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Abstract

We introduce a novel approach to jointly estimate con-

sistent depth and normal maps from 4D light fields, with

two main contributions. First, we build a cost volume from

focal stack symmetry. However, in contrast to previous ap-

proaches, we introduce partial focal stacks in order to be

able to robustly deal with occlusions. This idea already

yields significanly better disparity maps. Second, even re-

cent sublabel-accurate methods for multi-label optimization

recover only a piecewise flat disparity map from the cost

volume, with normals pointing mostly towards the image

plane. This renders normal maps recovered from these ap-

proaches unsuitable for potential subsequent applications.

We therefore propose regularization with a novel prior link-

ing depth to normals, and imposing smoothness of the re-

sulting normal field. We then jointly optimize over depth

and normals to achieve estimates for both which surpass

previous work in accuracy on a recent benchmark.

1. Introduction

In light field imaging, robust depth estimation is the lim-

iting factor for a variety of useful applications, such as

super-resolution [30], image-based rendering [22], or light

field editing [13]. More sophisticated models for e.g. in-

trinsic light field decomposition [1] or reflectance estima-

tion [29] often even require accurate surface normals, which

are much more difficult to achieve as the available cues

about them are subtle [29].

Current algorithms, e.g. [16, 18, 28, 5, 14] and many

more cited in the references, work exceedingly well for es-

timating depth from light field images. However, methods

are usually not designed with normal estimation in mind.

Thus, depth estimates from algorithms based on cost vol-

umes, even when optimized with sublabel accuracy [19], are

often piecewise flat and thus fail at predicting accurate nor-

mal maps. Frequently, their accuracy is also naturally lim-

ited around occlusion boundaries [18, 15, 30]. The aim of

Figure 1. We present a novel idea to compute disparity cost vol-

umes which is based on the concept of occlusion-aware focal

stack symmetry. Using the proposed framework, we can optimize

jointly for depth and normals to reconstruct challenging real-world

scenes captured with a Lytro Illum plenoptic camera.

this work is to contribute towards a remedy for these draw-

backs.

Contributions. In this work, we make two main con-

tributions. First, we introduce a novel way to handle

occlusions when constructing cost volumes based on the

idea of focal stack symmetry [18]. This novel data term

achieves substantially more accurate results than the previ-

ous method when a global optimum is computed with sub-

label relaxation [19]. Second, we propose post-processing

using joint regularization of depth and normals, in order to

achieve a smooth normal map which is consistent with the

depth estimate. For this, we employ ideas from Graber et

al. [7] to linearly couple depth and normals, and employ the

relaxation in Zeisl et al. [31] to deal with the non-convexity

of the unit length constraint on the normal map. The result-

ing sub-problems on depth and normal regularization can

be efficiently solved with the primal-dual algorithm in [4].

Our results substantially outperform all previous work that

has been evaluated on the recent benchmark for disparity

estimation on light fields [12] with respect to accuracy of

disparity and normal maps and several other metrics.
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Figure 2. A light field is defined on a 4D volume parametrized by image coordinates (x, y) and view point coordinates (s, t). Epipolar

images (EPIs) are the slices in the sx- or yt-planes depicted to the right and below the center view. By integrating the 4D volume along

different orientations in the epipolar planes (blue and green), one obtains views with different focus planes, see section 3.

2. Background and related work

Methods for disparity estimation from light fields can

roughly be classified according to the underlying repre-

sentation. For this reason, and to fix notation for the up-

coming sections, we will briefly review the most common

parametrizations of a light field while discussing related

methods.

Two-plane representation and subaperture views. In

this work, we consider 4D light fields, which capture the ra-

diance of rays passing through an image plane Ω and focal

plane Π. By fixing view point coordinates (s, t), one obtains

a 2D subaperture image in (x, y)-coordinates as if captured

by an ideal pinhole camera. Matching subaperture images

means doing just multiview stereo, for which there is a mul-

titude of existing methods. Interesting variants specific to

the light field setting construct novel matching scores based

on the availability of a dense set of views [10, 8]. A use-

ful transposed representation considers the projections of

scene points at a certain distance to the image plane into all

subaperture views. The resulting view on the light field is

called an S-CAM [5] or angular patch [28], and it can be sta-

tistically analyzed to obtain disparity cost volumes robust to

occlusion [28] and specular reflections [5].

