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Abstract

This paper presents a method to predict the future move-

ments (location and gaze direction) of basketball players as

a whole from their first person videos. The predicted behav-

iors reflect an individual physical space that affords to take

the next actions while conforming to social behaviors by en-

gaging to joint attention. Our key innovation is to use the

3D reconstruction of multiple first person cameras to auto-

matically annotate each other’s visual semantics of social

configurations.

We leverage two learning signals uniquely embedded in

first person videos. Individually, a first person video records

the visual semantics of a spatial and social layout around a

person that allows associating with past similar situations.

Collectively, first person videos follow joint attention that

can link the individuals to a group. We learn the egocen-

tric visual semantics of group movements using a Siamese

neural network to retrieve future trajectories. We consoli-

date the retrieved trajectories from all players by maximiz-

ing a measure of social compatibility—the gaze alignment

towards joint attention predicted by their social formation,

where the dynamics of joint attention is learned by a long-

term recurrent convolutional network. This allows us to

characterize which social configuration is more plausible

and predict future group trajectories.

1. Introduction

We physically interact with people around us while men-

tally engaging with them via joint attention. For example,

you as an audience in a concert are locally affected by the

people around you and are globally connected to the peo-

ple on the other side of the stage by sharing joint atten-

tion. While the physical connection delineates the proximal

space around us, the mental connection encodes the group’s

intent in a way that facilitates communications, role play-

ing, and group task accomplishment. These connections

provide social cues to further reason about the spatial and

temporal extent of the social behaviors, which is a key de-

Figure 1. We predict a group trajectory of basketball players from

first person videos. The red is the ground truth and blue is the

predicted trajectories with gaze direction.

sign factor for an artificial intelligence of social robots.

However, such social cues are rather ambiguous, subtle,

and situation dependent, which is challenging to be com-

putationally learned by third person computer vision sys-

tems [4, 25, 26, 32] due to their limited expressibility: it is

necessary to tap into what we actually see. In this paper,

we propose to use first person cameras collectively to de-

code the social cues and to further predict their future social

behaviors.

What visual information makes us to stay connected to

people, physically and mentally? We conjecture that two

unique signals recorded in first person videos can describe

the connections. (1) Individually, a first person video en-

codes the egocentric visual semantics that provides a so-

cial and spatial context to take the next action. (2) Col-

lectively, first person videos follow joint attention spatially

arranged by social formation [24, 38], e.g., audiences dy-

namically change their social formation to secure visibil-

ity, which links the individuals to a group. As a proof-of-

concept, we integrate these two learning signals to predict

the movement (location and gaze directions) of basketball

players, one of most complex forms of social interactions,

from their first person videos (Figure 1).

Our method takes an input, the first person videos of bas-

ketball players and outputs a set of plausible future trajec-

tories. We learn an egocentric visual representation to rec-

ognize similar social and spatial configurations, e.g., which

makes us to move, using a Siamese neural network. This

representation is used to retrieve a set of future trajecto-
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ries per player. We find a plausible group trajectory set

from the retrieved trajectories of all players by maximiz-

ing a measure of social compatibility—the gaze alignment

towards joint attention predicted by their social formation—

via a generalized Dijkstra algorithm. The dynamics of joint

attention is learned by a long-term recurrent convolutional

network (LRCN) based on social formation features that en-

code locations and velocities of the players. Note that we

predict not only the future locations but also their gaze di-

rections and joint attention.

Our key innovation is leveraging 3D reconstruction of

multiple first person videos to automatically annotate each

other’s visual semantics of social configurations. This la-

bels the location, orientation, and velocity of other players

in pixels, precisely (reprojection error is often less than 0.5

pixel). This makes learning visual social signals on a large

scale possible, which provides a richer context of the in-

teractions comparing to third person social activity predic-

tions [4, 25, 26, 32].

