius
√
3. This α-radius preserves the holes and

sharp edges in the derived surface mesh from the voxelized

model. The surface mesh now follows the Euler charac-

teristic after this preprocessing step. The second constraint

for spherical parametrization is that the surface should be

genus-0. We can use the heuristic proposed in [28] to gen-

erate non genus-0 surfaces by creating a topological mask

in addition to the x, y, z geometry images. However, for the

sake of simplicity we remove all mesh models derived from

the α-shape criterion with non-zero genus. We smooth the

remaining mesh models using Laplacian smoothing to re-

move discretization errors.

Correspondence: A naive strategy to create geometry im-

age of x, y, z coordinates on surface mesh models is to in-

dependently perform authalic spherical parametrization for

all mesh models in a synset and then use these indepen-

dent parameterizations to create a geometry image (details

in supplement). However, such an approach suffers from

severe limitations during learning with convolutional neu-

ral networks as: (1) The spherical parametrization is de-

rived from area flow and cuts are defined a posteriori to

the parametrization. Different cuts will lead to different ge-

ometry images related by rotations and translations. This

is displayed in figure 4 for two airplane models registered

Figure 4. Geometry images created by (1)independent

parametrization of the two airplane models, and (2) By de-

veloping correspondence between the airplane meshes.

Figure 5. Base and auxiliary shapes for the car and airplane models

found by shape clustering.

in the same pose. Independent parametrization results in

the geometry images of the x coordinate to be rotationally

related. A generative neural network outputs a geometry

image and gets confused when the cuts, and hence, the re-

sulting geometry image for a shape in the same pose are

different. This is similar to tasking a neural network to gen-

erate an image of an upright object by showing it several

instances of the object in arbitrary poses without any prior

informing it about the gravity direction. (2) Area preserv-

ing parametrization will result in a component of a shape to

occupy varying number of pixels in a geometry image for

different shapes in the same class, for e.g., an aircraft with

large wings will have more pixels dedicated to the wing in

a geometry image as compared to one with small wings.

The neural network will have to explicitly learn attention

to a component of a shape and normalize it in order to off-

set this bias. Our experiments with feeding independently

parameterized shapes into a neural network for shape gen-

eration led to poor results. These problems with geometry

images generated by independent parametrization of shapes

in a class are resolved by performing parametrization for a

single shape in a class, and establishing correspondence of

all other shapes to this base shape. Figure 4 shows that the

pixel intensities are correlated in the geometry images of

the x coordinate after establishing correspondence between

two airplane models. The surface cuts highlighted in red

follow the same contour unlike the independent case.

Establishing robust dense correspondence of surface

meshes with high intra-class variability to a single mesh

model is a hard problem. We resolve this problem by estab-

lishing dense correspondence of a shape to a few exemplar
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Figure 6. We develop correspondences between mesh model and

exemplar shapes to create consistent geometry images. The geom-

etry image created using correspondences between central mesh

model and axillary shape on top right shows best surface recon-

struction lower than a threshold error, and subsequently used for

training the neural network.

shapes in a class as follows. First, we create a shape similar-

ity matrix using the distance between D2 descriptors [22] of

shapes in a class. Next, we perform spectral clustering [20]

on the shape similarity matrix with K = 3. The shapes

closest to the cluster centroids are chosen as exemplars, and

the cluster with maximum number of shapes is chosen as

the base shape, B. The other two shapes serve as auxiliary

shapes, A. Figure 5 shows the base and auxiliary shapes

for the car and airplane synsets. We use blended intrin-

sic maps [17] to establish dense correspondence between a

mesh model, M and the three exemplar shapes. Dense cor-

respondence between the base shape and the mesh model

under consideration can be obtained directly M 7→ B or

indirectly as M 7→ A 7→ B by transferring correspondence

information through an intermediate auxiliary shape using

blended intrinsic maps as shown in figure 6. Effectively, all

shapes are mapped to B while allowing greater intra-class

flexibility for correspondence due to the auxiliary shapes.