Epipolar plane images. Analyzing horizontal and verti-

cal slices through the 4D radiance volume, so-called epipo-

lar plane images (EPIs), see figure 2, has been pioneered

in [2]. Subsequently, the ideas have been adapted to dis-

parity estimation in various ways. Proposed methods in-

clude leveraging of the structure tensor [30] or special fil-

ters [26] to estimate the slope of epipolar lines, iterative

epipolar line extraction for better occlusion handling [6],

fine-to-coarse approaches focusing on correct object bound-

aries [16], building patch dictionaries with fixed dispari-

ties [15], or training a convolutional neural network for ori-

entation analysis [9]. EPI lines are employed in [14] for

distortion correction, but they subsequently construct a cost

volume from subaperture view matching.

Focal stack. It is well known that shape can be estimated

accurately from a stack of images focused at different dis-

tances to the camera [20]. Furthermore, a 4D light field can

be easily transformed into such a focal stack, see figure 2, to

apply these ideas to estimate depth. Lin et al. [18] exploit

the fact that slices through the focal stack are symmetric

around the true disparity, see figure 3. Correct occlusion

handling is critical in this approach, and we improve upon

this in section 3 as a main contribution of our work. Authors

of [24, 28] combine stereo and focus cues to arrive at bet-

ter results. In particular, Tao et al. [24] propose confidence

measures to automatically weight the respective contribu-

tions to the cost volumes, which we can also apply as an

additional step to increase resilience to noise, see section 5.

Regularization and optimization. Regardless of how

the disparity cost volume is constructed, more sophisti-

cated methods typically perform optimization of a func-

tional weighting the cost with a regularization term. Key

differences lie in the type of regularization and how a min-

imizer of the cost function is found. Popular optimization

methods include discrete methods like graph cuts [17] or

semi-global matching [11], or continuous methods based on

the lifting idea [21], which was recently extended to achieve

sublabel accuracy [19]. If one wants to obtain the exact

global minimum of cost and regularization term, the class

of regularizers is severely restricted. To become more gen-

eral and also speed up the optimization, coarse-to-fine ap-

proaches are common [7], extending the possible class of

regularizers to sophisticated ones like e.g. total generalized

variation [3]. A recent idea was to construct an efficient

minimal surface regularizer [7] using a linear map between

a reparametrization of depth and the normals scaled by the

local area element. We embrace this idea, but extend it to a

coupled optimization of depth and normal map, in order to

achieve better smoothing of the latter. This will be shown

in section 4.
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3. Occlusion-aware focal stack symmetry

For accurate normal estimation, good depth estimates are

crucial. There are several algorithms exploiting depth cues

available from multiple views and focus information that

can be obtained from light field data. Among the most ro-

bust algorithms with respect to noise is Lin et al.’s [18] cost

volume based on focal stack symmetry. This algorithm is

based on the observation that for planar scenes parallel to

the image plane, focal shifts in either direction from the

ground truth disparity result in the same color values and

that thus there is a symmetry in the focal stack around the

ground truth disparity d. We will briefly review the founda-

tions and then slightly generalize the symmetry property.

Focal stack symmetry [18]. For refocusing of the light

field, one integrates a sheared version of the radiance vol-

ume L over the subaperture views (u, v) weighted with an

aperture filter σ,

ϕp(α) =

∫

Π

σ(v)L(p+ αv,v) dv, (1)

where p = (x, y) denotes a point in the image plane Ω, and

v = (s, t) the focal point of the respective subaperture view.

Without loss of generality, we assume that the center (or ref-

erence) view of the light field has coordinates v = (0, 0).
To further simplify formulas, we omit σ in the following

(one may assume it is subsumed into the measure dv). Fi-

nally, α denotes the disparity of the synthetic focal plane.