A challenge of using first person cameras is that they of-

ten produce highly jittery, blurry, and narrow view, unlike

third person videos captured from mostly static and omni-

scient views. We virtually stabilize first person images by

applying cylindrical projection, and directly learn visual se-

mantics of social configurations from the images via a con-

volutional neural network. To resolve a limited visibility is-

sue, we consolidate first person images of all players, which

substantially extend visible space via 3D registration.

The first person videos have been increasingly adapted to

record professional sports such as basketball, soccer, hand-

ball, ice hockey, and American football [1]. Our work pro-

vides a computational tool to measure team performance

and train players based on how they interact with others

based on what they see. Beyond sports, decoding such so-

cial sensorimotor behaviors can be used to further explain

how social cues are encoded in the human mirror neural sys-

tem [43]. Also this social intelligence system can apply to

content generation for social virtual/augmented reality [2],

human-robot interactions, and collaborative education.

Contribution To our best knowledge, this is the first paper

that predicts long-term activities from a collection of first

person videos. The core technical contributions include (a)

learning egocentric visual semantics to recognize social and

spatial configurations, (b) using a measure of social compat-

ibility to identify plausibility of social behaviors, (c) formu-

lating the trajectory selection process using a dynamic pro-

gramming, and (d) learning the dynamics of joint attention

via LSTM. We demonstrate the predictive validity of our al-

gorithm in real world basketball datasets by comparing with

third person prediction systems.

2. Related Work

Our work integrates two core vision tasks: 1) egocen-

tric social perception: identifying social and spatial config-

uration, e.g., where I am, who I interact with, and how far

they are, and 2) long term social behavior prediction: rec-

ognizing a plausible collective behaviors where we use joint

attention as a social cue.

Unlike third person vision systems operating in social

scenes [10, 11, 13, 28, 41, 44, 45, 49], a first person camera

provides in-situ measurements of social interactions from

an insider’s perspective. This unique property allows a cam-

era to record two sources of information simultaneously. (1)

The 3D camera pose reconstructed by structure from motion

approximates the gaze orientation, and the intersection of

the gaze directions is the location of joint attention [36,37].

(2) The visual semantics (depth, edge, and surface) of first

person images encodes what is socially salient. Faces have

been used to recognize a group of people [15] and build vi-

sual words to describe joint attention [40]. Subtle reciprocal

behaviors can also be recognized [51]. Such visual infor-

mation from first person cameras has been used for social

video editing [8], video summarization [30], human-robot

interactions [16], and studying autistic behaviors for chil-

dren [42].

How are my behaviors affected by others? This question

has been a central theme in social psychology [7] and neu-

roscience, e.g., mirror neuron [43], and their models inspire

computational algorithms for multi-agent motion planning

in robotics [9, 12, 29] and graphics [23, 34, 39]. A no-

table model is Helbing’s social force model [19] that ex-

plains crowd movements as a collection of physical interac-

tions between social agents. This model is used to track a

crowd [6] and recognize abnormal behaviors [33].

A group as a whole naturally creates a distinctive geom-

etry of social formation that accommodates its social ac-

tivity, e.g., a street busker’s performance surrounded by a

crowd with a half circular formation. Therefore, the for-

mation can be a key indicator to classify the type of so-

cial configurations that influence individual behaviors with

respect to the group. For instance, Kendon’s F-formation

theory [24] characterizes the spatial arrangements of a so-

cial group, that can be used to identify social interactions

in an image [13], and its validity is empirically proven us-

ing a large social interaction dataset [38]. In dynamic social

scenes, the formation enables re-identifying a group of peo-

ple in a crowd from non-overlapping camera views [5], and

the progression of formation change can be learned via in-

verse reinforcement learning [32] and discriminative analy-

sis (LSTM) [4].

Note that most prior methods in predicting social behav-

iors rely on the third person measurements which have a

limited access to how we perceive the social configurations.