We perform spherical parametrization of the base mesh, B,

and use the correspondence information to create a geom-

etry image of the mesh model, M (see figure 6). We mea-

sure point-wise distances of surface points encoded in the

geometry image to the original mesh model, and remove all

models with average distance greater than a threshold. We

are left with 691 car models and 1490 airplane models af-

ter dropping mesh models which have poor reconstruction

using its geometry image evaluated as average distance.

RGB images are rendered using Blender following the

approach of [31] without background overlay. We consider

4 elevation angles [0, 15, 30, 45] and 24 azimuth angles in

the range of 0 to 360 in intervals of 15. The corresponding

geometry image is created by rotating the shape for the val-

ues of azimuth and elevation angles. Figure 7 shows a few

Figure 7. Examples of rendered RGB images and corresponding

surface plots encoded in the geometry images.

samples of the rendered images and corresponding geome-

try image. The images are of size 128 × 128 × 3 and all

geometry images are of size 64× 64× 3 encoding x, y, z.

4. Deep Network Architecture

We discuss the network architecture for rigid and non-

rigid shapes for 2 scenarios: (1) Reconstructing 3D shape

surface from a single image. (2) Generative modeling of

3D shape surface from a parametric representation.

4.1. Reconstructing 3D surface from an image

Inspired by the recent success of deep residual nets [12]

for image classification, we propose an extension of deep

residual nets for image (here geometry image) generation.

Figure 8 left shows the network architecture for creating

a feature channel of the geometry image. It is comprised

of standard convolutions, the up-residual and down-residual

blocks. The up and the down residual blocks increase and

decrease the output size, respectively, and their composition

is shown in figure 8 right. The up-residual block is com-

posed of residual upsampling block followed by two stan-

dard residual blocks, whereas the down-residual block is

composed of residual downsampling block followed by two

standard residual blocks. The difference between the resid-

ual downsampling and upsampling blocks is that the first

filter in the downsampling block is a convolution of size

3 × 3, 1-padded with zeros and stride 2, whereas the first

filter in the upsampling block is an convolution transpose

(sometimes called deconvolution) of size 2 × 2, 0-cropped

and upsample 2. The solid side arrow in the standard resid-

ual block is a shortcut connection performing identity map-

ping. The dotted arrows in the up and down residual blocks

are projection connections done using 2 × 2 convolution

transpose and 1 × 1 convolution filters, respectively. All

convolution filters are of size 3 × 3. The input for the non-

rigid database is a 128×128 depth image, whereas the input

for the rigid database is a 128 × 128 × 3 RGB image. We

tried directly generating all three x, y, z feature channels of

a geometry image using a single network and Euclidean loss

between the network output and geometry image. How-

ever, the error of this network increases for a few epochs

and then plateaus. This pattern persisted even after increas-

ing the number of filters in the penultimate residual blocks
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Figure 8. Left: Architecture for generating a geometry image feature channel from an image. Right: The up (red) and down (green) residual

building blocks of our network architecture composed of upsampling, downsampling and standard residual blocks shown in center.

Figure 9. Network architecture for generating a geometry image

feature channel for rigid shapes from a one hot-encoded class label

and view angle (in analogy to pose) parameters.

before the output. Visually checking the output geometry

images revealed that the network learnt a mean shape for

a category. Instead, we learn each feature channel sepa-

rately using three separate networks of the form shown in

figure 8 as each network devotes it entire learning capac-

ity to learn either the x, y or z geometry image. The error

of these networks generating a single feature channel de-

creased smoothly over epochs.

Our next observation was that the network smoothed

sharp edges especially in rigid datasets. So we employ a

shape aware loss function of the form:

min
∑

(i,θ)

‖ |Ci|.(up(I
i(θ))− gip(θ)) ‖22 (1)

Here the minimization of weights in the neural network is

over all training samples and configurations, up is the output

of the neural network learning feature p with input Ii(θ), i
indicates the sample number, θ comprises the azimuth and

elevation angles, gip(θ) is the geometry image correspond-

ing to feature p, sample i and angles θ. Ci is the geometry

image of point-wise mean curvature for sample i. Ci places

higher weights on high curvature regions during learning

and helps preserve sharp edges during reconstruction. We

employ the same loss function for the non-rigid dataset.

