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Abstract

Motion blur from camera shake is a major problem in

videos captured by hand-held devices. Unlike single-image

deblurring, video-based approaches can take advantage of

the abundant information that exists across neighboring

frames. As a result the best performing methods rely on

the alignment of nearby frames. However, aligning images

is a computationally expensive and fragile procedure, and

methods that aggregate information must therefore be able

to identify which regions have been accurately aligned and

which have not, a task that requires high level scene under-

standing. In this work, we introduce a deep learning so-

lution to video deblurring, where a CNN is trained end-to-

end to learn how to accumulate information across frames.

To train this network, we collected a dataset of real videos

recorded with a high frame rate camera, which we use to

generate synthetic motion blur for supervision. We show

that the features learned from this dataset extend to deblur-

ring motion blur that arises due to camera shake in a wide

range of videos, and compare the quality of results to a num-

ber of other baselines 1.

1. Introduction

Hand-held video capture devices are now commonplace.

As a result, video stabilization has become an essential step

in video capture pipelines, often performed automatically

at capture time (e.g., iPhone, Google Pixel), or as a ser-

vice on sharing platforms (e.g., Youtube, Facebook). While

stabilization techniques have improved dramatically, the re-

maining motion blur is a major problem with all stabiliza-

tion techniques. This is because the blur becomes obvious

when there is no motion to accompany it, yielding highly

visible “jumping” artifacts. In the end, the remaining cam-

era shake motion blur limits the amount of stabilization that

can be applied before these artifacts become too apparent.

1Datasets, pretrained models and source code are available at

https://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring
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Figure 1: Blur in videos can be significantly attenuated by

learning how to aggregate information from nearby frames.

Top: crops of consecutive frames from a blurry video; Bot-

tom: outputs from the proposed data-driven approach, in

this case using simple homography alignment.

The most successful video deblurring approaches lever-

age information from neighboring frames to sharpen blurry

ones, taking advantage of the fact that most hand-shake mo-

tion blur is both short and temporally uncorrelated. By bor-

rowing “sharp” pixels from nearby frames, it is possible to

reconstruct a high quality output. Previous work has shown

significant improvement over traditional deconvolution-

based deblurring approaches, via patch-based synthesis that

relies on either lucky imaging [4] or weighted Fourier ag-

gregation [6].

One of the main challenges associated with aggregating

information across multiple video frames is that the differ-

ently blurred frames must be aligned. This can either be

done, for example, by nearest neighbor patch lookup [4],

or optical flow [6]. However, warping-based alignment is

not robust around disocclusions and areas with low texture,

and often yields warping artifacts. In addition to the align-

ment computation cost, methods that rely on warping have
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to therefore disregard information from mis-aligned content

or warping artifacts, which can be hard by looking at local

image patches alone.

To this end, we present the first end-to-end data-driven

approach to video deblurring, the results of which can be

seen in Fig. 1. We address specifically blur that arises due

to hand-held camera shake, i.e., is temporally uncorrelated,

however we show that our deblurring extends to other types

of blur as well, including motion blur from object motion.

We experiment with a number of differently learned config-

urations based on various alignment types: no-alignment,

frame-wise homography alignment, and optical flow align-

ment. On average optical flow performs the best, although

in many cases projective transform (i.e. homography) per-

forms comparably with significantly less computation re-

quired. Notably, our approach also enables the generation

of high quality results without computing any alignment

or image warping, which makes it highly efficient and ro-

bust to scene types. Essential to this success is the use of

an autoencoder-type network with skip connections that in-

creases the receptive field and is yet easy to train.

Our main contribution is an end-to-end solution to train

a deep neural network to learn how to deblur images, given

a short stack of neighboring video frames. We describe

the architecture we found to give the best results, and the

method we used to create a real-world dataset from high

frame rate capture. We compare qualitatively to videos pre-

viously used for video deblurring, and quantitatively with

our ground truth data set. We also present a test set of videos

showing that our method generalizes to a wide range of sce-

narios. Both datasets are made available to the public to

encourage follow up work.

2. Related Work

There exist two main approaches to deblurring:

deconvolution-based methods that solve inverse problems,

and those that rely on multi-image aggregation and fusion.