Lin et al. [18] observed that under relatively mild con-

ditions, the focal stack is symmetric around the true dispar-

ity d, i.e. ϕp(d + δ) = ϕp(d − δ) for any δ ∈ R. The

conditions are that the scene is Lambertian, as well as lo-

cally constant disparity. In practice, it is sufficient for the

disparity to be slowly varying on surfaces. In their work,

they leverage this observation to define a focus cost as

sϕ
p
(α) =

∫ δmax

0

ρ(ϕp(α+ δ)− ϕp(α− δ)) dδ, (2)

which is small if the stack is more symmetric around α.

Above, ρ(v) = 1 − e−|v|2/(2σ2) is a robust distance func-

tion.

The main problem of this approach is that it does not

show the desired behaviour near occlusion boundaries. Be-

cause pixels on the occluder smear into the background

when refocusing to the background, one can observe that

the focal stack is actually more symmetric around the oc-

cluder’s ground truth disparity instead of the desired back-

ground disparity, see figure 3. Of course, Lin et al. [18]

already observed this and proposed handling the problem

by choosing an alternative cost for occluded pixels detected

by an estimated occlusion map. We propose an alternative

approach, which does not require error-prone estimation of

an occlusion map, and only uses light field data instead.

Occlusion-aware focal stack symmetry. In order to

tackle problems around occlusions, we use occlusion-free

partial focal stacks. We do not refocus the light field using

all subaperture views, but create four separate stacks using

only the views right of, left of, above and below the ref-

erence view. The assumption is that the baseline is small

enough so that if occlusion is present it occurs only in one

direction of view point shift.

We will see that depending on the occlusion edge ori-

entation, there will be symmetry around the background

disparity between the top and bottom or the left and right

focal stacks. To see this, we prove the following observa-

tion, which will lead to the definition of our modified focus

cost volume. Essentially, it refines the focal stack symmetry

property defined on the complete stack to symmetry along

arbitrary directions of view point shift.

Proposition. Let d be the true disparity value of the

point p in the image plane of the reference view. Let e be a

unit view point shift. Then for all δ ∈ R,

ϕ−
e,p(d+ δ) = ϕ+

e,p(d− δ),

where ϕ−
e,p(α) =

∫ 0

−∞

L(p+ αse, se) ds

ϕ+
e,p(α) =

∫ ∞

0

L(p+ αse, se) ds

(3)

are partial focal stacks integrated only in direction e.

Proof. We assume that the scene is (locally) parallel to the

image plane and Lambertian with ground truth disparity d.

We thus get for any view point v

L(p+ (d± δ)v,v) = L(p± δv,vc), (4)

since view v is the same as the reference view vc = (0, 0)
shifted by d. The integrals from (3) thus take the form

ϕ−
e,p(d+ δ) =

∫ 0

−∞

L(p+ δse,vc) ds,

ϕ+
e,p(d− δ) =

∫ ∞

0

L(p− δse,vc) ds.

(5)

Since
∫ 0

−∞
f(x) dx =

∫∞

0
f(−x) dx for any real-valued

function f , we get

ϕ−
e,p(d+ δ) =

∫ 0

−∞

L(p+ δse,vc) ds

=

∫ ∞

0

L(p+ δs(−e),vc) ds

=

∫ ∞

0

L(p− δse,vc) ds

= ϕ+
e,p(d− δ).

(6)

This completes the proof. �
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(a) slice through focal stack ϕ of Lin et al. [18]

(b) slice through our partial focal stack ϕ+

(c) slice through our partial focal stack ϕ−

CV GT disp Lin et al. [18] Proposed
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Figure 3. Left: comparison of Lin et al.’s [18] focal stack ϕ (a) with our versions ϕ+ (b) and ϕ− (c) for the green scanline of the light

field boxes to the right. One can clearly see that our focal stacks do provide sharper edges near occlusion boundaries while still being

pairwise symmetric around the true disparity d. Right: comparison of disparity maps obtained from Lin et al.’s [18] focal stack cost and

our proposed cost volume. The numbers show the percentage of Pixels that deviate more than 0.07 from the ground truth.

Taking into account the proposition, we modify the cost

function (2),

sϕ
p
(α) =

∫ δmax

0

min
(

ρ(ϕ−
(1,0),p(α+δ)−ϕ+

(1,0),p(α−δ)),

ρ(ϕ−
(0,1),p(α+ δ)− ϕ+

(0,1),p(α− δ))
)

dδ (7)

where ρ is the same robust distance function as defined be-

low equation (2).