4.2. 3D surface from a parametric representation

We invert a residual network to generate 3D shape sur-

faces from a parametric representation. The parametric rep-

resentation for the non-rigid hand is the 18 dimensional

joint-angle vector, H(ω). The parametric representation for

the rigid datasets are two vectors: (1) c-a class label in one-

hot encoding, (2) θ- the azimuth and elevation view angles

encoding shape orientation (each represented by their sine

and cosine to enforce periodicity). Figure 9 shows the archi-

tecture for generating a geometry image for a single feature

channel from a parametric representation for a rigid object.

The architecture for the non-rigid hand is similar except

without the view parameters and concatenation layer. The

network comprises of up-residual blocks as described previ-

ously, and standard convolution and convolution transpose

filters. The first two layers are fully connected. We again

use separate networks to learn the x, y, z geometry image.

We use the shape-aware loss function as described previ-

ously for independently generating the x, y, z-coordinate

geometry image, and the hand surface is obtained by con-

catenating the three images into a single 64 × 64 × 3 ge-

ometry image. Figure 10 shows the pipeline for generating

surface plots for the rigid datasets, and has a key difference

to all other networks. As we have explicit control over the θ

parameters, we can generate a base shape with appropriate

transformations due to θ. In the spirit of residual networks,

we generate a residual geometry image using the architec-

ture shown in figure 9, and the final shape is derived by

summing the residual geometry image of the x, y, z coordi-

nates to the geometry image of the base shape. We observed

that learning residual geometry images led to faster conver-

gence and better preservation of the high frequency features

of the shape. We cannot perform residual learning on the

hand as the global rotations due to the wrist angles are con-

tinuous, and not discretized in azimuth and elevation. We

cannot perform residual learning on rigid shapes generated

from an image as the θ parameters are implicit in RGB im-

age.
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Figure 10. Pipeline for generating a surface plot of a rigid shape

from class and view parameters by summing the residual geometry

image of x, y, z coordinates to the base geometry image.

Figure 11. Results on test dataset for reconstructing the 3D shape

surface of the hand from a single depth image. The first row is the

depth image, the second row is the ground truth and the third row

is our reconstruction.

4.3. Training details

We train our networks using MatConvNet and a Nvidia

GTX 1080 GPU. The learning rate was 0.01 and we de-

creased the learning rate by a factor of 10 after every 5

epochs. We trained the 3D reconstruction neural networks

from a single image with 102 layers for 20 epochs, and the

generative networks from a parametric representation with

65 layers for 15 epochs. The momentum was fixed at 0.9.

All rectified linear units (ReLU) in up-residual blocks had

leak 0.2. We experimented with geometry images of resolu-

tion 128×128 (instead of 64×64) and found no difficulties

in learning, albeit at a larger training time. We used 80%

of the 200,000 hand models, 691 car models and 1490 air-

plane models for training and the rest were used for testing

reconstruction from a single image. We manually pruned

the rigid models to remove near-duplicate shapes and were

left with 484 car models and 737 airplane models, all of

which were used for training the generative models from a

one-hot encoded vector.

5. Experiments

In this section, we first discuss generating 3D shape sur-

faces for the non-rigid hand model and then perform exper-

iments on generating 3D shape surfaces for the rigid aero-

plane and car datasets. We generate surfaces using a para-

metric representation and from an image.

Figure 12. Each row shows the 3D surface plots of geometry im-

ages created by our neural network by inputting uniformly spaced

parametric joint angle vectors.