Deblur using deconvolution. Modern single-image de-

blurring approaches jointly estimate a blurring kernel (ei-

ther single or spatially varying) and the underlying sharp

image via deconvolution [23]. In recent years many suc-

cessful methods have been introduced [3, 8, 22, 32, 39, 42,

51, 52], see [47] for a recent survey. Multiple-image de-

convolution methods use additional information to alleviate

the severe ill-posedness of single-image deblurring. These

approaches collect, for example, image bursts [14], blurry-

noisy pairs [53], flash no-flash image pairs [36], gyroscope

information [34], high frame rate sequences [44], or stereo

pairs [38] for deblurring. These methods generally assume

static scenes and require the input images to be aligned.

For video, temporal information [25], optical flow [17] and

scene models [33, 49] have been used for improving both

kernel and latent frame estimation.

All of the above approaches strongly rely on the accu-

racy of the assumed image degradation model (blur, mo-

tion, noise) and its estimation, thus may perform poorly

when the simplified degradation models are insufficient to

describe real data, or due to suboptimal model estimation.

As a result, these approaches tend to be more fragile than

aggregation-based methods [6], and often introduce unde-

sirable artifacts such as ringing and amplified noise.

Multi-image aggregation. Multi-image aggregation

methods directly combine multiple images in either spatial

or frequency domain without solving any inverse problem.

Lucky-imaging is a classic example, in which multiple low

quality images are aligned and best pixels from different

ones are selected and merged into the final result [15, 24].

For denoising, this has been extended to video using optical

flow [26] or piecewise homographies [28] for alignment.

For video deblurring, aggregation approaches rely on the

observation that in general not all video frames are equally

blurred. Sharp pixels thus can be transferred from nearby

frames to deblur the target frame, using for example ho-

mography alignment [30]. Cho et al. further extend this

approach using patch-based alignment [4] for improved ro-

bustness against moving objects. The method however can-

not handle large depth variations due to the underlying ho-

mography motion model, and the patch matching process

is computationally expensive. Klose et al. [20] show that

3D reconstruction can be used to project pixels into a sin-

gle reference coordinate system for pixel fusion. Full 3D

reconstruction however can be fragile for highly dynamic

videos.

Recently, Delbracio and Sapiro [5] show that aggregat-

ing multiple aligned images in the Fourier domain can lead

to effective and computationally highly efficient deblurring.

This technique was extended to video [6], where nearby

frames are warped via optical flow for alignment. This

method is limited by optical flow computation and evalu-

ation, which is not reliable near occlusions and outliers.

All above approaches have explicit formulations on how

to fuse multiple images. In this work, we instead adopt a

data-driven approach to learn how multiple images should

be aggregated to generate an output that is as sharp as pos-

sible.

Data-driven approaches. Recently, CNNs have been

applied to achieve leading results on a wide variety of re-

construction problems. These methods tend to work best

when large training datasets can be easily constructed, for

example by adding synthetic noise for denoising [50], re-

moving content for inpainting [35], removing color infor-

mation for colorization [13], or downscaling for superreso-

lution [7, 27]. Super resolution networks have been applied

to video sequences before [12, 16, 40], but these approaches
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Figure 2: Architecture of the proposed DeBlurNet model, that takes the stacked nearby frames as input, and processes them

jointly through a number of convolutional layers until generating the deblurred central frame. The depth of each block

represents the number of activation maps in response to learned kernels. See Tab. 1 for detailed configurations.

address a different problem, with its own set of challenges.

In this work we focus on deblurring, where blurry frames

can vary greatly in appearance from their neighbors, mak-

ing information aggregation more challenging.

CNNs have also been used for single- [2, 43] and multi-

[48] image deblurring, using synthetic training data. One

problem with synthetic blur is that real blur has significantly

different characteristics, as it depends on both the scene

depth and object motion. In our experiments, we show that

by leveraging multiple video frames, training on real blur,

and directly estimating the sharp images, our method can

produce substantially better results.