We leverage the visual social semantics embedded in first

person cameras, which allows us to directly predict a plau-

sible future group trajectory. This also enables predicting

not only people’s dynamic locations but also their attention,

which have not been explored in prior studies.
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Figure 2. (a) We model the space around a person using a cylinder that (b) stabilizes a first person image, Θ(I). The location and orientation

of other players in the image are fully automatically labeled using 3D reconstruction. (c) We retrieve egocentric trajectories by associating

the visual semantics of social configuration. (d) The retrieved trajectories are projected onto the first person image.

3. First Person Social Behavior Prediction

We predict a group future trajectory (location and gaze

direction) up to 5 seconds given their first person videos.

We use the 3D pose of a first person camera as a proxy of the

head location, c, and orientation (gaze direction)1, r where

c and r are camera optical center and the z axis of the cam-

era rotation (optical axis) in the camera projection matrix,

respectively. The camera projection matrices for all players

are computed by structure from motion. We represent all

variables in 2D by projecting 3D camera pose and joint at-

tention on the 2D basketball court (50 ft.×94 ft.) as shown

in Figure 3(b): player’s location x = c1:2, gaze direction

g = r1:2/‖r1:2‖ ∈ S, velocity v, joint attention s ∈ R2

where r1:2 is the first two elements of r assuming that the

coordinate system is aligned with the basketball court ori-

gin, i.e.,
[

0 0 1
]T

is the surface normal of the court.

The ground truth joint attention is computed by triangulat-

ing the gaze directions of players [37, 38]. For each player,

a first person image, I is associated with the gaze, (x,g).
Our method is composed of two parts: 1) egocentric tra-

jectory retrieval per player and 2) a group trajectory se-

lection using a measure of social compatibility. For each

player, we recognize images that have similar social and

spatial configurations and retrieve a set of N future trajecto-

ries (location and orientation) in Section 3.1. This generates

nN trajectories for n players, and we find a plausible group

trajectory set that maximizes a measure of social compat-

ibility (Section 3.2) while localizing joint attention using

LRCN (Section 3.3).

3.1. First Person Trajectory Retrieval

We behave similarly in similar social situations. The

location, velocity, and orientation of other players are

recorded in a first person image, I, which encodes not only

spatial layout, e.g., basket, center line, and background, but

also social layout, e.g., where are other players, around the

person. In this section, we learn the visual representation of

social and spatial configurations from first person images.

1Optionally, the fixed spatial relationship between camera optical axis

and primary gaze direction can be calibrated [37].

We use the 3D reconstruction of first person videos to

automatically annotate each other’s location and orientation

in pixels. We model each player using a cylinder with radius

r and height H and project the cylinder onto a first person

image, I. The relative gaze direction, ∆g is recorded in the

label image, M using the HSV color map (Figure 2(b)):

Mxy =

{

(0, 0, 0) if j∗ = ∅
(∆gj∗ , 0.9, 0.9) otherwise

where j∗ = argmin
j

min
λ

{λ|c+ λr ∈ Cj , λ > 0},

∆g = ∠gj − ∠g is the jth relative gaze direction, Cj =
{c|∆c3 < H, ‖∆c1:2‖ < r,∆c = cj − c} is a set of 3D

points in the cylinder of the jth player. This label image

directly encodes social configuration around a person.

We stabilize a first person image onto the cylindrical sur-

face2 (Figure 2(b)).

Θ(I)θh = Ixy where

{

x = rTxz/r
Tz

y = rTyz/r
Tz

,

and z =
[

cos θ sin θ h
]T

. rx and ry is the X and Y
axes of the first person camera. The mapping function Θ
applies to both first person image I and label image M.

The warped image has three properties that make visual

learning effective. 1) Aligned vanishing lines: the head

and foot location of the players are dependent solely on the

depth given similar height; 2) no perspective distortion: the

scale in image linearly proportional to the inverse depth;

3) optical center invariance: the representation is linear in

angle where the optical center shift is linear translation in

angle.