Note that we create four partial focal stacks correspond-

ing to a crosshair of views around the center view. In future

work, we plan to exploit symmetry in other directions to

make the method more rotation-invariant. Assuming occlu-

sion occurs only in one direction, i.e. occluders are not too

thin, it is always guaranteed that focal stack regions unaf-

fected by occlusion are compared to each other, and lead to

zero (or at least very low) cost if α is the correct disparity.

In our experiments, we set σ = 1 for cost computation and

δmax to one-fifth of the disparity range.

4. Joint depth and normal map optimization

The result from finding a globally optimal solution for

the cost with total variation prior is essentially locally flat,

even if one uses sublabel relaxation [19], see figure 6. The

resulting normal field is not useful for interesting applica-

tions such as intrinsic decomposition of the light field. Un-

fortunately, only priors of a restricted form are allowed if

one wants to achieve the global optimum.

Thus, we propose to post-process the result by minimiz-

ing a second functional. The key requirements are that we

still want to be faithful to the original data term, and at

the same time obtain a piecewise smooth normal field. We

achieve this by optimizing over depth and normals simulta-

neously, and linearly coupling them using the ideas in [7],

which we describe first.

Relation between depth and normals. In [7], it was

shown that if depth is reparametrized in a new variable ζ :=
1
2z

2, the linear operator N given by

N(ζ) =







− ζx
f

−
ζy
f

x̂ζX
f +

ŷζy
f

2ζ
f2






(8)

maps a depth map ζ to the map of corresponding normals

scaled with the local area element of the parametrized sur-

face. Above, f is the focal length, i.e. distance between Ω
and Π, and (x̂, ŷ) the homogenous coordinate of the pixel

where the normal is computed, in particular, N is spatially

varying. ζx and ζy denote partial derivatives.

The authors of [7] leveraged this map to introduce a min-

imal surface regularizer by encouraging small ‖Nζ‖. How-

ever, we want to impose smoothness of the field of unit

length normals. It thus becomes necessary to introduce an

unknown point-wise scaling factor α to relate Nζ and n,

which will converge to the area element.

The final prior on normal maps. Finally, we do not

only want the normals to be correctly related to depth, but

also to be piecewise smooth. Thus, the functional for depth

reparametrized in ζ and unit length normals n we optimize
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is

E(ζ,n) = min
α>0

∫

Ω

ρ(ζ, x) + λ ‖Nζ − αn‖2 dx + R(n).

(9)

Above, ρ(ζ, x) is the reparametrized cost function,

and R(n) a convex regularizer of the normal map. To ob-

tain a state-of-the-art framework, we extend the total gener-

alized variation [3, 23] to vector-valued functions n : Ω →
R

m by defining

R(n) = sup
w∈C1

c (Ω,Rn×m)

∫

Ω

α ‖w −Dn‖+ γg ‖Dw‖F dx.

(10)

The constants α, γ > 0 defining amount of smoothing are

user-provided, while g := exp(−c ‖∇I‖) is a point-wise

weight adapting the regularizer to image edges in the refer-

ence view I . Intuitively, we encourage Dn to be close to a

matrix-valued function w which has itself a sparse deriva-

tive, so n is encouraged to be piecewise affine.

Optimization. The functional E in (9) is overall non-

convex, due to the multiplicative coupling of α and n,

and the non-convexity of ρ. We therefore follow an iter-

ative approach and optimize for ζ and n in turn, initializ-

ing ζ0 with the solution from sublabel relaxation [19] of (7)

and n0 = Nζ0. Note that we could just as well embed (9)

in a coarse-to-fine framework similar to the implementa-

tion [7] to make it computationally more efficient, but de-

cided to evaluate the likely more accurate initialization from

global optimization in this work. We now show to perform

the optimization for the individual variables. Note that we

will provide source code for the complete framework after

our work has been published, so we will omit most of the

technical details and just give a quick tour.