3. Our Method

Overview. Image alignment is inherently challenging

as determining whether the aligned pixels in different im-

ages correspond to the same scene content can be difficult

with only low-level features. High-level features, on the

other hand, provide sufficient additional information to help

separate incorrectly aligned image regions from correctly

aligned ones. To make use of both low-level and high-level

features, we therefore train an end-to-end system for video

deblurring, where the input is a stack of neighboring frames

and the output is the deblurred central frame in the stack.

Furthermore, our network is trained using real video frames

with realistically synthesized motion blur. In the follow-

ing, we first present our neural network architecture, then

describe a number of experiments for evaluating its effec-

tiveness and comparing with existing methods. The key ad-

vantage of our approach is the allowance of lessening the

requirements for accurate alignment, a fragile component

of prior work.

3.1. Network Architecture

We use an encoder-decoder style network, which have

been shown to produce good results for a number of gen-

erative tasks [35, 41]. In particular, we choose a variation

layer kernel size stride output size skip connection

input - - 15×H × W to F6 2∗

F0 5×5 1×1 64×H × W to U3

D1 3×3 2×2 64×H/2 × W/2 -

F1 1 3×3 1×1 128×H/2 × W/2 -

F1 2 3×3 1×1 128×H/2 × W/2 to U2

D2 3×3 2×2 256×H/4 × W/4 -

F2 1 3×3 1×1 256×H/4 × W/4 -

F2 2 3×3 1×1 256×H/4 × W/4 -

F2 3 3×3 1×1 256×H/4 × W/4 to U1

D3 3×3 2×2 512×H/8 × W/8 -

F3 1 3×3 1×1 512×H/8 × W/8 -

F3 2 3×3 1×1 512×H/8 × W/8 -

F3 3 3×3 1×1 512×H/8 × W/8 -

U1 4×4 1/2×1/2 256×H/4 × W/4 from F2 3

F4 1 3×3 1×1 256×H/4 × W/4 -

F4 2 3×3 1×1 256×H/4 × W/4 -

F4 3 3×3 1×1 256×H/4 × W/4 -

U2 4×4 1/2×1/2 128×H/2 × W/2 from F1 2

F5 1 3×3 1×1 128×H/2 × W/2 -

F5 2 3×3 1×1 64×H/2 × W/2 -

U3 4×4 1/2×1/2 64×H × W from F0

F6 1 3×3 1×1 15×H × W -

F6 2 3×3 1×1 3×H × W from input∗

Table 1: Specifications of the DBN model. Each con-

volutional layer is followed by batch normalization and

ReLU, except those that are skip connected to deeper lay-

ers, where only batch normalization has been applied,

before the sum is rectified through a ReLU layer [11].

For example, the input to F4 1 is the rectified summa-

tion of U1 and F2 3. Note that for the skip connec-

tion from input layer to F6 2, only the central frame of

the stack is selected. At the end of the network a Sig-

moid layer is applied to normalize the intensities. We use

the Torch implementation of SpatialConvolution

and SpatialFullConvolution for down- and up-

convolutional layers.

of the fully convolutional model proposed in [41] for sketch

cleanup. We add symmetric skip connections [29] between

corresponding layers in encoder and decoder halves of the
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Figure 3: A selection of blurry/sharp pairs (split left/right respectively) from our ground truth dataset. Images are best viewed

on-screen and zoomed in.

network, where features from the encoder side are added

element-wise to each corresponding layer. This signifi-

cantly accelerates the convergence and helps generate much

sharper video frames. We perform an early fusion of neigh-

boring frames that is similar to the FlowNetSimple model

in [9], by concatenating all images in the input layer. The

training loss is MSE to the ground truth sharp image, which

will be discussed in more detail in Sec. 4. We refer to this

network as DeBlurNet, or DBN, and show a diagram of it

in Fig. 2. It consists of three types of convolutional layers:

down-convolutional layers, that compress the spatial reso-

lution of the features while increasing the spatial support

of subsequent layers; flat-convolutional layers, that perform

non-linear mapping and preserve the size of the image; and

finally up-convolutional layers, that increase the spatial res-

olution. Please refer to Tab. 1 for detailed configurations.