We learn the visual social semantics using a Siamese

neural network. We generate the positive and negative

pairs of images based on M, i.e., positive if ‖Θ(Mi) −
Θ(Mj)‖ < ǫ and negative otherwise, where Θ(M) is the

stabilized label image. We minimize the following con-

trastive loss for training:

Lsoc =
∑

(i,j)∈P

lij‖∆φ‖2 + (1− lij)max(0,m2 − ‖∆φ‖2)

2Similar projection has been used to generate a panoramic image [47].
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Figure 3. (a) In conjunction with location and orientation prior, we use the visual semantics in a first person image to retrieve trajectories,

which shows strong selectivity. GT: ground truth trajectory, Ret: retrieved trajectory. (b) We select K best trajectory sets in a trellis graph

using a generalized Dijkstra algorithm. A vertical space represents the retrieved trajectories per player and the path cost is computed by

Equation 1.

where lij is a label indicating positive and negative pairs,

φ(Θ(I)) is the visual feature of the warped image Θ(I)
learned by a convolutional neural network (CNN). ∆φ =
φ(Θ(Ii))−φ(Θ(Ij)), P is the set of pairs, and m is a margin

between positive and negative pairs. We use the pre-trained

CNN [27] and refine the weights through the training. The

paired stabilized images are passed through two identical

subnetworks, and Lsoc is computed by the contrastive loss

of FC7 feature of the two images.

We empirically observed that this pairing across all loca-

tions inclines to learn the background because a first per-

son image is dominated by background pixels, e.g., the

network learns ego-motion rather than social configura-

tions [3, 20, 21, 35]. Instead, we make pairs that are located

and oriented in the similar area of the basketball courts, i.e.,

‖xi −xj‖ < ǫx and |∠gi −∠gj | < ǫg. Our learning based

approach is beneficial in particular dynamic social scenes

that include severe motion blur, illumination and view point

changes where standard structure from motion often fails.

Based on the learned feature of the target image,

φ(Θ(Itar)), we retrieve N 2D trajectories, T = {T|ǫ >

‖φ(Θ(Itar)) − φ(Θ(I))‖} where T = {xt,gt}
T

t=1 is a tra-

jectory (location and gaze direction) of each player and ǫ
is the feature decision boundary learned by the neural net-

work. Similar to the training phase, we restrict the training

data samples based on location and orientation. In prac-

tice, we cluster the trajectories, T using Medoidshift [46]

to identify topologically distinctive trajectories [35]. Fig-

ure 2(c) illustrates the retrieved trajectories that are pro-

jected onto the first person image in Figure 2(d). Note

that our first person trajectory retrieval is highly selective

as shown in Figure 3(a).

The retrieved trajectories have three properties: 1) they

discover egocentric physical space to move based on social

configurations; 2) they include diverse topological struc-

ture, i.e., different trajectories may be plausible given a so-

cial configuration; and 3) they reflect spatial layout.

Why learning? We exploit visual learning based retrieval

because 1) it can encode subtle pose signals that describe

where they will move next; and 2) large reprojection error

caused by localization error can be handled.

3.2. Group Trajectory via Social Compatibility

There exist Nn possible combinations of group trajec-

tories where n is the number of players. The trajecto-

ries are retrieved independently, and not all combinations

are socially plausible. In this section, we recognize the

plausible trajectory combinations using a measure of social

compatibility—the gaze alignment towards joint attention

predicted by social formation. Note that we consolidate all

retrieved egocentric trajectories by registering them into the

basketball court.

There are two ways of computing joint attention in a

static social scene: 1) geometrically finding the intersection

of gaze directions [37] and 2) statistically learning the char-

acteristics of the social formation, which does not require

knowing gaze directions [38]. Note that we denote the geo-

metrically computed joint attention as s to differentiate with

the statistically estimated joint attention ŝ.