Optimization for depth. We remove from (9) the terms

which do not depend on ζ, replace the norms by their second

convex conjugates, and linearize ρ around the current depth

estimate ζ0. This way, we find that we have to solve the

saddle point problem

min
ζ,α>0

max
‖p‖

2
≤λ,|ξ|≤1

{

(p, Nζ − αn)+

(ξ, ρ|ζ0 +(ζ − ζ0)∂ζρ|ζ0)
}

.
(11)

The solver we employ is the pre-conditioned primal-dual

algorithm in [4]. Note that the functional (11) intuitively

makes sense: it tries to maintain small residual cost ρ from

focal stack symmetry, while at the same time adjusting the

surface ζ so that Nζ becomes closer to the current estimate

n for the smooth normal field scaled by α. As Nζ is the

area-weighted Gauss map of the surface, α will converge to

the local area element.

Optimization for the normal map. This time, we re-

move from (9) the terms which do not depend on n. As

α should be at the optimum equal to ‖Nζ‖, which is now

center view focal stack symmetry focal stack + stereo

37.67 21.61

Figure 4. Averaging the proposed focal stack cost volume with

a stereo correspondence cost volume using confidence scores

from [25] as weights, we can significantly increase the resilience

against noise. Numbers show BadPix(0.07) .

known explicitly, we set w := Nζ/ ‖Nζ‖ and end up with

the L1 denoising problem

min
‖n‖=1

∫

Ω

λ ‖Nζ‖ ‖w − n‖ dx+R(n). (12)

The difficulty is the constraint ‖n‖ = 1, which makes the

problem non-convex. We therefore adopt the relaxation

ideas in [31], which solves for the coefficients of the nor-

mals in a local parametrization of tangent space around the

current solution, thus effectively linearizing the constraint.

For details, we refer to [31]. Note that we use a differ-

ent regularizer, image-driven TGV instead of vectorial total

variation, which requires more variables [23]. Regardless,

we obtain a sequence of saddle point problems with iter-

atively updated linearization points, which we again solve

with [4].

5. Results

We evaluate our algorithm on the recent benchmark [12]

tailored to light field disparity map estimation. The given

ground truth disparity is sufficiently accurate to also com-

pute ground truth normal maps using the operator N from

the previous section without visible discretization artifacts

except at discontinuities.

Benchmark performance. Our submission re-

sults with several performance metrics evaluated can

be observed on the benchmark web page1 under the

acronym OFSY 330/DNR. Note that all our parameters

were tuned on the four training scenes to achieve an op-

timum BadPix(0.07) score, i.e. the percentage of pixels

where disparity deviates by less than 0.07 pixels from the

ground truth. The stratified scenes were not taken into ac-

count for parameter tuning as they are too artificial, but have

of course been evaluated together with the test scenes. In ac-

cordance with the benchmark requirements, parameters are

exactly the same for all scenes.

At the time of submission we rank first in BadPix(0.07) ,

with a solid first place on all test and training datasets. We

1http://www.lightfield-analysis.net
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Figure 5. One further result on a challenging light field captured with the Lytro Illum plenoptic camera (top). The truck lightfield (bottom)

is from the Stanford Light Field Archive [27] and was captured with a gantry. This last example demonstrates that our method is also able

to handle larger disparity ranges.

also rank first place in the Bumpiness score for planes and

continuous surfaces. This demonstrates the success of our

proposed joint depth and normal prior to achieve smooth

geometry. Finally, we rank first place on the Discontinuities

score, which demonstrates the superior performance of the

proposed occlusion-aware focal stack symmetry at occlu-

sion boundaries. An overview of the results and a compari-

son for BadPix(0.07) on the training scenes can be observed

in figure 7, for details and more evaluation criteria, we refer

to the benchmark web page.

The single outlier is the performance on the stratified

light field dots, which can be considered as a failure case of

our method. This light field exhibits a substantial amount

of noise in the lower right regions, see figure 4, and our

method does not produce satisfactory results. A way to

remedy this problem is to proceed like [28], and mix the

focal stack cost volume with a stereo correspondence cost

volume to increase resilience against noise. In contrast to

their approach, we computed the mixture weights using the

confidence measures in Tao et al. [25], and were able to

drastically increase the performance on dots this way. For

the benchmark evaluation, however, we decided to submit

the pure version of our method with focal stack symmetry

cost only. However, on real-world Lytro data we evaluate

later on, combining costs turns out to be very beneficial.