Alignment. One of the main advantages of our method

is the ability to work well without accurate frame-to-frame

alignment. To this end, we create three versions of our

dataset with varying degrees of alignment, and use these to

train DBN. At one end, we use no alignment at all, relying

on the network to abstract spatial information through a se-

ries of down-convolution layers. This makes the method

significantly faster, as alignment usually dominates run-

ning time in multi-frame aggregation methods. We refer

to this network as DBN+NOALIGN. We also use optical

flow [37] to align stacks (DBN+FLOW), which is slow to

compute and prone to errors (often introducing additional

warping artifacts), but allows pixels to be aggregated more

easily by removing the spatial variance of corresponding

features. Finally, we use a single global homography to

align frames, which provides a compromise in approaches,

in terms of computational complexity and alignment quality

(DBN+HOMOG). The homography is estimated using SURF

features and a variant of RANSAC [46] to reject outliers.

Implementation details. During training we use a batch

size of 64, and patches of 15×128×128, where 15 is the

total number of RGB channels stacked from the crops of 5

consecutive video frames. We observed that a patch size

of 128 was sufficient to provide enough overlapping con-

tent in the stack even if the frames are not aligned. We use

ADAM [19] for optimization, and fix the learning rate to

be 0.005 in the first 24,000 iterations, then halves for every

subsequent 8,000 iterations until it reaches the lower bound

of 10−6. For all the results reported in the paper we train the

network for 80,000 iterations, which takes about 45 hours

on an NVidia Titan X GPU. Default values of β1, β2 and ǫ
are used, which are 0.9, 0.999, and 10

−8 respectively, and

we set weight decay to 0.

As our network is fully convolutional, the input resolu-

tion is restricted only by GPU memory. At test time, we

pass a 960 × 540 frame into the network, and tile this if

the video frame is of larger resolution. Since our approach

deblurs images in a single forward pass, it is computation-

ally very efficient. Using an NVidia Titan X GPU, we can

process a 720p frame within 1s without alignment. Previous

approaches took on average 15s [6] and 30s [4] per frame on

CPUs. The recent neural deblurring method [2] takes more

than 1 hour to fully process each frame, and the approach

of Kim et al. [17] takes several minutes per frame.

4. Training Dataset

Generating realistic training data is a major challenge

for tasks where ground truth data cannot be easily col-

lected/labeled. For training our neural network, we re-

quire two video sequences of exactly the same content: one

blurred by camera shake motion blur, and its corresponding

sharp version. Capturing such data is extremely hard. One

could imagine using a beam-splitter and multiple cameras

to build a special capturing system, but this setup would be

challenging to construct robustly, and would present a host

of other calibration issues.

One solution would be to use rendering techniques to

create synthetic videos for training. However if not done

properly, this often leads to a domain gap, where models

trained on synthetic data do not generalize well to real world

data. For example, we could apply synthetic motion blur on

sharp video frames to simulate camera shake blur. However,

in real world scenarios the blur not only depends on camera

motion, but also is related to scene depth and object motion,

thus is very difficult to be rendered properly.

In this work, we propose to collect real-world sharp

videos at very high frame rate, and synthetically create
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Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

Input 24.14 / .859 30.52 / .958 28.38 / .914 27.31 / .900 22.60 / .852 29.31 / .951 27.74 / .939 23.86 / .906 30.59 / .976 26.98 / .926 27.14 / .918

PSDEBLUR 24.42 / .908 28.77 / .952 25.15 / .928 27.77 / .928 22.02 / .890 25.74 / .932 26.11 / .948 19.75 / .822 26.48 / .963 24.62 / .938 25.08 / .921

WFA [6] 25.89 / .910 32.33 / .974 28.97 / .931 28.36 / .925 23.99 / .910 31.09 / .975 28.58 / .955 24.78 / .926 31.30 / .981 28.20 / .960 28.35 / .944

DBN+SINGLE 25.75 / .901 31.15 / .966 29.30 / .946 28.38 / .922 23.63 / .885 30.70 / .962 29.23 / .959 25.62 / .936 31.92 / .983 28.06 / .949 28.37 / .941

DBN+NOALIGN 27.83 / .940 33.11 / .980 31.29 / .973 29.73 / .948 25.12 / .930 32.52 / .978 30.80 / .975 27.28 / .962 33.32 / .989 29.51 / .969 30.05 / .964