Ideally, these two locations of joint attention must agree,

and we define a measure of social compatibility based on

the alignment between two joint attentions:

η =
1

n

∑

x∈X

(ŝ− xi)
T
gi

‖ŝ− xi‖
,

where X = {xi,gi}
n
i=1 is a set of player locations and gaze

directions. The social compatibility measures how the gaze

directions are geometrically aligned with statistically com-

puted joint attention, and it characterizes which social for-

mation and corresponding gaze directions are socially plau-

sible. Note that ŝ is a function of {xi}
n
i=1.

We integrate the social compatibility over time to evalu-
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Figure 4. (a) We predict joint attention using a social formation feature that encodes the player’s location and instantaneous velocity (bottom

right). Top row: the predicted joint attention is projected onto each first person image. (b) The social formation features are used to learn

the dynamics of joint attention using LRCN [14].

ate a group trajectory set:

η =
1

nT

n
∑

i=1

ηt
(

{ŝt}
T
t=1,Ti

)

,

where ηt is the accumulated measure of social compatibility

over T time instances.

Group Trajectory Selection Among the nN retrieved tra-

jectories from all players, {Ti}
n

i=1, we find a group trajec-

tory set that maximizes the measure of social compatibility:

argmin
{pi}n

i=1

−
1

nT

n
∑

i=1

ηt
(

{ŝt}
T
t=1,Tpi

)

, (1)

where {pi}
n
i=1 is an index set for the retrieved trajectory of

each player.

Solving Equation (1) by the exhaustive search is com-

putationally prohibited, O(Nn). A stochastic search such

as Monte Carlo simulations does not apply due to the low

probability to choose a correct model. Instead, we employ

the generalized Dijkstra algorithm, or Yen’s algorithm [50]

to efficiently find the K best trajectory sets.

We construct a trellis graph where the vertical slice rep-

resents a set of the retrieved trajectories per players, Ti, i.e.,

each node is a trajectory and an edge indicates the trajec-

tory selection as shown in Figure 3. A path along the trellis

graph determines the selected trajectory set where the path

cost is defined in Equation (1). Despite the greedy search

due to a nonlinear prediction of joint attention (Section 3.3),

in practice, the algorithm finds “good” solutions that have

high social compatibility. We predict the group behaviors

using the selected trajectory set.

3.3. Joint Attention Dynamics

Equation (1) requires joint attention prediction, ŝ. In this

section, we learn the dynamics of joint attention with re-

spect to social formation using LRCN [14].

As an input of the network, we generate a formation fea-

ture image, Φ(X ) that encodes the occupancy and instanta-

neous velocity, v, of the players in a discretized basketball

court. The HSV value of the formation feature image is set

to:

Φij(X ) =

{

(∠v̄ij , ‖v̄ij‖, 0.9) if |Cij | > 0
(0, 0, 0) if |Cij | = 0

where v̄ij =
1

|Cij |

∑

vk∈Cij

vk,

Cij = {v|x ∈ Cij} and the (i, j) cell of the court. Φ(X )
is illustrated in the bottom right of Figure 4(a). Note that

unlike social dipole moment [38], this representation is in-

dependent on the location of center of mass and joint atten-

tion, which is robust to missing data.

We use LRCN with a few minor modifications to learn

the dynamics of joint attention. We minimize the following

joint attention error:

LLSTM =

T
∑

t=1

‖st − ŝt‖
2,

where the ŝt+1 is recursively computed by

ŝt+1 = f(ŝt,Φ(Xt);wCNN,wLSTM). (2)

f is the dynamics parametrized by the weights of a con-

volutional neural network, wCNN, and a long short-term

memory unit, wLSTM as shown in Figure 4(b). We initial-

ize wCNN based on pre-trained model [27] separately with

further refinement by regressing the static location of joint

attention from social formation, s = g(Φ(X);wCNN).