Comparison to focal stack symmetry. In addition

to the detailed benchmark above, we also compare our

occlusion-aware cost volume to original focal stack sym-

metry [18], which has not yet been submitted to the bench-

mark. For this, we compute cost volumes using both [18]

as well as the method proposed in section 3, and compute a

globally optimal disparity map for both methods using sub-

label relaxation, with the smoothness parameter tuned in-

dividually to achieve an optimal result. Results can be ob-

served in figure 3. We perform significantly better in terms

of error metrics, easily visible from the behaviour at occlu-

sion boundaries, in particular regions which exhibit occlu-

sions with very fine detail.

Please note that these images do not show the results

obtained by Lin et al.’s final algorithm in [18], but only

those achieved by simply using the focal stack symmetry

cost function (2), since we aim at a pure comparison of the

two cost volumes.

Normal map accuracy. In another run of experiments,

we verify that our joint scheme for depth and normal map

regularization is an improvement over either individual reg-

ularization of just the depth map with the minimal sur-

face regularizer in [7], as well as just regularization of the

normal map using [31]. Results can be observed in fig-

ure 6. Normal map regularization is non-convex and fails

to converge towards the correct solution starting with the

piecewise fronto-parallel intitialization from sublabel relax-

ation [19]. The better result is achieved by smoothing the

depth map directly, but when imposing the same amount of

smoothing as in our framework, it performs worse smooth-

ing on planar surfaces and fails to preserve details.

Real-world results. To test the real-world performance

of our proposed method, we evaluate on light fields captured

with the Lytro Illum plenoptic camera. One can clearly

see that our method performs relatively well even on non-

Lambertian objects like the origami crane in figure 1 or the

saxophone in figure 5 (top row). Figure 5 (bottom row)

shows results on the lego truck from the Stanford light field

archive for comparison and proof that our method works

even with a relatively large baseline.
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ground truth normals sublabel relaxation [19] normal smoothing [31] depth smoothing [7] proposed method
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Figure 6. Comparison of normal maps obtained with different methods. Numbers show mean angular error in degrees. The result obtained

from sublabel relaxation is overall still fronto-parallel despite the large number of 330 labels. In consequence, the non-convex normal

smoothing with [31] fails to converge to a useful solution, as the initialization is too far from the optimum. Smoothing the depth map

using [7] yields visually similar results than our method, but we achieve lower errors and smoother surfaces while still preserving details

like the eyes of the teddy in dino. For visualization, normals n have been transformed to RGB space via (r, g, b) = 1

2
(n+ [1 1 1]T ).

6. Conclusion

We have presented occlusion aware focal-stack symme-

try as a way to compute disparity cost volumes. The key

assumptions are Lambertian scenes and slowly varying dis-

parity within surfaces. Experiments show that our pro-

posed data term is to this date the most accurate light field

depth estimation approach on the recent benchmark [12].

It performs particularly well on occlusion boundaries and

in terms of overall correctness of the disparity estimate.

As a small drawback, we get a slightly reduced noise re-

siliency, as we operate only on a crosshair of views around

the reference view as opposed to the full light field. On

very noisy scenes, we can however improve the situation

by confidence-based integration of stereo correspondence

costs into the data term, as suggested in previous literature

on disparity estimation with focus cues [28, 25].

With additional post-processing using joint depth and

normal map regularization, we can further increase accu-

racy slightly, but in particular obtain accurate and smooth

normal fields which preserve small details in the scene.

We again outperform previous methods on the benchmark

datasets. Further experiments on real-world scenes show

that we can deal with significant amounts of specularity, and

obtain depth and normal estimates suitable for challenging

applications like intrinsic light field decomposition [1].
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Figure 7. Our disparity and normal maps for the training datasets compared to the results of the other methods listed on the benchmark

at the time of submission. For all datasets, we achieve the lowest error for both, measured in percentage of pixels with a disparity error

larger than 0.07 pixels (marked red in the disparity map), and mean angular error in degrees for the normal map, respectively. For the full

benchmark evaluation with several other accuracy metrics, see http://lightfield-analysis.net, where our method is listed as

OFSY 330/DNR.
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