DBN+HOMOG. 27.93 / .945 32.39 / .975 30.97 / .969 29.82/ .948 24.79 / .925 31.84 / .972 30.46 / .972 26.64 / .955 33.15 / .989 29.30 / .969 29.73 / .962

DBN+FLOW 28.31 / .956 33.14 / .982 30.92 / .973 29.99 / .954 25.58 / .944 32.39 / .981 30.56 / .975 27.15 / .963 32.95 / .989 29.53 / .975 30.05 / .969

Table 2: PSNR/MSSIM [21] measurements for each approach, averaged over all frames, for 10 test datasets (#1→#10).

blurred ones by accumulating a number of short exposures

to approximate a longer exposure [45]. In order to sim-

ulate realistic motion blur at 30fps, we capture videos at

240fps, and subsample every eighth frame to create the

30fps ground truth sharp video. We then average together

a temporally centered window of 7 frames (3 on either side

of the ground truth frame) to generate synthetic motion blur

at the target frame rate.

Since there exists a time period between adjacent ex-

posures (the “duty cycle”), simply averaging consecutive

frames will yield ghosting artifacts. To avoid this, [18] pro-

posed to only use frames whose relative motions in-between

are smaller than 1 pixel. To use all frames for rendering, we

compute optical flow between adjacent high fps frames, and

generate an additional 10 evenly spaced inter-frame images,

which we then average together. Examples of the dataset are

shown in Fig. 3. We have also released this dataset publicly

for future research.

In total, we collect 71 videos, each with 3-5s average

running time. These are used to generate 6708 synthetic

blurry frames with corresponding ground truth. We sub-

sequently augment the data by flipping, rotating (0°, 90°,

180°, 270°), and scaling (1/4, 1/3, 1/2) the images, and from

this we draw on average 10 random 128×128 crops. In to-

tal, this gives us 2,146,560 pairs of patches. We split our

dataset into 61 training videos and 10 testing videos. For

each video, its frames are used for either training or testing,

but not both, meaning that the scenes used for testing have

not been seen in the training data.

The training videos are capture at 240fps with an iPhone

6s, GoPro Hero 4 Black, and Canon 7D. The reason to use

multiple devices is to avoid bias towards a specific captur-

ing device that may generate videos with some unique char-

acteristics. We test on videos captured by other devices,

including Nexus 5x and Moto X mobile phones and a Sony

a6300 consumer camera.

Limitations. We made an significant effort to capture a

wide range of situations, including long pans, selfie videos,

scenes with moving content (people, water, trees), recorded

with a number of different capture devices. While it is quite

diverse, it also has some limitations. As our blurry frames

are averaged from multiple input frames, the noise charac-

teristics will be different in the ground truth image. To re-

duce this effect, we recorded input videos in high light sit-

uations, where there was minimal visible noise even in the

original 240fps video, meaning that our dataset only con-

tains scenes with sufficient light. An additional source of

error is that using optical flow for synthesizing motion blur

adds possible artifacts which would not exist in real-world

data. We found that however, as the input video is recorded

at 240fps, the motion between frames is small, and we did

not observe visual artifacts from this step.

As we will show in Sec. 5, despite these limitations, our

trained model still generalizes well to new capture devices

and scene types, notably on low-light videos. We believe

future improvements to the training data set will further im-

prove the performance of our method.

5. Experiments and Results

We conduct a series of experiments to evaluate the effec-

tiveness of the learned model, and also the importance of

individual components.

Effects of using multiple frames. We analyze the con-

tribution of using a temporal window by keeping the same

network architecture as DBN, but replicating the central ref-

erence frame 5 times instead of inputing a stack of neigh-

boring frames, and retrain the network with the same hyper-

parameters. We call this approach DBN+SINGLE. Qualita-

tive comparisons are shown in Fig. 4 and 6, and quantitative

results are shown in Table 2 and Fig. 5. We can see that us-

ing neighboring frames greatly improves the quality of the

results. We chose a 5 frame window as it provides a good

compromise between result quality and training time [16].

Single-image methods are also provided as reference: PS-

DEBLUR for blind uniform deblurring with off-the-shelf

shake reduction software in Photoshop, and [52] for non-

uniform comparisons.