4. Basketball Dataset Analysis

We use the first person basketball video data collected

by the university team at Northwestern Polytechnical Uni-

versity in China [8, 38]. The dataset includes 10.5 hours of

basketball games. We take two steps for reconstruction: (1)

reference reconstruction: we subsample images from each

player to reconstruct the reference 3D points and cameras
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Figure 5. (a) Players consistently engage joint attention while playing. They look at the joint attention more than 60% of their play. (b) Role

is a key factor to determine social formations. We illustrate distributions of the Center and Wing players given the ball holder’s location.

(c) The role of a player is a strong prior to predict other players, e.g., two Centers from different teams often move together to block each

other. PF: Power Forward, C: Center, PG: Point guard, SF: Small Forward, SG: Shooting guard.

(∼3,000 images) using structure from motion [18]; and (2)

camera registration: we register each image into the refer-

ence reconstruction coordinate system using a camera re-

sectioning algorithm [31] with local bundle adjustment up

to 500 consecutive images.

Figure 5(a) illustrates a normalized angle histogram of

joint attention engagement. This indicates that the players

consistently align their gaze directions to joint attention (<
40 degree): 83%, 65%, and 48% of their play at 0 m/s, 1.5

m/s, and 3 m/s speed, respectively. As the speed gets faster,

the player’s gaze direction tends to deviate from the joint

attention: it often follows the fast motion, which forms be-

hind the person (180 degrees) at high speed.

Player’s role is a key factor to characterize social forma-

tions. Figure 5(b) illustrates a spatial distribution of players

based on their role, given joint attention. For instance, when

the Center possesses a ball, Power Forward and Center are

likely located near the basket area for blocking and rebound.

When a Point Guard possesses the ball, players tend to be

distributed widely to create space to receive the ball. Also

the role is a strong predictor of the play as similar roles in

different teams enforces them to move together. Figure 5(c)

shows that a strong correlation of roles in different teams.

5. Result

We evaluate our social behavior prediction on two bas-

ketball datasets, which are captured at NPU and CMU, re-

spectively. The two datasets significantly differ from each

other in terms of at least 5 aspects. (1) Location: the vi-

sual appearance of the court does not match; (2) Lighting:

illumination and reflectance from floor are different; (3)

Level of players’ skill: NPU players are semi-professionals

while CMU players range from novice players to experts;

(4) Strategy: no team coach directs the CMU games un-

like NPU; (5) Jersey: CMU players wear team jersey unlike

NPU.

We use AlexNet [27] to train the Siamese network with

Caffe [22]. 240k image pairs are generated from first person
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Figure 6. We compare our predicted joint attention with 7 baseline

algorithms which it shows 7m error after 5 seconds.

images of players where the pairs are selected within similar

location (ǫx < 3m) and orientation (ǫg < 45 degrees) in the

basketball court. Due to the location and orientation prior,

the network can be efficiently trained with strong general-

ization power (98.7% testing accuracy). For training the dy-

namics of joint attention, we concatenate the AlexNet FC7

layer with LSTM through Theano [48]. We generate 85k

sequences of joint attention and corresponding social for-

mation feature (210×410). The testing average error over 5

seconds is 3.12m.

5.1. Quantitative Evaluation

We evaluate our prediction in three categories: joint at-

tention, missing trajectory, and social trajectories.

Joint attention prediction We compare our method with

7 baseline algorithms for predicting 5 seconds. A) Zero

velocity (ZV) and linear constant velocity (LV) extrapolate

the location of joint attention by taking into account instan-

taneous velocity; B) Center of mass (COM) and center of

circumcircle (CC) are geometrically computed based on the

locations of players; C) Social dipole moment [38] (SDM)

is used to learn a binary classifier (AdaBoost) to recognize

the location of joint attention; D) Our social formation fea-
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Figure 7. (a) and (b): We evaluate our algorithm by comparing with 7 baseline algorithms including state-of-the-art Social LSTM, and our

method consistently outperforms other methods on missing data prediction task. In particular, our method shows a strong predictive power

on gaze direction. (c) and (d): We predict a group trajectory set and compare with Vanilla LSTM and Social LSTM while no comparable

algorithm exists for graze prediction.

ture image (SFI), Φ(X ), with LSTM is used to predict joint

attention using a convolutional neural network [27]. We

train the network to minimize the Euclidean loss of ‖s− ŝ‖;

E) A Bayesian filtering (BF) is applied for temporal smooth-

ing by learning a stochastic dynamics of joint.