5.1. Non-rigid shapes

Figure 11 shows few 3D surface plots of the generated

geometry image by our neural networks on the test depth

images. We see that it is able to recover the full articulation

of the hand very close to the ground truth even in the pres-

ence of occlusion. For example, the middle finger is well

approximated from the depth image in the second test case

although it suffers from high occlusion. We also note that

although we trained separate neural networks for generating

the x, y, z geometry image, the combined result shows good

fidelity in terms of spatial localization. The supplement dis-

cusses quantitative evaluation on test datasets. These re-

sults are encouraging for hand tracking applications using a

depth camera. Unlike standard methods which estimate the

joint angle [7, 29] or joint position parameters [27, 32, 33],

we reconstruct the full 3D surface. Our approach has the po-

tential to go beyond pose estimation and even map individ-

ual hand textures (using a texture geometry image) to pro-

vide an immersive experience in virtual and augmented re-

ality applications, which we wish to explore in future work.

Next, we perform experiments on generative modeling

of non-rigid shape surfaces from a parametric representa-

tion. We consider two cases. First, we create two random

15-dimensional vectors for the local joint angles, and fix the

3 global wrist angles. We then linearly interpolate each di-

mension of the 15-dimensional vector from the first to the

second random value, and sample values at equal intervals.

The first two rows of figure 12 show the output 3D sur-

face plots by inputting these interpolated joint angle vec-

tors. We see that there is a smooth transition from the first

pose to the second pose indicating that the neural network

did not merely memorize the parametric representation, but

instead discovered a meaningful abstraction of the hand sur-

face. Second, we create two random 18 dimensional vec-

tors, and uniformly sampled from the linearly interpolated

joint-angle values from the first to the second vector. The

third row of figure 12 shows the output 3D surface plots for

this setting. Again, we observe the same phenomenon of

natural transition from the first to the second pose.
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Figure 13. 3D reconstruction of rigid surfaces from a single RGB image. (a) Results on test dataset for reconstructing the 3D shape surface

of cars (top) and airplanes (bottom) from a single RGB image. The first row is the depth image, the second row is the ground truth and

the third row is our reconstruction for both categories. (b,c) Comparing our method to [16] on the PASCAL 3D+ car (b) and aeroplane (c)

dataset. We show the regressed viewpoint and an alternate viewpoint, for each 3D reconstruction to better reveal the quality of the methods.

5.2. Rigid or man-made shapes

3D surface reconstruction from a single image: Figure

13(a) shows 3D surface plots of the generated geometry

image by our neural networks on the test RGB images of

the car and aeroplane respectively. We see that our neural

network is able to correctly estimate both the viewpoint as

well as the 3D shape surface from the RGB image for di-

verse types of cars and aeroplanes. Current deep learning

methods are able to estimate either the viewpoint [31], or

reconstruct pose-oblivious 3D objects [8, 10, 36] from an

image, but not both. With the ability to directly regress the

surface to the appropriate pose, our work serves as a promis-

ing step towards fully automatic 3D scene reconstruction

and completion. We observe in figure 13(a) that the recon-

structed surface preserves sharp object edges, however has

trouble enforcing smoothness on flat regions such as the

windshield of the cars. We hypothesize that this is due to

independent generation of feature channels and can be re-

moved by simple post-processing. We also observed that

the neural network had difficulty reconstructing cars with

low intensity features such as black stripes as it was un-

intelligible from the background. We see that the tails of

aeroplanes in figure 13(a) are faithfully reconstructed even

though the tails in the ground truth are noisy or incomplete

due to poor correspondence. This is because the neural net-

work learns a meaningful representation of the 3D shape

category. The supplementary material provides additional

quantitative and qualitative results on the test dataset. We

also ran our learnt networks on the airplane and car cat-

egories of the PASCAL 3D+ [38] dataset and qualitatively

compare it with the method of [16]. We cropped and resized

the images using the ground truth segmentation mask and

fed them into our networks. In addition to the segmentation

mask, we allowed the Kar et al. method to have keypoint

labels. Note that our method only outputs the point coordi-

nates of the surface and not the full mesh. Figure 13(b,c)

shows that our method is able to reconstruct the car and

airplane surfaces with good accuracy with small artifacts

near the geometry image boundary, whereas the Kar et al.

method has trouble discriminating between hatchbacks and

sedans, and the spatial extent of wings even with keypoint

labels. However, our network failed to output coherent 3D

reconstruction results on some images. These were mostly

images with low contrast, poor texture or views beyond our

training ranges of azimuth and elevation angles.