Effects of alignment. In this set of experiments,

we analyze the impact of input image alignment in the

output restoration quality, namely we compare the results

of DBN+NOALIGN, DBN+HOMOG., and DBN+FLOW. See
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Input (top) / ours (bottom) Input PSDEBLUR WFA[6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW ground-truth
21.79dB 24.09dB 21.53dB 24.51dB 27.24dB 26.66dB 26.69dB
31.72dB 31.13dB 29.83dB 31.49dB 32.89dB 34.76dB 34.87dB

Figure 4: Quantitative results from our test set, with PSNRs relative to the ground truth. Here we compare DBN with a

single-image approach, PSDEBLUR, and a start-of-the-art multi-frame video deblurring method, WFA [6]. DBN, achieves

comparable results to [6] without alignment, and improved results with alignment.
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Figure 5: Quantitative comparison of different approaches.

In this plot, the PSNR gain of applying different methods

and configurations is plotted versus the sharpness of the in-

put frame. We observe that all multi-frame methods pro-

vide a quality improvement for blurry input frames, with

diminishing improvements as the input frames get sharper.

DBN+NOALIGN and DBN+FLOW perform the best, but qual-

itatively, DBN+FLOW and DBN+HOMOG. are often compa-

rable, and superior to no alignment. We provide a single-

image uniform blur kernel deblurring method as reference

(PSDEBLUR).

Tab. 2 and Fig. 5 for quantitative comparisons, and the

qualitative comparison in Fig. 6. Our main conclusions

are that DeBlurNet with optical flow and homography are

often qualitatively equivalent, and DBN+FLOW often has

higher PSNR. On the other hand, DBN+NOALIGN performs

even better than DBN+FLOW and DBN+HOMOG in terms of

PSNR, especially when the input frames are not too blurry,

e.g. >29dB. However, we observe that DBN+FLOW fails

gracefully when inputs frame are much blurrier, which leads

to a drop in PSNR and MSSIM (see Tab. 2 and Fig. 5).

In this case, DBN+FLOW and DBN+HOMOG. perform bet-

ter. One possible explanation for this is that when the in-

put quality is good, optical flow errors will dominate the

final performance of the deblurring procedure. Indeed, se-

quences with high input PSNR have small relative motion

(consequence of how the dataset is created) so there is not

too much displacement from one frame to the next, and

DBN+NOALIGN is able to directly handle the input frames

without any alignment.

Comparisons to existing approaches. We compare

our method to existing approaches in Fig. 6. Specifically,

we show a quantitative comparison to WFA [6], and qual-

itative comparisons to Cho et al. [4], Kim et al. [18], and

WFA [6]. We also compare to single image deblurring

methods, Chakrabarti [2], Xu et al. [52], and the Shake Re-

duction feature in Photoshop CC 2015 (PSDEBLUR). We

note that PSDEBLUR can cause ringing artifacts when used

in an automatic setting on sharp images, resulting in a sharp

degradation in quality (Fig. 5). The results of [4] and [18]

are the ones provided by the authors, WFA [6] was applied

a single iteration with the same temporal window, and for

[52, 2] we use the implementations provided by the authors.

Due to the large number of frames, we are only able to
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Input (top) / ours (bottom) Input PSDEBLUR L0DEBLUR[52] NEURAL [2] WFA [6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW

Input (top) / ours (bottom) Input PSDEBLUR Cho et al. [4] Kim and Lee [17] WFA [6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW

Figure 6: Qualitative comparisons to existing approaches. We compare DBN under various alignment configurations, with

prior approaches, e.g. Cho et al. [4], Kim and Lee [17], Chakrabarti [2], Xu et al. [52], WFA [6], and Photoshop CC Shake

Reduction. In general DBN achieves decent quality without alignment, and is comparable or better when simpler frame-wise

homography is applied. Note that [4] adapts homography-based motion model, while [6] and [17] are estimating the optical

flow for alignment.

compare quantitatively to approaches which operate suffi-

ciently fast, which excludes many non-uniform deconvolu-

tion based methods. The complete sequences are given in

the supplementary material. It is important to note that the

test images have not been seen during the training proce-

dure, and many of them have been shot by other cameras.