Figure 5 illustrates the predictive validity where our

method outperforms all baseline algorithms. In particular,

it shows a strong predictive power up to 4 seconds with 5

m error in a highly dynamic scene. The error in LV and

ZV indicates the nature of dynamics of the basketball game.

COM, CC, SDM, and SFI are time independent predictors

where COM shows the most consistent and strongest pre-

diction. This is caused by the fact that social formations

in basketball data are often distributed near the basket area

where the center of mass of players is likely located.

Missing trajectory prediction We apply our method for

missing trajectory prediction. We leave out a trajectory and

predict its behaviors using social compatibility.

We compare our method with 7 baseline algorithms. A)

We use a kinematic prior to predict a trajectory: location

(Loc), orientation (Ori), velocity (Vel), and their combi-

nations. B) We compare with state-of-the-art third person

prediction systems based on Vanilla LSTM [17] and So-

cial LSTM [4]. We use the occupancy based Social LSTM

which applies pooling based on social proximity. C) We

compare with first person prediction based solely on visual

features (Img) (no kinematic knowledge). The visual fea-

tures are learned by our Siamese network. Note that we

compare not only future locations but also gaze directions

except for Vanilla and Social LSTMs where gaze prediction

is not possible with their trivial extension.

Figure 8(d) indicates that orientation or velocity is a

strong prior to predict future while our method produces

more selective trajectories due to the social compatibility

measure. Vanilla LSTM produces unconvincing results due

to its limited expressibility on social interactions and So-

cial LSTM shows drifts because the behaviors of basketball

players are often affected by long range team players. No-

tably a first person image based method without kinematic

knowledge (Img) performs poorly, which indicates visual

information alone can be ambiguous.

Our method outperforms all baseline algorithms. In par-

ticular, our method shows strong predictive power on gaze

direction driven by joint attention.

Social trajectory prediction We focus on comparing with

third person approaches: Vanilla LSTM and Social LSTM.

Note that both LSTMs require longer observation time (10

seconds) to predict 5 seconds while our first person based

method needs 0.5 second (instantaneous velocity).

Note that Vanilla LSTM behaves similarly to the miss-

ing data prediction as it has no consideration on social be-

haviors. Our method produces the error range, 6 m and 60

degree error after 5 seconds as shown in Figure 7.

We also characterize the prediction error based on

player’s role summarized in Table 1. This error indicates

that the predictive power differs by the roles, e.g., predicting

Shooting Guard’s behaviors is relatively more difficult than

Centers because of diverse interactions across the court.

5.2. Qualitative Evaluation

We apply our method to predict players future behaviors

in diverse basketball scenarios. Figure 8 shows trajectory

and joint attention predictions. We also show the retrieved

sequences that have similar social configuration to reason

about predictions.

6. Summary

We present a method to predict the future location and

gaze direction of basketball players from their first person

videos. 3D reconstruction of multiple first person videos

provides the automatic supervision for learning visual so-

cial semantics. We use the learned representation to retrieve

trajectories per player. We evaluate the plausibility of each

group trajectory using social compatibility. We select K
best group trajectories using a generalized Dijkstra’s algo-

rithm. We demonstrate that our first person based method is

effective, outperforming state-of-the-art social activity pre-

diction systems that use third person views.
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Power Forward Point Guard Small Forward Shooting Guard Center

1sec 3 sec 5 sec 1sec 3 sec 5 sec 1sec 3 sec 5 sec 1sec 3 sec 5 sec 1sec 3 sec 5 sec