3D surface generation from a one hot encoding: We dis-

cuss the advantage of creating residual geometry image ap-

proach instead of a direct image in terms of reconstruction

error in the supplement. We first keep a constant one hot en-

coding and vary the training set size in terms of the azimuth

angle. Figure 14 shows the results of interpolating 3d shape

surfaces between azimuth angles wherein for each row, the

highlighted shapes are in the training set and the remaining

unseen 3D shape poses are generated by the deep residual

network. This capability of the network to generate unseen

intermediate poses reflects that the network internally learns

a representation of 3D shape surfaces. This is further vali-

dated by linearly varying the one-hot encoded vector from

one shape surface to another shape surface in addition to

the azimuth angle, and the result is shown in the last row of

figure 14. We see that the network generates realistic inter-

mediate surfaces in addition to varying the azimuth angle.

We further experiment the phenomenon of 3D surface

interpolation between two shape surfaces in figure 15(a,b).

Each row shows morphing between two shape surfaces

wherein the first and the last shapes are 3D surface re-

constructions by the neural network for two different one-

hot encoded vectors and the intermediate 3 shape surfaces

are generated by inputting values [0.75,0.25], [0.5,0.5],

[0.25,0.75] corresponding to the active codes in the vector.

In figure 15(a) we see that the shape surface varies smoothly

between a convertible and a pickup truck (1st row), a sports

car and a SUV (2nd row), and a van and a jeep (5th row) all

while generating realistic intermediate car body styles. We
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Figure 14. Examples of interpolation of shape surfaces between azimuth angles. The highlighted shapes are in the training set.

Figure 15. (a,b) Shape surface interpolation, one morphing for each row, between the original model (left) and final model (right). (c)

Rectifying correspondence information using our deep neural network architecture for 3D surface reconstruction from an image.

observe the similar results when we linearly interpolate be-

tween one-hot encoded vectors for two airplane surfaces. In

the first row of figure 15(b) we see that the neural networks

learns a consistent internal representation of airplane wings,

and in the last row the same can be said about the tail. We

expect 3D modelers to benefit from such a generative model

to create new content.

5.3. Correspondence

Developing robust correspondences between a mesh

model and a base mesh is an important step in our pipeline,

but is fraught with challenges especially when the shape cat-

egory has high intra-class variation. We demonstrate that

the internal representation learnt by a deep neural network

can help remove noise from correspondence information

between two surface meshes as follows: (1) Pick a model

with noisy or incorrect correspondence, (2) Render its im-

age from an appropriate angle and feed it into the neural net-

work for reconstructing shape surface from an RGB image.

The output geometry image of point coordinates has one-

to-one correspondence to the geometry image of the base

mesh, which in turn establishes direct correspondences be-

tween the mesh models. This is shown for two models from

the car training set in 15(c). Observe that the point-to-point

correspondence (displayed separately in color for each co-

ordinate) are noisy and non-smooth on the surface of the

base mesh as determined by blended intrinsic maps (BLM).

This noise reduces and the color gradient indicating fidelity

of correspondence smoothes when we use the output of the

deep neural network (DNN) to establish correspondence.

This correction mechanism hints that we can use feedback

from the neural network to rectify noisy correspondences in

the training set and also incorporate additional models for

training a neural network, similar in spirit to [21].

6. Conclusions

We have proposed what may be the first approach to gen-

erate 3D shape surfaces using deep neural networks. One

limitation of our current approach is that it is limited to

genus-0 surfaces which we wish to remove in future work.

We also wish to explore the proposed feedback mechanism

to improve correspondences, or to use more sophisticated

correspondence methods such as [14] to improve and in-

crease the training set size. Developing neural networks

capable of learning multiple shape categories and all fea-

ture channels simultaneously without degradation in perfor-

mance is a promising research direction. We are encour-

aged by the generality of our approach to generate 3D rigid

or man-made objects as well as non-rigid or organic shape

surfaces, and we believe it has potential for generative 3D

modeling and predictive 3D tracking tasks.
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