Our conclusion is that DBN often produces superior quality

deblurred frames, even when the input frames are aligned

with a global homography, which requires substantially less

computation than prior methods.

Generalization to other types of videos. As discussed

in Sec. 4, our training set has some limitations. Despite

these, Fig. 7 shows that our method can generalize well

to other types of scenes not seen during training. This in-

cludes videos captured in indoor, low-light scenarios and

motion blur originating from an object moving, rather than

the temporally uncorrelated blur from camera shake. While

our dataset has instances of motion blur in it, it is domi-

nated by camera-shake blur. Nonetheless, the network is

able to produce a moderate amount of object motion deblur-

ring as well, which is not handled by other lucky imaging

approaches.

Other experiments. We tested with different fusion

strategies, for example late fusion, i.e. aggregating fea-

tures from deeper layers after high-level image content has

been extracted from each frame, with both shared and non-

1285



Input DBN+HOMOG Input DBN+HOMOG

Figure 7: Our proposed method can generalize to types of

data not seen in the training set. The first example shows

a low-light, noisy video, and the second shows an example

with motion blur, rather than camera shake. The biker is

in motion, and is blurred in all frames in the stack, but the

network can still perform some moderate deblurring.

shared weights. Experimental results show that this pro-

duced slightly worse PSNR and training and validation

loss, but it occasionally helped in challenging cases where

DBN+NOALIGN fails. However this improvement is not

consistent, so we left it out of our proposed approach.

Multi-scale phase-based methods have proven to be able

to generate sharp images using purely Eulerian representa-

tions [31], so we experimented with multiscale-supervised,

Laplacian reconstructions, but found similarly inconclusive

results. While the added supervision helps in some cases,

it likely restricts the network from learning useful feature

maps that help in other frames.

We also tried directly predicting the sharp Fourier coeffi-

cients, as in [5], however this approach did not work as well

as directly predicting output pixels. One possible reason is

that the image quality is more prone to reconstruction er-

rors of Fourier coefficients, and we have not found a robust

way to normalize the scale of Fourier coefficients during

training, compared with the straightforward way of apply-

ing Sigmoid layers when inputs are in the spatial domain.

Visualization of learned filters. Here we visualize some

filters learned from DBN+FLOW, specifically at F0, to gain

some insights of how it deblurs an input stack. It can be ob-

served that DBN not only learns to locate the corresponding

color channels to generate the correct tone (Fig. 8, left), but

is also able to extract edges of different orientations (Fig. 8,

middle), and to locate the warping artifacts (Fig. 8, right).

Figure 8: Here we selectively visualize 3 out of 64 filters

(highlighted) and their response at F0 from DBN+FLOW.

Limitations. One limitation of this work is that we ad-

dress only a subset of the types of blur present in video,

in particular we focus on motion blur that arises due to

camera-shake from hand-held camera motion. In practice,

our dataset contains all types of blur that can be reduced

by a shorter exposure time, including object motion, but

this type of motion occurs much less frequently. Explic-

itly investigating other sources of blur, for example focus

and object motion, which would require different input and

training data, is an interesting area for future work.

Although no temporal coherence is explicitly imposed

and no post-processing is done, the processed sequences

are in general temporally smooth. We refer the reader to

the video provided in the supplementary material. However,

when images are severely blurred, our proposed model, es-

pecially DBN+NOALIGN, can introduce temporal artifacts

that becomes more visible after stabilization. In the fu-

ture, we plan to investigate better strategies to handle un-

aligned cases, for example through the multi-scale recon-

struction [10, 1].

We would like also to augment our training set with a

wider range of videos, as this should increase general appli-

cability of the proposed approach.

6. Conclusion

We have presented a learning-based approach to multi-

image video deblurring. Despite the above limitations, our

method generates results that are often as good as or su-

perior to the state-of-the-art approaches, with no parameter

tuning and without the explicit need for challenging image

alignment. It is also highly efficient due to the relaxation

of the quality of alignment required – using a simplified

alignment method, our approach can generate high quality

results within a second, which is substantially faster than

existing approaches many of which take minutes per frame.

In addition, we conducted a number of experiments

showing the quality of results varying the input require-

ments. We believe that similar strategies could be applied

to other aggregation based applications.
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