Ours 0.50 0.60 0.40 1.59 3.76 5.71 0.64 0.25 2.41 1.51 4.95 7.79 1.39 0.65 1.70

Vanilla LSTM 6.50 10.86 13.77 6.85 12.86 8.30 3.52 3.81 9.05 1.98 15.43 7.69 9.35 5.54 12.23

Social LSTM 2.98 3.02 3.59 6.55 11.49 12.32 0.53 5.35 7.84 1.99 10.19 2.43 5.14 1.60 7.36

Table 1. Trajectory prediction error based on player’s role

Joint attention prediction

Trajectory prediction Target sequence

Retrieved sequence

Target sequence

Retrieved sequence

(a) Taking-turn

Joint attention prediction

Trajectory prediction Target sequence

Retrieved sequence

Target sequence

Retrieved sequence

(b) Attack

Joint attention prediction

Trajectory prediction Target sequence

Retrieved sequence

Target sequence

Retrieved sequence

(c) Shot

Trajectory prediction

Joint attention prediction

Target sequence Target sequence

Retrieved sequence Retrieved sequence

(d) Drive-in

Figure 8. We evaluate our algorithm qualitatively in diverse scenarios (taking-turn, attack, drive-in, and shot) on both datasets. The first

column and top row: a comparison between the predicted trajectories with gaze directions in blue with ground truth trajectory in red up to

5 seconds. First column and bottom row: a comparison between the predicted joint attention in green with the ground truth joint attention

in orange. Transparency encodes time. Second column: a comparison between a target sequence (top row) and the retrieved sequence

(bottom row). We also show the retrieved sequences to reason about our prediction. The retrieved sequence has similar social configuration

as time evolves. The predicted trajectories and joint attention are projected onto the target sequence to validate the prediction. The joint

attention agrees with scene activities. The blank space is missing data where structure from motion fails.
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[39] J. Pettré and M. C. Lin. New generation crowd simulation

algorithms. SIGGRAPH, 2014.

[40] G. Pusiol, L. Soriano, L. Fei-Fei, and M. C. Frank. Dis-

covering the signatures of joint attention in child-caregiver

interaction. In CogSci, 2014.

[41] V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban,

K. Murphy, and L. Fei-Fei. Detecting events and key actors

in multi-person videos. In CVPR, 2016.

[42] J. M. Rehg, G. D. Abowd, A. Rozga, M. Romero, M. A.

Clements, S. Sclaroff, I. Essa, O. Y. Ousley, Y. Li, C. Kim,

H. Rao, J. C. Kim, L. L. Presti, J. Zhang, D. Lantsman,

J. Bidwell, and Z. Ye. Decoding children’s social behavior.

In CVPR, 2013.

[43] G. Rizzolatti and L. Craighero. The mirror-neuron system.

Annual Review of Neuroscience, 2004.

[44] M. Rodriguez, J. Sivic, I. Laptev, and J.-Y. Audibert. Data-

driven crowd analysis in videos. In ICCV, 2011.

[45] F. Setti, O. Lanz, R. Ferrario, V. Murino, and M. Cristani.

Multi-scale F-formation discovery for group detection. In

ICIP, 2013.

1509



[46] Y. Sheikh, E. Khan, and T. Kanade. Mode-seeking by

medoidshifts. In ICCV, 2007.

[47] R. Szeliski and H.-Y. Shum. Creating full view panoramic

image mosaics and environment maps. SIGGRAPH, 1997.

[48] Theano Development Team. Theano: A Python frame-

work for fast computation of mathematical expressions.

arXiv:1605.02688, 2016.

[49] Y. Yang, S. Baker, A. Kannan, and D. Ramanan. Recogniz-

ing proxemics in personal photos. In CVPR, 2012.

[50] J. Y. Yen. Finding the k-shortest loopless paths in a network.

Management Science, 1971.

[51] R. Yonetani, K. M. Kitani, and Y. Sato. Recognizing micro-

actions and reactions from paired egocentric videos. In

CVPR, 2016.

1510


